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Abstract—This paper presents a fusion method for objects
tracking using laser sensory data and stereovision. Based on the
Extended Kalman filter, the tracking uses an Oriented Bounding
Box (OBB) representation for tracked objects. The representation
model takes into account an Inter-Rays (IR) uncertainty concept,
which is related to the fact that the laser raw data points
representing the extremities of an extracted OBB do not coincide
with the real objects extremities. To improve the objects state
estimation, the tracking process integrates a Fixed Size (FS)
assumption. The FS assumption allows to exploit the most precise
object’s size estimation, memorised during the tracking. To
achieve data association, a threshold based laser points clustering
provides satisfying results. However, there are many cases where,
without additional information, it is impossible to cluster laser
raw data points correctly. To discard clustering ambiguities, a
fusion method combining laser sensory data and stereovision
information is proposed. The stereovision information is extracted
only within regions of interest, defined from laser points. The
fusion method takes place in the early stage of the measurement
extraction from laser raw data points. The proposed approach is
tested and evaluated to demonstrate its reliability.

Index Terms—data fusion, data association, laser scanner,
stereovision, object tracking, intelligent vehicle

I. INTRODUCTION

In the last decade, many research programs have been
launched to study the concept of intelligent vehicles and their
integration in the city of the future. The goal is to develop in-
telligent transportation systems (autonomous driving, platoon,
etc.) having the ability to navigate autonomously in various ur-
ban environments. To reach the objective, the first primary task
is to develop a perception system for detecting, localising and
tracking objects in this type of environment. In this framework,
the Systems and Transportation Laboratory of the University
of Technology of Belfort-Montbeliard (France) develops a
research program based on an experimental platform consisting
of an electrical vehicle with an automatic control, equipped
with several sensors and communication interfaces. In this
paper, the emphasis is put on tracking of compact dynamic
objects using laser sensory data and stereovision information.

Representation of dynamic objects is crucial for tracking
and trajectory planning. Oriented Bounding Box (OBB) is cho-
sen as an optimal model to represent tracked objects in urban
environment [1][2]. Indeed, the OBB representation provides
a good approximation of the area occupied by the tracked
objects and a good data compression ratio. To increase the
precision of the OBB extraction, an Inter-Rays (IR) uncertainty
is used to take into account the fact that the laser raw data

points representing the extremities of an extracted OBB do
not coincide with the real objects extremities.

Tracking objects depends directly on data association,
which starts by data clustering. The clustering leads to one of
the three following situations: new object to track, single object
tracking and multiple objects tracking. LRF data based tracking
provides generally precise and fast objects sate estimation,
using threshold clustering [3][4][5]. However, for many cases,
laser sensory data based data association cannot lead to a
correct clustering, and, hence, the tracking fails. To take into
account clustering ambiguous cases, the authors propose to
enrich laser sensory data using stereovision information.

The proposed tracking system is based on the Extended
Kalman Filter (EKF) with Discrete White Noise Acceleration
Model (DWNA) [6]. In order to increase its reliability, the
tracking process integrates a Fixed Size (FS) assumption,
which is introduced to exploit the most precise object’s size
estimation, memorised during the tracking.

The paper is organised as follows. Section II presents the
object representation model. Section III describes the laser data
association method, combined with stereovision information.
In section IV, the tracking procedure is explained. Before
concluding, experimental results are presented in section V
to demonstrate the effectiveness and the reliability of the
proposed approach.

II. OBJECT REPRESENTATION

A. OBB based model for object representation

Urban environments are characterised by limited spaces
available for navigation and there are little objects movement
constraints. In these conditions, geometrical representation of
dynamic objects is necessary. Oriented bounding box (OBB)
is a way of representing objects geometry with sufficient
approximation for the means of navigation.

The OBB based representation is described by two vectors z
(1) and σ2

z (2). The first one represents the OBB geometry and
includes the centre coordinations cx, cy, the orientation angle θ
and the size dx, dy. The second vector represents uncertainties
on the components of the vector z.

z = [cx, cy, θ, dx, dy]T (1)

σ2
z = [σ2

cx, σ
2
cy, σ

2
θ , σ

2
dx, σ

2
dy]

T (2)

To construct the OBB based measurement, a specific
method is used. The OBB construction method consists of the
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three following main steps. The first step is to find a contour
of the tracked objects using a convex-hull technique [7]. In
the second step, a method based on Rotating Calipers (RC)
technique [8] is used to construct an OBB, which is best
aligned to the object’s contour. Finally, the third step concerns
the application of the IR uncertainty, which is explained in the
section IV-A. The previous steps are described in details in [1].

B. Inter-Rays uncertainty

An important aspect of OBB extraction is the fact that the
raw data points representing the extremities of the extracted
OBB do not coincide with the real object’s extremities (see
Figure 1).
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Fig. 1. Inter-Rays uncertainty paradigm.

In the Figure 1, minX , minY , maxX , maxY are respec-
tively the minimum x coordinate, the minimum y coordinate,
the maximum x coordinate and the maximum y coordinate
of the extracted OBB. The line Lr (respectively Lr + n)
is crossing the point maxY (respectively minX) and is
perpendicular to the OBB side to which maxY (respectively
minX) belongs. The Inter-Rays (IR) real object’s extremities
position estimation and their variances are added to the OBB’s
size and OBB’s size uncertainty. The real object’s extremi-
ties are situated between the raw data points delimiting the
OBB (maxY , minX) and the points Pr and Pr + n. Pr
(respecitvely Pr+n) is the intersection point between the ray
r (respecitvely r + n) with the line Lr (respectively Lr + n).

Considering the OBB’s local X axis, the real object’s
extremity position is uniformly distributed with the mean
µIRx, which is equal to the half of the IR line segment length
dIRx. The IR line segment is defined by the point maxY and
Pr. To fulfil Kalman Filter assumption, the distribution of the
real object’s extremity position is approximated by a normal
distribution with the mean µIRx, and the variance σ2

IRx, which
is set to dIRx

6 . The Inter-Rays values z[µIRx] and z[σ2
IRx] are

used in each iteration of the tracking algorithm to correct the
size of the OBB measurement [1]. The correction equations
are expressed as follows:

z[dx] = zperc[dx] + z[µIRx] (3)

z[σ2
dx] = zperc[σ

2
dx] + z[σ2

IRx] (4)

where zperc is the percepred measurement, z is the corrected
measurement used for tracking.

The same process is applied for the OBB’s local Y axis.

III. DATA ASSOCIATION

Data association is an important part of multiple-objects
tracking. We use laser raw data points clustering with tract-to-
cluster correlation to detect the three following possible cases:
new object appearance, separate objects tracking, coalescing
objects tracking (see Figure 2. Each of the detected cases is
treated separately in terms of data association.

How many tracks

correlated with 

a cluster

New track Single track association 

Points clustering

Track to cluster correlation

0 tracks
1 track

2 or more

tracks

Multiple tracks association

Fig. 2. Data association schema.

The reliability of data association methods depends on
the points clustering correctness. In general cases, threshold
based clustering gives satisfying results [3], [4], [5]. However,
there are situations where, without additional information,
it is impossible to cluster raw data points correctly. One of
these situations is illustrated in Figure 3. The configuration
(a) represents the raw data points corresponding to the rear
of a vehicle, seen by the LRF. The configuration (b) could
correspond to two possible situations. The first one ”vehicle
turning” (c) represents the vehicle, which is turning to the
right from its former position (a). The second situation
”vehicle occlusion” (d) represents two vehicles: the first one
(a) and a second vehicle, which is perceived partially by the
LRF.

Using only LRF data threshold based clustering, it is
impossible to achieve a correct discrimination between
different situations. To discard the ambiguities, the authors
propose to fuse LRF data and stereovision information.
The difference between the proposed approach and standard
existing algorithms is that the stereovision information is
produced and analyzed only within regions of interest, defined
by the projection, onto the stereo images, of couples of
consecutive laser points that verify a distance constraint.
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Fig. 3. Laser data clustering ambiguities.

In other terms, for each two points, which are produced
by neighbouring laser rays, if the distance between them is
greater than a certain threshold, the stereovision analysis is
performed to decide if these points belong to a same object.
Figure 3 shows a couple of consecutive points (surrounded
by circles) for which the stereovision analysis is necessary.

The proposed clustering algorithm is illustrated in Figure 4.
The schema shows the clustering process for each input point
Pj . Input points are processed consecutively. In the first step,
a classical threshold based clustering is performed. If the
point Pj is not assigned to any cluster, the existence of a
neighbouring point Pi is checked. Neighbouring points are the
raw data points produced by neighbouring rays. If the test fails,
the point Pj creates a new cluster, otherwise a point gating is
achieved. If the point Pj is inside of a track’s gate, it is added
to the track’s cluster, if any or creates a new cluster. If the
point Pj is outside of all existing tracks’ gates, the stereovision
analysis is performed for the points Pj and Pi. Basing on the
stereovision analysis, the point Pj creates a new cluster or is
added to the cluster of the point Pi.
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Fig. 4. Clustering schema.

In the following, sections III-A and III-B describe

respectively the stereovision method to extract depth
information and the fusion algorithm for eliminating
ambiguities in the objects clustering procedure.

A. Stereovision method

Providing 3D information of an observed scene,
stereovision allows to obtain depth information needed
to differentiate different objects when LRF data cannot
perform correctly the clustering.

Various correlation methods of grayscales stereoscopic
images exist in the literature. The ZSAD (Zero mean Sum of
Absolute Differences), which is the most popular correlation
method, is chosen because of its less sensitivity to illumination
changes [9][10][11]. In this paper, this method is extended to
color images. For that, the similarity values are calculated on
each component of the RGB color space. The color similarity
value corresponds to the average of the three components.

The ZSAD method is based on pattern comparison. For
each pixel of an image, a correlation window containing the
neighbourhood of the considered pixel is used to compare
the similarity. For each correlation window in the left image,
the correlation window with the greatest similarity is sought
in the right image. The similarity between two correlation
windows is expressed as follows:

ZSAD(fl, fr) =
∥∥(fl − fl)− (fr − fr)

∥∥ (5)

where fl and fr denote respectively the vectors containing
the pixel values of the correlation window in the left and right
images. fl and fr correspond to the average of the pixel values
of fl and fr vectors respectively.

Figure 5 shows the two clustering ambiguous situations
(previously described; see Figure 3), where stereovision
information is useful to perform a correct laser data
clustering. The first situation concerns a vehicle, which is
turning to the right (top-left image). The second one concerns
a vehicle partially occluded by another (top-right image).
The corresponding disparity maps in grayscales are presented
(middle images). In order to visualise better the detected
regions, labelled images are extracted (bottom images) from
the disparity maps. In these images, each detected region
corresponding to a disparity value is represented by a different
color.

Recall that for the clustering task, the stereovision analysis
is performed only in regions of interest (ROI), defined from
the image-projections of couples of consecutive laser points
that respect a distance thresholding rule (see section III-B).
Considering the example of Figure 5, the ROIs are defined
from the image-projections of the couples of the consecutive
laser points, surrounded by circles.

Figures 6 shows two surface maps of two horizontal zones
corresponding respectively to the two situations of Figure 5.
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Fig. 5. Disparity maps original images (top), their disparity maps in
grayscales (middle) with labelled images b(bottom) for the ”vehicle turning”
(left) and the ”vehicle occlusion” (right) clustering ambiguous situation.

The zones are centred on the projections of the laser points
onto the images. Each surface map is represented by the
disparity values (Z-axis) within the image space (X-axis and Y-
axis). Farther is the pixel, smaller is the disparity value (yellow
to purple).

In the fist scenario (vehicle which is turning to the right),
one can notice that the disparity values are globally constant in
the beginning, and then, they decrease gradually between the
last two projected laser points, surrounded by circles in Figure
5, and which define the ROI. In the second scenario (vehicle
which is partially occluded by another), the same remark can
be formulated considering the beginning of the zone, despite
some errors near to the registration plate. What is important is
that a high gap is visible between the last two projected laser
points, surrounded by circles in Figure 5, and which define the
ROI.

These statements are more illustrated in Figure 7, which
gives the zooms of the disparity surface maps on the neigh-
bourhood of the ROI.

B. Information fusion

To decide if two consecutive laser points belong to a same
object, the disparity map of the region of interest defined by the
projected laser points is analysed. The disparity map analysis
consists of detecting discontinuities, between the projected
laser points.

To achieve that, a disparity map exploration process is

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 50

 100

 150

 200

 250

 300

 350 80

 90

 100

 110

 120

 130

 140

 150

 0

 5

 10

 15

 20

Z

X

Y

Z

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0

 50

 100

 150

 200

 250

 300 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0

 5

 10

 15

 20

Fig. 6. Surface maps: the ”vehicle turning” situation (top); the ”vehicle
occlusion” situation (left).

developed in order to check if a discontinuity-less path between
the projected laser points exist. If a discontinuity-less path is
found, then the two laser points are considered to belong to
the same object. Otherwise, the two points belong to different
objects.

The search is performed according to a disparity rule: two
adjacent pixels pi and pj belong to the path if the quantity
∆Dispij = |Disp(pi) − Disp(pj)| is inferior to a disparity
threshold Tdisp. Disp(pi) is the pi pixel disparity value. The
disparity threshold Tdisp is expressed as follows:

Tdisp =
Tr × Td ×∆Disp0N

d
(6)

where Tr is a weighting coefficient and Td is a distance
threshold. ∆Disp0N is the difference of the disparity values
of the laser points p0 and pN , defining the ROI in which
the stereovision analysis is performed, and d is the distance
between them.

To optimise the disparity map exploration, a specific order
is considered, since the disparity maps have always similar
topological structure (see Figure 7).

IV. TRACKING

A. Fixed Size assumption

The idea of the fixed size (FS) assumption is based on the
fact that, in general cases, objects’ size does not change during

SMC 2009
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Fig. 7. Zoom of the surface maps around the ROIs.

the tracking. However, due to the LRF’s limited resolution and
change of the relative distance and orientation of the observed
object, measurements of the object’s size vary in time. The
FS assumption allows to exploit the most precise objects size
estimation, memorised during the tracking. The FS algorithm
takes place in each iteration of the tracking after the track
prediction and measurements extraction.

For the FS algorithm description, we consider the local
OBB’s X axis. The same process is applied to the local OBB’s
Y axis.

Having the percepted OBB measurement with the IR line
segment length zperc[dIRx], we obtain the corrected IR line
segment length z[dIRx] associated with the OBB measurement:

z[dIRx] = min(zperc[dIRx], xk−1[dIRx]) (7)

where xk−1[dIRx] is the IR line segment length associated with
the track at time k-1. The quantity z[dIRx] is then memorised
in the track xk:

xk[dIRx] = z[dIRx] (8)

After using the equation (3) and (4) (see section II-B, the
next step consists of the measurement’s size correction by
using the following equation:

z[dx] = max(z[dx], xk[dx]) (9)

where xk[dx] is the track predicted size at the time k.

After correcting the percepted measurement’s size, the
measurement’s centre must be appropriately translated. The
updating of the centre position is achieved as follows.

Firstly, the visibility factor V Fx is computed for the OBB’s
local X axis:

V Fx =
max(βf

minX , βf
maxX)

βf
minX + βf

maxX

(10)

where βminX and βmaxX correspond respectively to the angles
between OBB’s sides minXside and maxXside normals and
their radius vectors (see Figure 8). f is a parameter, which is
set to 4.
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Fig. 8. Visibility factor associated to the OBB’s local X axis.

In the second step, the direction factor DFx associated
to the OBB’s local X axis is computed using the following
equation:

DFx =

{
1, if βmaxX > βminX (11a)
−1, if βmaxX < βminX (11b)

In the last step, the difference between the percepted size
zperc[dx] and the corrected size z[dx] is calculated:

∆dx = z[dx]− zperc[dx] (12)

Finally, the measurement’s centre translation is expressed
as follows:

z[cx] = z[cx] + 1
2V Fx ·DFx ·∆dx

z[σ2
cx] =

1
2z[σ

2
dx]

(13)

B. Extended Kalman Filter

The object’s state estimation is done by the means of
Extended Kalman Filter (EKF). All values of the track’s state
vector are expressed in the local ego-vehicle coordinate system.
Tracks are represented by the augmented OBB state vector xk:
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xk = [cx, ċx, cy, ċy, θ, θ̇, dx, dy]T (14)

Since tracking is done from dynamic platform, odometry
information is used to increase the tracking accuracy. State
change of the ego-vehicle is represented as differences of
position ∆x,∆y and angle ∆γ between consecutive instants.
Thus, the input to the state transition equation is defined as:

uk = [∆x,∆y,∆γ] (15)

The Discrete White Noise Acceleration Model (DWNA) [6]
is used to describe objects kinematics and process noise. Thus,
taking into account the odometry information, the track state
transition is modelled as follows [1]:

x̂k|k−1 = A(∆x,∆y,∆γ)Fx̂k−1 +Buk +Gvk−1 (16)

where F is is the standard DWNA transition matrix, B
is the odometry-input model, G represents the noise gain
matrix, vk−1 is the process noise, defined with the Gaussian
distribution:

vk−1 = [c̈x, c̈y, θ̈, σ̂dx, σ̂dy], vk−1 ∼ N(0, Qk) (17)

where
Qk = Gvk−1G

T (18)

with σ̂dx and σ̂dy are the process errors for OBB sizes dx and
dy respectively. The prediction covariance matrix is:

Pk|k−1 =
∂A

∂x
(x̂k−1)FPk−1

∂AT

∂x
(x̂k−1)F

T +Qk (19)

where Pk−1 is the estimation covariance matrix.
The observation equation can be written as follows:

zk = Hx̂k|k−1 + wk (20)

where H is the observation model and wk, which represents
the measurement noise, is defined with a Gaussian distribution:

wk ∼ N(0, R)R = σ2
zI5,5 (21)

where I5,5 is the identity matrix.

V. EXPERIMENTAL RESULTS

To evaluate the proposed approach, we use a scenario where
the ego vehicle follows another vehicle. During its travel, (see
Figure 11), the preceding vehicle avoids a stationary object.
At the beginning of the avoidance manoeuvre the clustering
ambiguities appear for the two objects seen by the LRF: the
preceding vehicle and stationary object.

Figures 9 and 10 present the results of the threshold based
clustering for aforementioned clustering ambiguity situations
(see sectionIII). The gray rectangle corresponds to the real
objects. The gray points represent the LRF raw data points.
The red rectangle represents the raw data points cluster. In the
case of no-fusion clustering it is difficult to find an unique
threshold allowing to achieve a correct clustering for all the

situations. In deed, the threshold is to small in the case show in
the Figure 9(a) and is to big in case shown in the Figure 10(b).

One can see in Figure 10, that the fusion based clustering
algorithm produces correct clusters of all the situations.

(a) (b)

Fig. 9. Data association results of LRF based clustering for the ”vehicle
turning” situation (a); and for the ”vehicle occlusion” one (b).

(a) (b)

Fig. 10. Data association results LRF-stereovision fusion based data clus-
tering for the ”vehicle turning” situation (a); and for the ”vehicle occlusion”
one (b).

Figures 12 and 13 show the estimation errors of the tracked
object centre’s position, in the X and Y axis respectively.
Figures 14 and 15 show the estimation errors of the tracked
objects size, in the X and Y axis respectively.

One can see that X coordinate centre’s position and objects
size estimations are more precise than those associated with
the Y coordinate. This is due to the fact, that most of the time,
only the X-side of the tracked object is seen. At the beginning
of obstacle avoidance manoeuvre (around 600th time instant)
the Y coordinate related state estimation becomes more precise
thanks to the appearance of the tracked object second side (Y-
side). One can see also that the Y coordinate related state
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Fig. 11. Trajectory of the tracked object in absolute coordinate system - with
LRF-stereovision fusion.

estimation stays almost unchanged in terms of precision, even
if again only one side (X-side) of the object is seen. This
is due to the FS assumption, which allows to exploit the
most precise object’s size estimation, memorised during the
tracking. The correct object’s states estimation and tracking is
guaranteed thanks to the correct LRF data clustering by LRF-
Stereovision fusion. In deed, without stereovision information
and when clustering ambiguity situations appear, the tracking
fails (creation of many false tracks).
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Fig. 12. Tracked object centre’s position error - X coordinate.

VI. CONCLUSION

The problem discussed in this paper concerns objects track-
ing using laser sensory data and stereovision. The proposed
approach uses Oriented Bounding Box (OBB) for represent-
ing the tracked objects. The representation model takes into
account the Inter-Rays (IR) uncertainty in order to improve the
estimation of the extracted OBB. Concerning data association,
the authors proposed to integrate stereovision information for
extracting laser raw data clusters. The fusion algorithm allows
removing the clustering ambiguities pointed out when only
LRF data are used. To improve the objects state estimation,
the tracking process uses the Fixed Size (FS) assumption,
which is introduced to exploit the most precise object’s size
estimation, memorised during the tracking. The contribution of
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Fig. 13. Tracked object centre’s position error - Y coordinate.
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Fig. 14. Tracked object side error - X coordinate.

the IR uncertainty, FS assumption and stereovision information
is demonstrated. The presented experimental results show the
effectiveness and the reliability of the proposed approach.
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