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Véronique Vèque, Member, IEEE

Abstract—Open Radio Access Network (O-RAN) has recently
emerged as a new trend for mobile network architecture. It is
based on four founding principles: disaggregation, intelligence,
virtualization, and open interfaces. In particular, RAN disag-
gregation involves dividing base station virtualized networking
functions (VNFs) into three distinct components - the Open-
Central Unit (O-CU), the Open-Distributed Unit (O-DU), and
the Open-Radio Unit (O-RU) - enabling each component to
be implemented independently. Such disaggregation improves
system performance and allows rapid and open innovation
in many components while ensuring multi-vendor operability.
As the disaggregation of network architecture becomes a key
enabler of O-RAN, the deployment scenarios of VNFs on O-
RAN clouds become critical. In this context, we propose an
optimal and dynamic placement scheme of the O-CU and O-
DU functionalities on the edge or in regional O-clouds. The
objective is to maximize users’ admittance ratio by considering
mid-haul delay and server capacity requirements. We develop an
Integer Linear Programming (ILP) model for O-CU and O-DU
placement in O-RAN architecture. Additionally, we introduce
a Recurrent Neural Network (RNN) heuristic model that can
effectively emulate the behavior of the ILP model. The results
are promising in terms of improving users’ admittance ratio by
up to 10% when compared to baselines from state-of-the-art.
Moreover, our proposed model minimizes the deployment costs
and increases the overall throughput. Furthermore, we assess the
optimal model’s performance across diverse network conditions,
including variable functional split options, link capacity bottle-
necks, and channel bandwidth limitations. Our analysis delves
into placement decisions, evaluating admittance ratio, radio and
link resource utilization, and quantifying the impact on different
service types.

Index Terms—Open RAN, Resource Allocation, Operations
Research, Simulation, Deep Learning, RNN

I. INTRODUCTION

THE entire Telecoms industry is going through a profound
transformation driving the move towards open archi-

tectures and software-based networks. This trend is moving
ahead faster and gaining momentum thanks to open-source
software and standards for communication infrastructure com-
ponents. On the one hand, an open architecture approach can
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help operators to emancipate themselves from vendors’ lock-
in and the derived high operational and capital expenditures.
On the other hand, vendors can then bypass complex and
high-barrier hardware design and production lines, focusing
instead on advanced functionalities, interfaces, and software
life-cycle maintenance and licensing models. As an initiative
to drive openness and intelligence for the next-generation
wireless networks, Open-Radio Access Network (O-RAN) has
recently emerged to break the last barrier in the development
of fully softwarized radio access networks [2] [3]. The O-
RAN Alliance is an industry consortium focused on reshaping
the radio access network (RAN) ecosystem towards more
open, intelligent, virtualized, and fully interoperable mobile
networks. It was founded in 2018 by leading telecom operators
and vendors, including China Mobile, Deutsche Telekom,
and Orange [2]. The industry has several interests in O-
RAN techniques because open, virtualized, and standardized
interfaces will result in cost reductions, increased flexibility,
better interoperability between vendors, and fast deployment
of new technologies and services. Furthermore, embedding AI
and machine learning may increase network performance.

A fundamental principle of O-RAN is the disaggregation of
traditionally integrated RAN components. This disaggregation
involves splitting RAN functionalities into three components:
the Open-Central Unit (O-CU), the Open-Distributed Unit
(O-DU), and the Open-Radio Unit (O-RU), each handling
separate virtual network functions (VNFs).

Unlike commonly used static deployment strategies, our
research delves into the potential benefits of dynamic de-
ployment for O-CU and O-DU components in either edge or
regional clouds. The primary goal is to satisfy users’ quality of
service (QoS) requirements while simultaneously enhancing
the overall efficiency and performance of the network. This
approach introduces a new level of flexibility and adaptability
to the network’s architecture. To achieve this, we formulate
an Integer Linear Programming (ILP) model designed to
optimally and dynamically place the O-CU and O-DU within
the O-RAN architecture. The exploration spans various con-
straints, including the capacity of cloud servers, link capacity,
and delay budget. Furthermore, we consider diverse service
requirements such as enhanced Mobile Broadband (eMBB),
Ultra-Reliable and Low Latency Communications (URLLC),
and massive Machine-Type Communications (mMTC), aim-
ing to optimize user satisfaction while meeting the unique
needs of each service type. Our approach adopts a specific
deployment scenario where O-RU is consistently located at the
cell site. Meanwhile, the O-DU is deployed on the Edge cloud.



2

Finally, the O-CU has the flexibility to choose between edge
or regional clouds to handle its functionalities. Our approach
reflects a dynamic and flexible placement scenario between
scenarios B and C, as illustrated in Figure 1. Our results
showcase the feasibility of establishing multiple connections
between an O-RU and several O-DUs in an O-RAN network,
emphasizing the concept of Shared O-RU, defined in the
Shared-O-RU-Multi-O-DU feature [4]. This feature is partic-
ularly beneficial for user dispatching, offering a flexible and
efficient resource allocation within the network. Furthermore,
our proposed solution yields significant benefits in terms of
user admittance ratio and cost reduction when compared to
three baseline solutions; these include a random placement
of O-CU and O-DU functionalities among regional or edge
clouds, and two static placements: one with both O-CU and
O-DU on edge clouds, and the other with O-CU and O-DU
on regional and edge clouds, respectively.

In Addition, we introduce a heuristic to efficiently solve the
optimization problem. Leveraging a recurrent neural network
(RNN) based model [5], [6], we tap into the potential of
deep learning to provide less-complex alternatives to highly-
complex optimal algorithms in terms of execution time such
as the branch and bound algorithms used to find optimal
solutions to ILP problems [7]. We propose an RNN-based
model that uses a bidirectional LSTM architecture trained with
the ILP model’s output to effectively mimic the optimal place-
ment of O-CU and O-DU, achieving the desired benefits. Our
approach is novel because we integrate the LSTM model that
considers the sequential nature of RAN disaggregation and
long-term dependencies among users. This enables efficient
VNF Placement across available computing resources.

Finally, we rigorously evaluate the optimal model’s per-
formance under diverse network conditions. This comprehen-
sive assessment considers potential computational, radio, and
link capacity bottlenecks and constraints imposed by channel
bandwidth, as well as variations in functional split options.
We analyze performance regarding admittance ratio, multi-
resource utilization, and the impact on different service types.
This exploration allows us to assess the model’s adaptability
to varying requirements of the O-RAN architecture.

The main contributions of this paper are summarized here:
1) We propose a flexible placement scenario of O-CU and

O-DU functionalities between edge and regional clouds
in O-RAN architecture.

2) We formulate an ILP model for the optimal placement
of O-CU and O-DU, considering various constraints and
service requirements, with the objective of maximizing
users’ admittance.

3) We introduce a heuristic solution using RNN-based mod-
els that achieves performance closely comparable to the
ILP-based optimal algorithm but significantly reduces
execution time.

4) We evaluate the model’s performance under diverse
network conditions, including computing resources, link
capacities, and radio resources.

The rest of this paper is organized as follows. Section I
overviews the O-RAN disaggregation concept and our work
motivation. Section III provides an overview of the related

work. Our proposed ILP-based model and deep learning-
based heuristic are described in Section IV and Section V,
respectively. The simulation framework is detailed in Section
VI. Section VII quantifies the behavior of the proposed
algorithms, and finally, Section VIII concludes the paper.

II. O-RAN OVERVIEW AND MOTIVATION

One of the fundamental principles underlying O-RAN is the
disaggregation process. Traditionally, RAN components were
tightly integrated, with hardware and software provided by a
single vendor. Using disaggregation, hardware and software
are decoupled. Virtualization allows the RAN functions to
run on general-purpose hardware rather than specialized,
proprietary equipment. The disaggregation of RAN into three
main distinct components (O-CU, O-DU, and O-RU) enables
each to be implemented independently, thus promoting greater
flexibility and interoperability within the network [8]. The
disaggregation concept has altered the definition of the RAN
and redirected the attention of resource allocation solutions
towards the O-CU and O-DU, especially in terms of VNF
deployment options. These options comprise several con-
figurations for placing O-CU and O-DU at regional and
edge cloud nodes. By deploying these VNFs across nodes at
varying distances, network operators gain the ability to tailor
their deployments to specific network requirements and meet
minimum Quality of Service (QoS) standards, such as high
throughput and low latency. For example, placing VNFs closer
to end-users, such as at cell sites, can reduce end-to-end la-
tency for applications with strict delay constraints. Conversely,
deploying these components in more distant cloud hosts can
leverage greater computational resources to manage higher
packet processing rates. Therefore, while the disaggregation
and distribution of functional units throughout the O-Cloud
network offer significant flexibility, their deployment must
be carefully planned to meet stringent constraints. Practical
examples include scenarios where real-time applications like
augmented or virtual reality demand low latency, necessitat-
ing edge deployments. Meanwhile, data-intensive applications
such as video streaming or cloud gaming can benefit from
higher processing power in regional clouds.

To enhance the network efficiency, the disaggregation con-
cept yields a wide range of functional split options, dis-
tributing baseband processing functions among the O-RU, O-
DU, and O-CU. The O-RAN Alliance selects the functional
split 7.2x that balances the simplicity of the radio unit and
the data rates and latency required on the interface between
the radio and the distributed units [8]. Specifically, in the
7.2x split, the O-RU handles Fast Fourier Transform (FFT)
and cyclic prefix addition/removal operations, making the RU
cost-effective and easy to deploy. The O-DU then manages
the remaining physical layer functionalities and the Medium
Access Control (MAC) and Radio Link Control (RLC) layers.
Finally, the O-CU implements the higher layers of the 3GPP
stack, including the Radio Resource Control (RRC) layer,
the Service Data Adaptation Protocol (SDAP) layer, and
the Packet Data Convergence Protocol (PDCP) layer. The
Near-RT RIC is responsible for intelligent edge control of
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Figure 1: O-RAN Cloud deployment scenarios [10]

RAN nodes and resources. It controls RAN elements and
their resources through microservices, called xApps, which
typically run control loop tasks with durations ranging from
10 milliseconds to one second.

In this context, the O-RAN alliance envisions different
strategies for deploying its functional splits on regional or
edge cloud locations or at proprietary cell sites [9]. Fig. 1
depicts the different O-RAN Cloud deployment scenarios [10].
For instance, Scenario A refers to the case where all the net-
work components except the O-RUs are deployed at the edge
cloud of the network. Scenario B presents the case where the
O-DU and O-CU functionalities are located in the edge cloud
while the Near-RT RIC is in the regional cloud. Our proposal
adopts a flexible deployment scenario between scenarios A
and B, leveraging the computing resources utilization and
enhancing the network performance. The interfaces among
the O-CU, O-DU, and O-RU, shown in Fig. 1, are crucial
for communication in disaggregated networks. The fronthaul
connects the O-RU to the O-DU for user data transmission,
the F1 interface links the O-CU and O-DU for control and
user data exchange, and the E2 interface connects the O-CU
to the Near-RT RIC for real-time RAN resource optimization
through xApps.

III. RELATED WORK

To address the challenges introduced by disaggregating
the RAN, several works from the literature tackle the VNF
placement problem in O-RAN to optimize resource alloca-
tion mechanisms but with different objectives. Moreover, the
intelligence supported by the O-RAN boosts studies on the
application of deep learning-based techniques in RAN.

A. VNF placement in O-RAN

Optimization objectives of the VNF placement problem
are the most relevant characteristic when comparing the
related work since they yield distinct problem formulations

and provide diverse insights. In [11], the authors propose a
deep reinforcement learning method that explores the best
O-Cloud locations for O-DU and O-CU Virtualized/Cloud-
native network functions (VNFs/CNFs), along with the op-
timal user equipment to O-RU associations. Their objective
is to minimize the delay while reducing the deployment
cost. According to their findings, the proposed algorithm
outperforms the static allocation of the O-CUs and O-DUs,
although they do not consider the diverse service requirements
of different users. Authors in [12] tackle the flexible placement
of the three-layer RAN slices (O-RU, O-DU, O-CU) over a
multi-tier aggregation sites network topology while adopting
flexible functional split options. Our consideration of edge-
regional server infrastructure is similar to their multi-tiered
network infrastructure. However, they seek to maximize the
profit of the infrastructure provider. Moreover, in [13], the
authors propose an optimization model that deploys O-RAN
components within regional and edge clouds while minimizing
the network outage. Scenario B is adopted in their work,
where O-CU and O-DU are always placed at an edge server.
The work of [14] suggests a framework that optimizes the
number of instantiated RUs in a given area based on its long-
term network statistics. Then, it associates these RUs with
open-access edge servers to host the corresponding DUs and
CUs. The main objective of their work is to minimize the
overall deployment cost by installing the minimum number
of RUs and open-access edge servers. In [15], authors present
a dynamic DU placement strategy, which enhances flexibility
in positioning DUs across the network to minimize O-RAN
costs. However, these studies retain fixed CU locations, po-
tentially leading to sub-optimal results. The authors of [16]
explore the placement of VNFs on various nodes (access
and aggregation nodes) while incorporating flexible functional
split options. They account for each split option’s latency,
bandwidth, and computing resource requirements. Given these
resources’ availability and the split options’ priority, their
model places VNFs to achieve minimal computing resource
utilization with maximum aggregation efficiency.

In conclusion, various studies in the literature have tackled
the placement problem of O-RAN components from different
perspectives. Some have focused on minimizing delay, reduc-
ing deployment cost, maximizing profit, minimizing network
outage, and reducing overall deployment cost. Our work in
this paper addresses the dynamic placement problem of the O-
RAN components to maximize users’ admittance ratio while
satisfying the diverse QoS requirements of uRLLC, eMBB,
and mMTC slices. Our proposed solution enables the optimal
and dynamic allocation of O-CU and O-DU functions on
either edge or regional clouds.

B. Deep Learning-based solutions in RAN

This section reviews existing Deep Learning-based works,
primarily focusing on RNN applications in the 4G/5G RAN.
Works in [17] and [18] mainly address radio resource schedul-
ing while considering dynamic changes in radio access and
services. In [17], the authors present a Deep Learning-based
framework for intelligent radio resource assignment in 5G
networks. This framework aims to predict traffic congestion
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and the occupancy state of base stations, allowing for an
adaptive uplink and downlink ratio to prevent congestion.
The proposed framework utilizes a deep tree model and a
long short-term memory (LSTM) network to forecast future
traffic based on current and past data. Similarly, the authors in
[18] address the traffic congestion issue using a deep LSTM
learning algorithm to predict traffic load at the base station.
The proposed algorithm executes appropriate action policies
based on these predictions to avoid or reduce congestion
intelligently. These works primarily employ LSTM networks
due to the temporal dependency nature of traffic data.

Moreover, several works focus on managing user handovers
and base station energy based on user mobility using RNN
models. In [19], the authors first presented an analytical model
of handover cost in 5G, considering factors such as signaling
overhead, latency, call dropping, and radio resource wastage.
Then, they propose a prediction scheme based on the RNN
with the LSTM algorithm to minimize handover costs. Their
study demonstrated that accurate handover predictions could
significantly reduce user dissatisfaction, handover latency, re-
source wastage, and overhead. Similarly, the LSTM algorithm
is utilized in [20] to learn each UE’s mobility pattern from its
historical trajectories and predict its future movements. Based
on these mobility predictions, the corresponding base station
determines whether a handover is necessary for the UE.

The work in [21] proposes a BiLSTM RNN-based approach
to sub-optimally depict the performance of an ILP-based algo-
rithm for optimal allocation of computing resources in a given
centralized RAN architecture trained to select Modulation and
Coding Scheme (MCS) index. Compared to this work, our
RNN solution predicts the optimal placement of VNFs and
depicts the performance of an ILP model that constitutes more
constraints, making it challenging to be trained to mimic the
optimal model.

Inspired by these RNN learning scheme capabilities used to
deal with emerging challenges at the RAN level, we consider
using the BiLSTM RNN model to solve our problem of
optimal placement of O-CU and O-DU functionalities while
maximizing the user’s admittance. The system’s set of users
is considered a sequence of inputs that the RNN will process
to detect dependencies among them. The RNN’s capability
to capture these dependencies makes it well-suited for our
resource allocation problem, as it helps the model learn the
optimal placement of O-CU and O-DU functionalities.

Our approach is novel because we integrate the LSTM
model that considers the sequential nature of RAN disag-
gregation and long-term dependencies among users. This
enables efficient placement of VNFs across available comput-
ing resources. Overall, our paper contributes to the research
on dynamic VNF placement in O-RAN environments and
highlights the importance of considering the interdependency
among users of a given traffic condition on user admission.

This study extends our prior research [1], which focused
solely on evaluating the performance of the proposed place-
ment model under constraints related to radio and computing
resources. The previous work lacked a comprehensive eval-
uation of the model’s placement decisions across different
network conditions. In our current study, we expand the

TABLE I: Network Parameters and Notations

Parameters Definition

S Set of all servers

Sreg Set of regional servers

Sedge Set of edge servers

I Set of all users

θFU
is Binary variable indicating if server s hosts UE i’s FU

Css′ Link available capacity between server s and s’ (Gbps)

Bmid
i Link capacity required by user i on mid-haul (Mbps)

Rs Available computational capacity on server s (GOPS)

RFU
i Required server capacity for user i’s FU (GOPS)

αCU Computational complexity of O-CU

αDU Computational complexity of O-DU

δss′ Latency between server s and s’ (ms)

δmid
i Maximum mid-haul latency for user i (ms)

Wi Maximum achievable throughput by user i (Mbps)

C Fis Centralization factor of user i over server s

ϵi Priority value for user i

assessment by considering additional constraints. We analyze
the model’s performance under limited channel bandwidth as
well as varying link capacity. Understanding how the model
behaves under these constraints and impacts different service
types is crucial for real-world deployment scenarios.

IV. PROPOSED ILP-BASED OPTIMAL MODEL

To solve the placement problem of the O-CU and O-DU
in O-RAN architecture, our main intention is to optimize
the usage of cloud resources, particularly computational re-
sources. We develop an ILP-based model that maximizes
users’ admittance ratio while moving toward the regional
cloud, considering the computational capacity at the O-cloud
servers, the delay budget, and the available link capacity. It
is worth mentioning that the processing costs at the edge O-
Cloud nodes are higher than those on regional O-Cloud nodes
[11]. Thus, we propose an optimal and dynamic allocation
of the resources between edge and regional clouds, which
encourages, for instance, the O-CU functionalities to be at
the regional clouds if users’ service requirements permit. We
consider a set of S servers randomly distributed over the
edge and regional clouds, where Sedge and Sreg define the
sets of edge and regional servers, respectively. We define Rs

as the available computational capacity on server s ∈ S in
terms of Giga Operations Per Second (GOPS). Furthermore,
we define the link latency between two servers s and s′ by
δss′ . The network includes a set of I users, each belonging
to one of the three service types (eMBB, uRLLC, or mMTC),
with different service requirements. We denote the maximum
allowed latency on the mid-haul link (i.e., the link between
the O-CU and the O-DU) by each user i, by δmid

i . We recall
that the O-DU is set in our scenario to be at the edge cloud,
while O-CU can choose between the edge and regional clouds.
Table I summarizes the notations used throughout the paper.

The link and computational capacity requirements as well
as the delay budget are modeled using equations (1), (2), and
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(3), respectively. The maximum achievable throughput by an
admitted user is formulated in equation (4).

• The mid-haul link (i.e., the link between the O-DU
and O-CU when adopting option-2 split) capacity Bmid

i

needed for each user i ∈ I is modeled as referred to [22]
and [23] by:

Bmid
i [Mbps] =

TBS ·NTBS(IPpkt +HPDCP )

(IPpkt +HPDCP +HRLC +HMAC) · 1000
(1)

where TBS represents the transport block (TB) size, NTBS

is the number of TBs per TTI, IPpkt is the IP packet size,
and lastly, HPDCP , HRLC and HMAC the header size of
PDCP, RLC, and MAC layers, respectively. These parameters
are defined as in the standard specification in [24].

• The computational server capacity required by each user
i ∈ I is modeled based on an estimation of the complex-
ity in terms of Giga Operations Per Second (GOPS). To
quantitatively determine the computational complexity
RFU

i of a functional unit FU for user i (FU refers
to either O-CU or O-DU functional units), we use the
computational model from [12]:

RFU
i [GOPS] =

αFU (3A+A2 +M · C · L/3)RBi

10
(2)

where αFU is a scaling factor that represents the compu-
tational requirement of a specific functional unit FU with
respect to the overall computational requirement. The
total computational capacity is distributed among O-RU,
O-DU, and O-CU based on the ’PHY split’ and ’RLC-
PDCP split’. With the considered split-7.2x (between O-
RU and O-DU) and split-2 (between O-DU and O-CU),
40% of the processing is done by O-RU, 50% by O-DU,
and 10% by O-CU as mentioned in [14]. Hence, αDU

and αCU are respectively equal to 0.5 and 0.1. We denote
by M , the modulation bits (i.e., the number of bits per
symbol), C, the coding rate, L, the number of MIMO
layers, A, the number of antennas and RBi, the number
of resource blocks assigned to user i.

• The link latency δss′ between servers s, s′ ∈ S is deter-
mined by the propagation delay in the fiber links, which
is the ratio of the distance between servers, dist(s, s′)
multiplied by the refractive index of the fiber optic cable
(n = 1.5) over the speed of light in the fiber c.

δss′ =
dist(s, s′) · n

c
(3)

• The maximum achievable throughput of a given user
i ∈ I, denoted as Wi, is determined in equation (4) as
specified in [25].

Wi[Mbps] =
Nsym ·NSC ·M · C · L(1− 0.14)RBi

1000
(4)

where Nsym is the number of symbols per sub-frame and
NSC is the number of subcarriers per RB.

We formulate the placement of O-DU and O-CU optimiza-
tion problem as follows in Problem 1. The objective function

in (5) aims at maximizing the number of admitted users.
θCU
is and θDU

is are the binary decision variables indicating
whether user i ∈ I chooses server s ∈ S for its O-CU
and O-DU functionalities, respectively or not. Our objective
function includes C Fis, a distance-dependent centralization
factor. It is determined as follows: C Fis is set to be inversely
proportional to the distance between the edge server s and the
O-RU, to which user i is associated, if s ∈ Sedge, and set to
be one if s ∈ Sreg . This setup encourages each user’s O-DU
functionality to select the nearest available edge server to its
associated O-RU. As for the O-CU functionality, which can
be hosted either on edge or regionally, it will prefer to choose
the regional option, having the higher weight of C Fis, if
the latency requirements allow. However, it will choose the
server nearest to its corresponding O-RU if this is not feasible.
Moreover, we add a priority parameter ϵi to the objective
function as a function of the user’s service type, allowing
us to prioritize eMBB and uRLLC UEs over mMTC ones.

Problem 1:

maximize
∑
i

∑
s

C Fis · (θCU
is · ϵi + θDU

is · ϵi) (5)

subject to θCU
is , θDU

is ∈ {0, 1}, i ∈ I, s ∈ S (6)
ziss′ ∈ {0, 1}, i ∈ I, s, s′ ∈ S (7)∑
s∈S

θCU
is ≤ 1, i ∈ I (8)∑

s∈S
θDU
is ≤ 1, i ∈ I (9)

ziss′ ≤ (θDU
is + θCU

is′ )/2, s, s
′ ∈ S, i ∈ I

(10)

ziss′ ≥ θDU
is + θCU

is′ − 1, s, s′ ∈ S, i ∈ I (11)∑
s∈S

θDU
is =

∑
s∈S

θCU
is , i ∈ I (12)∑

s∈Sregional

θDU
is = 0, i ∈ I (13)

∑
i∈I

Bmid
i (ziss′ + zis′s) ≤ Css′ , s, s

′ ∈ S, s ̸= s′

(14)∑
i∈I

RCU
i θCU

is +RDU
i θDU

is ≤ Rs, s ∈ S (15)

δss′ · ziss′ ≤ δmid
i , i ∈ I, s, s′ ∈ S (16)

Our ILP problem 1 has the following constraints: Constraint
(6) defines θCU

is and θDU
is as binary integer variables. These

variables are set to 1 if and only if the O-CU and O-
DU functionalities of user i are admitted on the server s.
Constraint (7) defines ziss′ , a binary decision variable that
is set to 1 when O-DU and O-CU functionalities of a user
i are allocated at servers s and s’, respectively, i.e., ziss′

represents the product of the two decision variables θCU
is and

θDU
is of the model. Constraints (8) and (9) ensure that the

user’s functionalities O-CU and O-DU are not allocated more
than once. Constraints (10) and (11) ensure that ziss′ is set
to one only if O-DU and O-CU of the user i are allocated at
servers s and s’, respectively. Constraint (12) guarantees that
either both functionalities of the user are admitted or not, i.e.,
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Figure 2: The Bi-LSTM layer

Figure 3: The fully connected layer

if one of the O-DU or O-CU functionalities is not allocated,
the whole user will be discarded. Constraint (13) enforces
that the O-DU functionality is never allocated on a regional
server. Constraint (14) ensures that the link capacity required
for user i between the servers s and s′ chosen for O-DU and
O-CU does not exceed the available capacity between these
two servers Css′ . The symmetry of link capacity between the
servers is taken into account in this latter constraint. Server
computational capacity is respected by constraint (15). Finally,
the maximum link latency is guaranteed by constraint (16).

V. DEEP LEARNING-BASED SOLUTION

Due to the high complexity of solving the NP-Hard ILP
problem [26] defined in the previous section, finding a solution
to our ILP problem would take an impractical amount of
time. Thus, we need to consider alternatives with lower
computational complexity. Deep Learning has demonstrated
its potential to tackle complex tasks by learning a function
that maps the input to the desired output. A Recurrent Neural
Network (RNN) is a branch of deep learning that can handle
sequences of interdependent elements such as weather pre-
diction and language translation. In our task that involves
multiple users sharing common resources, RNN would be
beneficial (i.e., the placement decision of the user’s O-CU and
O-DU functionalities made at a specific time step will affect
the availability and suitability of O-Cloud resources for other
users in the network in the subsequent time steps, and this
dependency needs to be taken into account in order to ensure
optimal allocation). Long-Short-Term-Memory (LSTM) [27]
is a well-known architecture of RNN that can deal with long-
term dependencies in sequential data. The LSTM architecture
includes memory cells and gates, such as input, output, and
forget gates, that control the flow of information. At each
time step, the LSTM receives input and hidden state vectors
to update the memory cell and generate an output vector.
A traditional LSTM RNN architecture variant is the bidi-
rectional Long Short-Term Memory (BiLSTM) RNN model

[27]. The BiLSTM RNN model extends the traditional LSTM
architecture by simultaneously processing input sequences
in both forward and backward directions. By incorporating
information from both directions, the BiLSTM model can
capture more complex dependencies between input elements
and thus achieve higher accuracy.

In our study, we propose a heuristic approach, which in-
volves utilizing an RNN model to learn and predict the optimal
placement of O-CU and O-DU among available servers. The
model uses a sequence-to-sequence classification, where each
element in the sequence corresponds to a user and produces
an output that represents a decision on the placement of O-CU
and O-DU functionalities for that user. The model is composed
of a BiLSTM RNN layer and a fully connected layer, as
illustrated in Figures 2 and 3, respectively. The BiLSTM layer
receives a sequence of users as input of size T , where each
user is represented by a feature vector that includes several
parameters, such as its relative position with respect to the
O-RU, number of RBs, MCS index, associated O-RU, user
requirements (i.e., maximum latency, GOPS required), slice
type, priority, etc. For an input it, the BiLSTM produces
an output yt, which is a vector of size F containing the
elements [yt,1, yt,2, ..., yt,F ], with F = 2H , where H is a
hyperparameter representing the number of hidden layers in an
LSTM. Each element in the output vector has a value between
-1 and 1. This output vector is then fed into the fully connected
layer that uses the softmax activation function for multi-class
classification. The classification layer includes O neurons,
where O represents the number of possible decisions or labels.
The labels combine O-CU and O-DU locations among the
available servers, plus an additional label to indicate that
a user has been dismissed. The neuron with the highest
activation value corresponds to the decision. We recall that
our optimal problem deals with the placement of O-CU and
O-DU functionalities on a per-user basis.

To generate the training dataset, we performed 25,000
simulations, each representing a distinct network configura-
tion instance with varying parameters, including the number
of users, user locations, service requirements, and resource
availability. The data gathered from each simulation serve as
inputs to the BiLSTM model, with a sequence of users and
their associated features. We derive the optimal placement
decisions for each simulation scenario by solving the joint
ILP model. These optimal solutions are then used as labels in
our training dataset.

VI. SIMULATION FRAMEWORK

We consider a network topology composed of 4 O-RUs
distributed over an area of 1 km2. This assumption is based
on a real traffic profile for hourly UEs density variation in
a 1x1 km industrial area, as described in [14], in which the
optimal number of O-RUs to be instantiated was determined
to be 4. UEs are randomly distributed in the considered
area; an example of the network topology with 20 UEs is
depicted in Fig.4. The system uses a 20 MHz bandwidth so
that each O-RU has 100 RBs available per transmission time
interval (TTI). UEs are associated with the nearest O-RU, and
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Figure 4: Example of the network topology with 20 UEs

we consider a number of 10 to 140 UEs spread following
the distribution presented in [14] for an industrial area that
has 25% eMBB users, 25% uRLLC users, and 50% mMTC
users. We assume the existence of three edge servers located
approximately 10 km from the O-RUs and one regional server
located between 40 to 80 km from the O-RUs [14]. Each
O-RU at the cells site is fully connected to the three edge-
cloud servers. Moreover, we assume a mesh connectivity of
fiber links among all servers in the system. This topology
particularly considers that the 10 km and 80 km distance limit
at the fronthaul and midhaul, respectively, is not exceeded.
It is worth noting that testing our solution on one km² area
does not impact its scalability, as we evaluate the model with
an increasing number of users. Additionally, for larger areas,
considering that the ILP model becomes significantly complex
for larger systems—rendering it impractical for any solver to
reach the optimal solution—we suggest deploying our solution
in clusters of smaller areas rather than a single large area.

The computational capacity Rs of edge servers follows a
uniform random distribution ranging from 100 to 200 GOPS,
while the regional server’s capacity ranges from 1000 to 2000
GOPS, as stated in [12]. The mid-haul latency bounds δmid

i

are considered as in [14] a random value in the range of 100 to
300 µsec for uRLLC users, 500 µsec for eMBB, and 1000 µsec
for mMTC. The radio resource allocation follows an approach
inspired from [14] that consists of allocating 50% of the total
available resource blocks (RBs) to eMBB users and 25% to
each of the uRLLC and mMTC users with no resource waste.
In addition, eMBB users are assigned a random number of
RBs between 10 to 20, while uRLLC and mMTC users are
assigned between 1 to 5 RBs, as in [28] [29]. The MCS index
for each user is set as a random number between 17 to 28,
with all users assumed to have a 64-QAM modulation scheme,
as in [12]. We note that the MCS index impacts the code rate
and spectral efficiency, as referred to in 3GPP specification
[24]. The available bandwidth of the mid-haul link between
edge-edge servers is a random value ranging from 1 to 10
Gbps, while the bandwidth between edge-regional servers is
randomly chosen between 10 and 20 Gbps. Accordingly, these
values are selected so that the mid-haul link can support the
throughput demand of all admitted users as in [14]. Additional
radio parameters used in the experiments are outlined in
Table II. We note that our ILP-based problem is solved

TABLE II: Summary of radio parameters

Parameter Value
A 4 Antennas
NSym 14 symbols per sub-frame
NSC 12 subcarriers
L 2 MIMO layers
M log2(64)

TABLE III: Summary of RNN Parameters

Parameter Value
Optimizer Adam
Learning Rate 0.005
Hidden Size (LSTM) 128
Number of LSTM Layers 1
Batch Size 60
Input Size 92
Sequence Length 100

using IBM CPLEX software [7], a mathematical optimization
solver, on a computer with 11th generation Intel® Core™ i9-
11950H Processor and 16 GB RAM. Finally, for the RNN
model implementation, we utilized Python with the PyTorch
library. The input size of our dataset is 92, corresponding to
the number of features per user. The Adam optimizer was
employed to optimize the training parameters, with a learning
rate of 0.005. We configured the model with 1 LSTM layer
and a hidden size H of 128, which is determined by trial
and error. The batch size was also chosen by trial to be 60.
For detailed simulation parameter settings of the RNN, please
refer to Table III. Finally, for the RNN model implementation,
we utilized Python with the PyTorch library. Each entry in our
dataset has an input size of 92, corresponding to the number
of features per user. The sequence length of the trained model
is set to 100 (padding is used for scenarios with fewer users in
the system). We employed the Adam optimizer to optimize the
training parameters, starting with a learning rate of 0.005. The
model configuration includes 1 LSTM layer with a hidden size
H 128, determined by trial and error. The batch size, chosen
empirically, is set to 60. For detailed simulation parameter
settings of the RNN, please refer to Table III. Our code
includes customization for dataset reading and generation.1

VII. PERFORMANCE EVALUATION

In this section, we compare the performance of our pro-
posed algorithm, referred to as the Optimal scenario, along
with the heuristic based on RNN model with respect to three
baselines defined as follows:

• An All Edge scenario; in which O-CUs and O-DUs are
always on the edge servers (i.e. scenario B of Fig. 1).

• A Static scenario; where O-CUs are always placed on
the regional servers while the O-DUs are always on the
edge servers (i.e. scenario C of Fig. 1).

• A Random scenario; servers are placed randomly be-
tween edge and regional for both O-DUs and O-CUs.

1The code is publicly available at https://github.com/HibaHojeij/CU-DU-
placement-in-O-RAN.git.

https://github.com/HibaHojeij/CU-DU-placement-in-O-RAN.git
https://github.com/HibaHojeij/CU-DU-placement-in-O-RAN.git
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A. Optimal Model versus Baselines

The performance metrics used in this subsection are:
• Average admittance ratio: It reports the average number

of admitted users among all users present in the network
at each transmission time interval (TTI).

• Throughput: It evaluates the average throughput of all
admitted users. The throughput of an admitted user i ∈ I,
Wi, is determined based on Equation (4).

• Deployment Cost: This metric quantifies the average
cost of deploying O-CUs at the selected servers. It
is computed as the cost of running the computational
operations on a server (in GOPS). The regional server
has more processing capacity and uses less energy than
the edge server; thus, running VNFs in regional servers
is less expensive than in edge servers [11]. At the edge
server, according to [14] and [22], 1 GOPS costs 1.59$,
while at the regional cloud, it costs 0.5$/GOPS.

• Fairness Index: For measuring how fair the users are
being admitted over the three service types (eMBB,
uRLLC, mMTC), Jain’s fairness index is used as for-
mulated in Equation (17) as follows:

ζ = (

N∑
j=1

AARj)
2/(N ·

N∑
j=1

AAR2
j ) (17)

where N = 3 refers to the number of heterogeneous
service types, AARj is the average admittance ratio of
users of service type j.

We note that 100 simulations were performed, and confidence
intervals of 95% are provided in the following results. We
start our evaluation by analyzing the average admittance ratio
as a function of the number of users for each considered
scenario of the Optimal scenario in comparison to the base-
lines from the state-of-the-art. The results, as depicted in
Fig. 5, demonstrate that the Optimal scenario outperforms
all other scenarios in terms of the average admittance ratio.
The All Edge scenario follows the same trend, but with a
10% lower admittance ratio, due to the limited computational
resources of edge clouds in meeting the diverse users’ re-
quirements, namely eMBB users, which are computationally
more demanding. On the other hand, the Random and Static
scenarios have the poorest average admittance ratio, which
can be interpreted by the fact that uRLLC users have low
latency requirements; hence, placing O-CUs in a regional
cloud, whether randomly or statically, increases link latency,
leading to a lower probability of user admission. Furthermore,
we present the performance of our proposed RNN model,
illustrated in purple on the same graph of Fig. 5. The results
indicate that the RNN model can closely replicate the optimal
model’s admittance ratio, with a difference of no more than
2% compared to the optimal solution. This proves the RNN’s
ability to capture dependencies and learn from the large
dataset of network scenarios enables it to provide near-optimal
solutions, addressing the limitations of traditional baselines
from state-of-the-art that fail to give a close performance
to the ILP-based one as the RNN does. Additionally, the
system starts experiencing a decline in the admittance ratio
when the number of users exceeds 50. To better understand

this behavior, Figures 6 and 7 report the GOPS and RB
allocation, respectively, in the system. As shown in Fig. 6,
the computational resources at the three edge servers become
utilized at more than 80% when the number of users in
the system exceeds 50, indicating that, at and beyond this
point, the capacity of the edge servers becomes the bottleneck
for more demanding users (i.e., eMBB users) as we will
show later on. On the other hand, as seen from Fig. 7, all
RUs become fully loaded when the number of users reaches
100, resulting in extra users not being assigned by RBs and,
therefore, not being admitted. Despite the system becoming
overloaded with more than 50 users, the Optimal model
gives the best performance in terms of admittance ratio, as
mentioned earlier; that is, the model strikes a balance between
available resources and users’ demands, taking into account
their priorities. To further investigate the admittance ratio for
different service types, we plot the admittance ratio for each
service type for the different placement scenarios in Figure 8.
Comparing the Optimal scenario with the All Edge scenario,
we notice that the former scenario admits more eMBB and
mMTC users (Fig. 8a and Fig. 8c) and almost the same
number of uRLLC users (Fig. 8b). This can be explained by
the fact that the eMBB and uRLLC services are prioritized
over mMTC services. Cloud computational resources are
allocated accordingly when they are available and satisfy
their latency requirements. Moreover, moving to the regional
cloud provides more abundant resources, allowing for more
eMBB and mMTC users to be admitted without penalizing
the uRLLC user, as is the case in the Optimal scenario.
Additionally, compared to the performance of the Optimal
scenario, the RNN model shows that fewer uRLLC users are
admitted while slightly more mMTC users are admitted. This
highlights the reason for the 2% gap in the total average
admittance ratio, seen in Fig. 5. The RNN model is suboptimal
in predicting the placement of VNFs for uRLLC users. Finally,
to draw a connection with the limited system capacity, we
focus on the Optimal scenario of plots of Figure 8. The
admittance ratio of eMBB and mMTC users reveals that they
become not fully admitted when the number of users in the
system exceeds 50, while uRLLC users are fully admitted at
that stage. This means that the uRLLC users, having high
priority and less GOPS demand, are prioritized over other
users when the load on servers becomes more critical to meet
the model objective of maximizing the admittance ratio. These
results are consistent with the earlier analysis of the GOPS
load presented in Figure 6, highlighting the limitation of the
edge server capacity in our system.

In terms of throughput, Fig. 9 illustrates the overall through-
put achieved by deploying different placement scenarios. It
is evident that the Optimal scenario outperforms all other
scenarios in terms of throughput. This result is consistent with
the higher average admission ratio achieved by the Optimal
scenario, as shown in Fig. 5. Moving to the computational
cost evaluation, Fig. 10 presents the cost of deploying O-
CUs for admitted users as a function of the total number of
users for different placement scenarios. The Optimal place-
ment scenario achieves up to 50% cost reduction compared
to All Edge scenario, as the former utilizes more regional
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Figure 5: Average admittance ratio as a function of number of users

Figure 6: GOPS allocation per server in Optimal deployment scenario

servers, which are less expensive. The Static scenario has
the lowest cost due to admitting fewer users and having the
only possibility to choose regional clouds for hosting O-CUs.
Moreover, an important consideration is the fairness of the
admittance ratio among the three service types as the number
of users in the system changes. The results are shown in
Fig. 11 for the different scenarios. The Optimal scenario offers
a better fairness index among users compared to the other
scenarios. The RNN model achieves better fairness than the
optimal scenario by admitting more mMTC users at the cost
of admitting fewer uRLLC users, as we have seen before.

In addition to the performance improvements achieved by
our proposed model, it is important to state that the RNN
heuristic offers a significant advantage in terms of execution
time when compared to the ILP model. As shown in Fig. 12,
the RNN model achieves a remarkable 97% reduction in
execution time, even when the number of users increases.
The reduction in execution time becomes more significant
as the number of users increases because the ILP model is

Figure 7: RB allocation as increasing the number of users

(a) Admittance ratio of eMBB users

(b) Admittance ratio of uRLLC users

(c) Admittance ratio of mMTC users

Figure 8: Admittance ratio for each service type

Figure 9: Total throughput as the function of number of users

Figure 10: O-CU deployment costs for each scenario
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Figure 11: Fairness among all users

Figure 12: Reduction in execution time of the RNN model compared
to the ILP model

relatively faster when the number of users is small. Both
models were executed in the exact same framework and on
the same computer, emphasizing the superior efficiency of the
RNN heuristic approach. Therefore, the RNN model offers
a practical solution with fast execution times (around 10
milliseconds) that can be implemented in the Near RT-RIC
component. It can serve as an xAPP that manages the network
resources through standardized interfaces and service models
in an O-RAN-compliant deployment.

B. Optimal Model under different functional split options

In this section, we evaluate the impact of the functional
split option on the performance of the Optimal placement
scenarios. For this purpose, we introduce a scaling factor
ratio parameter defined as the ratio of αCU over αDU . As
previously defined, αCU and αDU reflect the computational
requirement (in %) of both O-CU and O-DU depending
on their assigned functionalities, respectively. Increasing the
scaling factor ratio signifies transferring more functionalities
from O-DU to O-CU. This distribution of functionalities
between O-CU and O-DU can be seen as having different
functional split options. We recall that 40% of processing is
done at O-RU, as earlier specified in Section IV. Thus, 60%
of processing remains for both O-CU and O-DU (i.e., αCU

+ αDU = 0.6). Keeping that in mind, we test our optimal
model performance with an increasing scaling factor ratio.
In all our previous results, we set αCU and αDU to 0.1
and 0.5, respectively, resulting in a scaling factor ratio of
0.2. It is worth noting that adding more network functions
to the O-CU increases the mid-haul bandwidth demand but
reduces the computational demand on the O-DUs. Nonethe-
less, the link bandwidth is not a limiting factor in our system.

(a) Average admittance ratio vs. scaling factor ratio

(b) O-CU deployment Cost vs. scaling factor ratio

Figure 13: Performance evaluation of different metrics vs. scaling
factor ratio with 100 UEs

Therefore, altering the functional split option can improve the
efficiency of our model by encouraging centralization, as we
will demonstrate later on. Fig. 13a and 13b display the average
admittance ratio and the deployment cost, respectively, as a
function of the scaling factor ratio for a system with 100
UEs. We note that the RNN model is not evaluated in this
study as it is only trained for the scaling factor ratio of
0.2. The results clearly demonstrate the advantages of our
Optimal placement scenario over other scenarios as the scaling
factor ratio increases. This is interpreted by the fact that as
the scaling factor ratio increases, the O-CU becomes more
resource-demanding, making it more challenging to be placed
at the edge clouds. The Optimal scenario solves this issue by
giving the possibility for the O-CU to be hosted at the regional
cloud if the latency constraints are met. The Static scenario
has the lowest cost because it simply allows users to choose
regional clouds to host O-CU and admits fewer users. This is
in contrast to All edge and Random scenarios that exhibit the
lowest admittance ratio, but higher costs because they choose
edge clouds to host O-CUs more often. We remark that the
increase in the cost shown in Fig. 13b for all scenarios is a
consequence of having more functionalities at the O-CU as
the scaling factor ratio increases, and our calculations only
consider the deployment cost of the O-CU. The difference in
cost between all scenarios becomes more significant as the
scaling factor increases; this is because the cost doubles as
the scaling factor increases while the admittance remains the
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Figure 14: Average MH link utilization vs. number of users

Figure 15: Average admittance ratio vs. number of users

same after the scaling factor of 1.
C. Optimal Model evaluation with variable link resources

In the previous sections, the computational and radio re-
sources were the bottleneck of the system. In this section, we
evaluate the performance of the optimal model with a variable
link capacity. We focus on the midhaul link capacity as we
deal with O-CU and O-DU placement only.

Figure 14 shows the bandwidth capacity utilization of links
connecting edge servers and the regional server for different
link bandwidths. The link utilization is computed as the
average ratio of the utilized link bandwidth over the available
link bandwidth. The link utilization becomes close to 100%
when the number of users exceeds 80 UEs and with a link
capacity below 100 Mbps. Beyond this value, e.g., for a link
capacity of 200 Mbps, the link is no longer a bottleneck
in the system with up to 55% utilization for 100 UEs. The
performance of the optimal model regarding user admittance
is illustrated in Figure 15. This figure demonstrates an average
reduction of 6% in the admittance ratio when decreasing the
link capacity from 200 Mbps to 50 Mbps for UE = 100, thus
emphasizing the significant impact of introducing a bottleneck
in midhaul link capacity to the system. Plots of Figure 16
show the admittance ratio for each service type. Figures 16a
and 16b illustrate no difference in performance for eMBB
and uRLLC users, respectively, while Figure 16c shows that
the most affected users by the link capacity variation are
the mMTC UEs, with 20% degradation in admittance when
comparing link capacity 50 to 200 Mbps for a UE number of
100. We recall that mMTC UEs have lower priority over other
services; thus, when having competence in resources, eMBB
and uRLLC users are given priority to be admitted over the
mMTC, and that is the case when the link is the bottleneck.

(a) Admittance ratio of eMBB users

(b) Admittance ratio of uRLLC users

(c) Admittance ratio of mMTC users

Figure 16: Admittance ratio for each service type as a function of
the total number of users in the system for different link capacities

Moreover, to study the effect of varying the link capacity
on the chosen server placement of the O-CUs, Figure 17
shows the percentage of admitted users’ O-CUs placed at the
regional cloud. As the MH link capacity increases from 50
to 200 Mbps, we notice that O-CUs tend to migrate more
towards the regional server with an increasing number of
users. However, in instances where the link capacity becomes
a bottleneck, such as the case with 50 Mbps and more than
40 users, the Optimal model is obliged to place the O-CUs on
the edge server due to the constraints imposed by the lower
MH link capacity. Illustrating more the placement of the CUs
of users belonging to each service type, the bar graphs of
figures 18a and 18b show the optimal average percentage of
CUs placement location among edge and regional servers for
MH link capacity of 50 Mbps and 200 Mbps respectively.
Comparing both plots emphasizes that the more link capacity
is available at the MH, the more the eMBB and mMTC
services mainly move to the regional server. For example, with
a number of 100 users in the system, 98% of eMBB users’
CUs are placed at the regional server when the link capacity is
200 Mbps % while for a link capacity of 50 Mbps, only 50%
of eMBB and users’ CUs are placed at the regional server.
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Figure 17: Percentage of admitted users’ CUs placed at regional
server for different link capacities

(a) MH link capacity = 50 Mbps

(b) MH link capacity = 200 Mbps

Figure 18: Average ratio of CUs placed at the regional server per
service type for MH link capacity of different link capacities

D. Optimal Model with variable Channel Bandwidth

In this section, we evaluate the performance of the optimal
model while varying the channel bandwidth from 10 MHz to
30 MHz. Throughout our prior analyses, the system operated
with a channel bandwidth fixed at 20 MHz. Increasing the
operating bandwidth entails increasing the radio resources
available per O-RU (more resource blocks RBs). Note that
in this study, the link capacity is not a system bottleneck
and is set to 1000 Mbps. Figures 19 and 20 report the
utilization of radio resources (RBs) and edge servers’ GOPS,
respectively. The overall average RB utilization is calculated
across all O-RUs in the system, representing the ratio of
allocated RBs to the available RBs per O-RU. To assess the
performance of the optimal model, we will interchangeably
analyze these plots together, considering their correlation. It is
essential to recall that user admittance requires the allocation
of necessary RBs for transmission and identifying suitable
placements for O-CUs and O-DUs on the available servers,
respecting corresponding latency KPIs. Figure 21 depicts the

Figure 19: Average RB utilization with the number of users

average users’ admittance ratio under different BW conditions,
and Figure 22 showcases the admittance ratio per service type.

From Figure 21, the least admittance occurs for a BW
of 10 MHz, where radio resources pose a bottleneck, with
over 80% RB utilization for a user count exceeding 20 (Fig.
19). Edge servers are underutilized in this scenario, with
65% of GOPS utilization (Fig. 20). With a bandwidth of 15
MHz, significantly higher admittance is achieved (20% more
than the 10 MHz case). The RBs are more abundant and
sufficient for up to 80 users (Fig. 19), beyond which RUs
become overloaded. However, servers remain underloaded at
this stage, with around 90% GOPS utilization (Fig. 20). In the
case of a BW of 20 MHz (as studied in Section VII-A), the
highest admittance is attained, slightly surpassing the 15 MHz
case by 5% for N = 60 users. GOPS gets overloaded faster as
more users are being allocated with RBs. Both RB and GOPS
become bottlenecks, with GOPS overloading at N = 60 users
before RUs overload at N = 80 users, as previously analyzed in
Section VII-A. For a 30 MHz BW, the same admittance as for
the 20 MHz scenario is observed up to 60 users, at which point
GOPS overloads (Fig. 20), preventing further user admissions.
Past this threshold, we observe an 8% decrease in the overall
average total admittance ratio. This decline is specifically
linked to the per-slice admittance as depicted in the curves of
Figure 22. Under a 30 MHz BW, all users receive adequate
RBs for transmission, with RB underutilization seen in Figure
19 (85% utilization for N = 100 users). Consequently, more
eMBB and uRLLC users attaining RB allocations, having
already assigned higher placement priorities, will be admitted,
leading to a 16% increase in eMBB user admittance for the
30 MHz BW compared to the 20 MHz BW scenario and
4% increase for that of uRLLC, as in Figures 22a and 22b
respectively. However, this comes at the expense of admitting
20% fewer mMTC users, as in Figure 22c. Sacrificing the
mMTC users’ admission will intuitively reduce the fairness of
the model, wherein Figure 23, for 30 MHz BW, the optimal
model has the least fairness index of 0.82.

The last metric to evaluate pertains to the waste of radio
resource utilization resulting from increasing the channel BW.
We quantify RB waste as the average percentage across all O-
RUs of allocated RBs for users who are not admitted. Figure
24 shows an RB waste reaching up to 30% in a system loaded
with 100 users and a bandwidth of 30 MHz.
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Figure 20: Average GOPS utilization with the number of users

Figure 21: Average admittance ratio as a function of number of users

(a) Admittance ratio of eMBB users

(b) Admittance ratio of uRLLC users

(c) Admittance ratio of mMTC users

Figure 22: Admittance ratio for each service type as a function of
the total number of users in the system for different Channel BW

Figure 23: Fairness among all users as a function of number of users

Figure 24: Average RB waste with increasing channel BW

VIII. CONCLUSION

Access networks are evolving toward Open RAN archi-
tecture, pushing them into a new era marked by greater
openness, flexibility, and intelligence. This paper contributes
significantly to solving one of the Open RAN design problems
by focusing on the deployment scenarios of disaggregated net-
work elements O-CUs and O-DUs over the edge and regional
clouds. The objective is to find the optimal placement of the
network functions of DUs and CUs in the O-Cloud nodes
(i.e., edge and regional clouds) by considering mid-haul link
delay and server capacity requirements. We propose Optimal
model for the O-CU-DU placement mechanism that aims to
maximize the number of admitted UEs while minimizing the
deployment cost of O-CU by moving it towards the regional
cloud. We compare our proposed optimal solution with three
benchmarks, two of which are found in the literature with
fixed O-CU and O-DU placement. The simulation results
show that our proposed model outperforms the benchmarks.
Additionally, we develop an RNN-based model that success-
fully mimics the Optimal model in a time-efficient fashion.
Lastly, a comprehensive assessment of the optimal model’s
placement decisions allows us to quantify the efficiency and
effectiveness of the proposed solution in different network
conditions, including limitations over computing resources,
link capacities, and radio resources. As a future work, we
aim to develop a joint optimization problem for the placement
problem and functional split selection, considering more dy-
namic scenarios and diverse service types. Additionally, for
a more realistic scenario, we plan to integrate queueing and
scheduling delay models, alongside propagation delay, into
our model in future work. Maintaining the problem as an ILP
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while incorporating these delays presents a certain challenge.
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