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Abstract

Sounds are temporal stimuli decomposed into numerous elementary components by the

auditory nervous system. For instance, a temporal to spectro-temporal transformation

modelling the frequency decomposition performed by the cochlea is a widely adopted first

processing step in today’s computational models of auditory neural responses. Similarly,

increments and decrements in sound intensity (i.e., of the raw waveform itself or of its spec-

tral bands) constitute critical features of the neural code, with high behavioural significance.

However, despite the growing attention of the scientific community on auditory OFF

responses, their relationship with transient ON, sustained responses and adaptation

remains unclear. In this context, we propose a new general model, based on a pair of linear

filters, named AdapTrans, that captures both sustained and transient ON and OFF

responses into a unifying and easy to expand framework. We demonstrate that filtering

audio cochleagrams with AdapTrans permits to accurately render known properties of neu-

ral responses measured in different mammal species such as the dependence of OFF

responses on the stimulus fall time and on the preceding sound duration. Furthermore, by

integrating our framework into gold standard and state-of-the-art machine learning models

that predict neural responses from audio stimuli, following a supervised training on a large

compilation of electrophysiology datasets (ready-to-deploy PyTorch models and pre-pro-

cessed datasets shared publicly), we show that AdapTrans systematically improves the pre-

diction accuracy of estimated responses within different cortical areas of the rat and ferret

auditory brain. Together, these results motivate the use of our framework for computational

and systems neuroscientists willing to increase the plausibility and performances of their

models of audition.

Author summary

Responses to stimulus onsets and offsets are ubiquitous along the auditory pathway and

bear significant behavioral importance for the proper discrimination of natural sounds.

We propose a general and unified descriptive model that links ON and OFF responses
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to sensory adaptation, encompassing previous computational approaches. The model

consists of a simple pair of parameterized temporal filters that produce a bipolar spectro-

gram. We use the framework of digital signal processing to derive its mathematical

properties, and demonstrate that they accurately reproduce known features of offset

responses. We further validate our model by integrating it into larger pipelines, and

show a systematic improvement of the latter at fitting neural responses. Our approach

emphasizes the need to benchmark a wide range of models on several datasets, in a field

where harmonization is lacking. In addition to better explaining the brain, our model

could also serve in deep learning models for common engineering tasks such as audio

recognition.

Introduction

In signal processing, increments and decrements in the intensity of a stimulus constitute, as

much as the stimulus intensity itself, valuable features to encode for further analyses. The

sensory systems of numerous animal and notably mammal species exploit these intensity

changes to encode sparse representations of their inputs and thereby improve their efficiency

[1]. While the parallel processing of light intensity increments (‘ON’ signals) and decrements

(‘OFF’ signals) along the visual pathway is now well documented [2, 3]) and actually led to

the development of a new type of bio-inspired sensors (event-based cameras, see [4]), less is

known about how sound intensity increments and decrements are processed by the mammal

brain. Originally observed in the brainstem of bats [5], auditory OFF responses have since

been measured along the auditory pathway in a wide variety of animal species: in the cochlea

and auditory nerve [6], brainstem [7, 8], midbrain [9, 10], thalamus [11], and cortex [12–14].

Although less prevalent than ON responses [15–17], their ubiquitous occurrence is consid-

ered to be due to both bottom-up inheritance [9, 18, 19] as well as de novo generation [10,

12], thus leading to a dual pathway [20, 21]. If only little is known about their origins, the

most accepted hypothesis relies on a post-inhibitory rebound phenomenon due to ionic

mechanisms ([22, 23], see [19] for a model at the network level). It is now clear that these

responses have important consequences at the behavioral level, notably for sound duration

perception [24], gap detection [25–27], and at a higher level for communication [18]. Recent

optogenetic studies in mice notably established that suppressing offset responses resulted in

a performance drop on sound duration discrimination [15] and sound termination detection

[12] tasks.

Despite this now established importance of auditory offset responses, only a few computa-

tional models took them into account. While some of them suffered from a high level of com-

plexity [19, 28], others were constrained to low-level processes [23], or were difficult to

interpret in terms of biological mechanisms because they were based on deep-learning black

boxes [29, 30]. Besides, even fewer studies have made the connection between OFF responses

and adaptation, sustained responses, and ON responses, although they might not be indepen-

dent from each other [31] and some auditory neurons display all these types of behaviour [9,

17, 27, 32]. For instance, [33] proposed a frequency-wise model of adaptation inspired from

electrophysiological measurements in the inferior colliculus (IC) of anaesthetized ferrets. If

their approach increased the response-fitting ability of a linear-nonlinear (LN) model, they did

not test whether it generalized to other types of models, nor if it also provided better fits on

data collected in other species. Also, this work focused only on the phenomenon of adaptation,

even if their model is capable of extracting –without segregation– onsets and offsets. In this

PLOS COMPUTATIONAL BIOLOGY AdapTrans: A model of auditory ON-OFF responses and adaptation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012288 August 2, 2024 2 / 32

respectively be found on the CRCNS website

(https://crcns.org/data-sets/ac/ac-1/about), Zenodo

(https://zenodo.org/records/7796574), and the

Open Science Framework (OSF) website (https://

osf.io/ayw2p/). All Python codes necessary to build

computational models and train them are made

freely accessible at the following Github repository,

alongside instructions about how to pre-process

the datasets: https://github.com/urancon/

deepSTRF.

Funding: This study was supported by a grant

from the Agence Nationale de la Recherche (ANR-

21-CE28-0021, ANR PRC ReViS-MD, https://anr.fr/

) and by a FLAG-ERA funding (Joint Transnational

Call 2019, project DOMINO, https://www.flagera.

eu/), both awarded to BRC. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors declare that no

competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012288
https://crcns.org/data-sets/ac/ac-1/about
https://zenodo.org/records/7796574
https://osf.io/ayw2p/
https://osf.io/ayw2p/
https://github.com/urancon/deepSTRF
https://github.com/urancon/deepSTRF
https://anr.fr/
https://www.flagera.eu/
https://www.flagera.eu/


vein, [34] showed that incorporating a spectrally-tuned short-term plasticity (STP) in a variety

of LN-based models improves their neural fitting performances, but this work focused on fer-

ret data and only used a single model family, without expliciting the role of onsets and offsets.

In the study performed by [27], authors proposed a simple computational model of auditory

ON and OFF responses with split pathways to explain pathological deficits of gap detection in

ectopic mice. Despite their convincing results, their model was applied to raw sound level, and

therefore cannot generalize to responses to separated frequency bands, nor to interactions

between them.

To address these shortcomings, we propose here a new general model of ON-OFF neural

responses and adaptation in the mammal auditory pathway. This model encompasses previous

approaches and is implemented on a widely used tool for deep learning (PyTorch). Its proper-

ties are presented from a signal processing perspective. It is composed of two linear filters (one

for ON and the other for OFF responses) that capture the sustained and transient properties of

auditory inputs within each frequency band (see the “AdapTrans” model of auditory ON-OFF

responses and adaptation section). We demonstrate that this model accurately reproduces pre-

vious biological findings such as the dependence of OFF responses on the stimulus fall time

and on the preceding sound duration (see the ‘Results’ section). We also demonstrate that our

filtering approach greatly improves neural response fitting performances of a large variety of

models of the auditory pathway, going from simple linear models to state-of-the-art multi-

layer convolutional neural networks. This is done across three datasets (collected in different

mammal species and under different experimental conditions) to permit robust estimations of

the performances and hence more reliable conclusions. All the data, models, processing and

pre-processing codes are publicly available on our github repository (https://github.com/

urancon/deepSTRF).

Materials and methods

Because our modelling framework is an essential part of the present study, it is

introduced here, before the ‘Results’ section. Therefore, in this section, we first

describe our model of auditory ON-OFF responses and adaptation, and formally analyze

its properties. Then, we present larger computational models of the auditory pathway

that were combined to our pair of filters to predict neural responses datasets (audio stimuli

and neural recordings) that were used in our study. Next, we provide details about the

datasets (audio stimuli and neural recordings) that were used for this purpose. Finally, we

described our methodology to characterize the performances on the neural response fitting

task.

“AdapTrans” model of auditory ON-OFF responses and adaptation

Two filters to capture the onsets and offsets of auditory inputs. Neural responses in the

mammal auditory cortex depend on both the sustained and transient properties of input

sounds and rapidly adapt their firing rates to intensity modulations [35, 36]. In order to take

into account these properties, our model is based on a pair of filters that we call AdapTrans
(for “Adaptation and Transients”) which efficiently computes ON and OFF responses to

sound onsets and offsets. These filters also maintain a sensitivity to the raw amplitude of

sounds in different frequency bands, as observed in biology [36, 37]. Inspired by a previous

study which modelled visual processes in the retina [38] and similar to the model of auditory

processing proposed by [33], our approach consists in partially high-pass temporal filtering

operations on the cochleagram with frequency-dependent exponential kernels. However,

instead of using only one set of filters, we use two in order to separately compute the
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responses to the sound onsets and offsets, as it is done in the auditory cortices of rats [20]

and mice [21]. In signal processing theory, our filters can be categorized as causal, first

order, biphasic, and with infinite impulse responses (IIR). These IIRs (or “kernels”) are

shown Fig 1A and can be formulated as:

hON ½n� ¼ d½n� � CONw
Xþ1

d¼1

ad� 1

ON d½n � d�

hOFF½n� ¼ � w∗d½n� þ COFF
Xþ1

d¼1

ad� 1

OFFd½n � d�

8
>>>>>><

>>>>>>:

ð1Þ

with n the discrete time variable, δ the Kronecker delta function

d½n� ¼
1 if n ¼ 0

0 otherwise

(

ð2Þ

and a 2 [0, 1] a real-valued parameter relative to the time constant τ (in timesteps) of the

exponential part of the kernel (a = exp(−1/τ)), w 2 [0, 1] a real-value parameter, and C a nor-

malization factor such that elements of the exponential sum to 1. Specifically, for an infinite

exponential part (i.e., IIR filter):

C ¼
1

Pþ1

k¼0
ak

¼
1

1

1 � a

ðsum of an infinite geometric seriesÞ

¼ 1 � a

ð3Þ

Essentially, these kernels compute a weighted difference between the current value of the

signal and its exponential moving average (EMA) in a recent past. With this formulation, the a
parameter is related to the time constant of the exponential: the closer to 1, the higher (i.e.,

slower) the time constant. Meanwhile, the w parameter allows to control the ratio between cur-

rent (stem) and past (EMA) signal values. Equivalently, it can be interpreted as the ratio

between permanent and transient features that are computed by the filter: with a value of 0,

the ON-response only accounts for the raw signal; with a value of 1 it only accounts for its

derivative.

Given the equations above, our filters have the following properties (see Fig 1B): 1) sound

onsets on the ON channel lead to the same amplitude as sound offsets on the OFF channel, 2)

sound offsets on the ON channel lead to the same amplitude as sound onsets on the OFF chan-

nel, 3) sustained sounds lead to the same amplitude on the ON and OFF channels in perma-

nent regime and 4) the output of the filters is null when there is no auditory input.

Importantly, although our two filters do not introduce a bias towards either of the two polari-

ties, they are asymmetrical and linearly independent from each other (see Fig 1A), as docu-

mented in several studies on the auditory pathway ([13, 29, 32]). In the next section, we

further describe the influence of the filter parameters on their responses.
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Fig 1. Presentation of AdapTrans filters. (A.) ON and OFF kernels of an AdapTrans filter of size 10, with w = 0.5 and a = 0.6. Most recent time-steps

are represented on the right. Each kernel is temporally convolved with a cochleagram spectral band from left to right, thereby computing a weighted

difference between the current value of the signal and an exponential average of its recent past. Importantly, the output of the OFF channel is not the

opposite of the output of the ON channel, since both kernels are linearly independent. (B.) Example ON and OFF outputs for a dummy input

spectrogram composed of 128 frequency bands. All frequency bands of the latter bear the same signal: a rectangle function with one onset, one

permanent regime, and one offset (top). The ON channel responds positively to the onset and negatively to the offset, while the OFF channel does the

opposite. The ON channel has an initial onset response of 1 –the value of the step in the input signal– and a negative offset response of −w; similarly the

OFF channel has a negative onset response of −w and an offset response of 1. Importantly, both polarities share the same sustained activity. For this

particular input, the permanent response in both channels equals 1 − w. Time constants are logarithmically distributed along the frequency axis,

therefore producing slower responses for lower cochlear bands (bottom 2 sub-panels). (C.) Bode plots of the ON and OFF filters, for different sets of

parameters τ and w.

https://doi.org/10.1371/journal.pcbi.1012288.g001
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Parametric frequency analysis. The transfer function of both filters can be obtained as

the Z-Transform of their impulse responses (derivation in S1 Note):

HONðzÞ ¼
1 � ðaþ w � awÞz� 1

1 � az� 1

HOFFðzÞ ¼
� wþ ð1 � aþ awÞz� 1

1 � az� 1

8
>>>><

>>>>:

ð4Þ

The frequency responses of our filters can be better characterized with their Bode diagrams

which are shown on Fig 1C (see the S1 Note for the associated analytic formula). Both filters

are generally high-pass. The cutoff frequency of the ON filter depends on the time constant a,

while w acts as gain tuner: the closer to 1 the higher the high-pass effect. With w = 0, the expo-

nential part of the ON kernel vanishes, thereby reducing it to a single Kronecker delta function

and leaving any auditory input unchanged. This is reflected in the Bode diagram with a flat

magnitude-frequency curve. With w = 1, ON and OFF kernels are opposite and thus have the

same frequency response, which is not efficient from a computational point of view. Interest-

ingly, the OFF kernel can also turn into a low pass-filter for low w. This analysis confirms that

the proposed family of paired filters actually highlights the transient properties of input acous-

tic stimuli. As hinted above, it provides a simple interpretation to both parameters, a regulat-

ing the “adaptation” part (i.e., the time constant with which to compute the exponential

average of past inputs) and w the “transient” part (i.e., the relative importance of current inputs

with respect to previous ones).

A frequency-wise application. In our framework, we apply the pair of filters indepen-

dently on each frequency band of the cochleagram. This choice is mainly motivated by

electrophysiological observations of ON and OFF responses in animal models ([12], see also

our results in the next section). Another argument for this multi-frequency filtering is that

auditory neurons can display both different frequency and polarity tuning [39], and that spec-

tral tuning has been shown to better accounts for their responses [34]. Therefore, we used dif-

ferent sets of AdapTrans parameters (w, aON, aOFF) for each cochlear frequency, and treat

them as learnable optimization parameters in our experiments, fitted jointly with the others

parameters of the neural response model backbone (see Integration within larger models of

audition). Given that auditory neurons tend to have larger time constants for lower frequen-

cies [36], we set initial values (i.e., pre-optimization) of AdapTrans time constants to follow a

biologially-plausible logarithmic function derived from experimental data [33]:

tðf Þ ¼ 500 � 105 logðf Þ ð5Þ

with τ in milliseconds and f in Hertz. We initialized w to 0.75 for all frequencies. This value

close to 1 is justified by the fact that onset-sustained-offset neurons in the auditory cortex dis-

play small, yet nonzero, sustained activity upon presentation of a sound.

Implementation. In the present study, for computational efficiency and parallelization on

modern GPU hardware, we truncated the IIR, such that our implementation of the AdapTrans

filters was based on a kernel with a finite number of elements. Its length was equal to 3 × τmax
+ 1, τmax being the time constant of the lowest cochleagram frequency band (see Fig 1A). In

this case, approximately 95% of the exponential part of AdapTrans is properly represented. As

indicated above, we normalized the exponential part by computing C such that the terms

respectively sum to 1 and −w for ON and OFF polarities, respectively. We padded the input

spectrogram to its left (past) in ‘replicate’ mode (i.e., using the left-most value, see PyTorch

documentation) before the convolution operation in order to avoid any downsampling along
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the time dimension. Our repository (available at https://github.com/urancon/deepSTRF/) con-

tains an easy-to-use dedicated PyTorch class for AdapTrans.

Integration within larger models of audition. We explain here how our framework can

be easily integrated into larger models of auditory processing, going from simple and gold-

standard linear models to state-of-the-art convolutional neural networks. This integration is

illustrated in Fig 2. Assuming an input sound waveform converted into its spectro-temporal

representation in an initial processing step (e.g., using a gammatone filter bank), our Adap-

Trans filters are applied on each frequency band (see above). The output of this filtering pro-

cess is a 2-channel, ON-OFF spectrogram with transient and adaptive sustained activities.

After being passed through a rectified linear unit (ReLU, or “half-wave rectification”), this ten-

sor can then be fed to standard auditory neural response models, such as Linear (L) or Linear-

Nonlinear (LN) by doubling the number of input channels, in order to be compatible with the

ON and OFF channels of AdapTrans. As a result, the number of learnable parameters in the

input layer of the response model is doubled, which is not an issue because in multi-layer neu-

ral network algorithms like deep Convolutional Neural Networks (CNN), the input layer only

constitutes a negligible fraction of the total number of learnable parameters in the model.

Most importantly, in our framework, these added parameters remain fully interpretable

(weights for each frequency bin become weights for each time-frequency-polarity bin). Never-

theless, to evaluate as precisely as possible the effect of AdapTrans on model performances,

and disentangle it from the effect of supplementary parameters, we divided by a factor of two

the number of hidden units in NRF and DNet backbones, thereby bringing back their total

parameter counts to the same level as their control counterpart (i.e. without AdapTrans, raw

spectrogram as single channel). The corresponding numbers of parameters are provided in

Table 1.

Additionally, if the initial distribution of the (aON, aOFF, w) parameters of AdapTrans (see

Eq 5) is drawn from experimental data, it might nonetheless not be optimal for the specific

neural unit under study. We thus decided to jointly optimize these parameters alongside the

Fig 2. Overview of the proposed processing pipeline. (A.) Its inputs are given by a spectrogram representation of the sound stimulus (e.g. obtained

from a Gammatone filterbank). (B.) Two AdapTrans filters are convolved to each frequency band along the temporal dimension, effectively accounting

for transient and permanent features of the stimulus. (C.) The filter outputs consist of a 2-channel, ON-OFF spectrogram that is further processed by

conventional models as found in the litterature. (D.) Such models can be separated into several classes, depending on whether they are based on a single

and large spectro-temporal receptive field (STRF), a cascade of convolutions with small-sized kernels (CNNs), or recurrent neural networks (RNNs)(the

architectures of the models used in this study are shown in Fig 3). (E.) All models output the predicted neural activity as a time series that can be

compared to a groundtruth recording.

https://doi.org/10.1371/journal.pcbi.1012288.g002
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parameters of the downstream models, through gradient descent, and for each neuron. In

practice, this general approach permits the optimizer to find the best set of AdapTrans param-

eters in order to explain neural activity, encompassing a large variety of cases (including the

identity transform, which would let the raw spectrogram unchanged for w = 0, or the deriva-

tive for w = 1).

Computational neuron models

We review here the computational response models used in this study. Because the most com-

mon models (L and LN) are well established and were extensively described in previous

modeling works, we only focus here on their main properties. Unless stated otherwise, we do

not parameterize the spectro-temporal kernels of these network, nor regularize them using

weight decay. Furthermore, for a smoother learning process and better convergence, we also

introduced Batch Normalization (BN) [40] in our models. BN is a simple and widely used

form of normalization in deep learning that stabilizes gradient descent and increases model

performances, while respecting linearity (thus after training it can be absorbed in the preced-

ing convolutional or fully connected layer). All model architectures are shown in Fig 3, and

Table 1 compiles the hyperparameters used on each dataset.

Auditory periphery. To facilitate present and future comparisons with previous methods,

and to limit as much as possible the introduction of biases due to different stimulus pre-pro-

cessings, we directly used the cochleagrams provided in each of the associated datasets. They

were all obtained following similar principles, that is, a short-term spectro-temporal decompo-

sition from windowing functions, followed by a compressive nonlinearity. However, despite

their overall resemblance and for the sake of completeness, we briefly review here the main

computations which were performed (more details can be found in the associated papers).

Table 2 partly summarizes the waveform-to-spectrogram encoding for each dataset.

In the NS1 dataset [41], 10 ms Hanning windows (overlap: 5 ms) were used to compute the

short-term amplitude spectrum of auditory stimuli which was subsequently transformed into

a spectrogram using a set of 34 mel filters logarithmically spaced along the frequency axis

(500–22,627 Hz). Finally, a logarithmic function was applied to each time-frequency bin, any

value below a manually-defined threshold was set to that threshold, and the cochleagrams

were normalized to zero mean and unit variance across the training set.

Table 1. Technical details for each model investigated in this study. The hyperparameters F, T andH respectively correspond to the number of frequency bins spanned

by each convolutional layers, to the number of time bins and to the number of hidden units before readout. For a given model, these hyperparameters could vary between

datasets because time-steps differed (e.g., 5 ms for NS1 and 10 ms for NAT4). As a result, the same model could have a variable number of learnable parameters, depending

on the dataset it was trained on. To permit a fair comparison, all models had access to the same temporal span for a given dataset.

Dataset

Model

NS1 (dt = 5ms) Wehr (dt = 5ms) NAT4 (dt = 10ms)

Backbone Prefiltering F T H #params F T H #params F T H #params

L / LN None / IC adaptation 34 41 1 1,395 49 21 1 1,030 18 21 1 379

AdapTrans 2,891 2,206 811

NRF None / IC adaptation 34 41 20 27,961 49 21 20 20,661 18 21 20 7,641

AdapTrans 10 28,023 10 20,768 10 7,655

DNet None / IC adaptation 34 5 20 3,502 49 5 20 5,002 18 5 20 1,902

AdapTrans 10 3,552 10 5,099 10 1,906

2D-CNN None / IC adaptation 6 15 90 36,274 7 6 90 39,694 3 7 90 15,484

AdapTrans 37,276 40,261 15,748

https://doi.org/10.1371/journal.pcbi.1012288.t001
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In the NAT4 dataset [42], sound waveforms were converted into cochleagrams with a gam-

matone filterbank of 18 filters whose central frequencies were logarithmically distributed from

200 Hz to 20 kHz. After a log-compression stage, the temporal resolution was downsampled to

10 ms.

Finally, stimulus spectrograms from the Wehr dataset ([43, 44]) were obtained using a

short-term Fourier transform with a Hamming window, followed by a log function. The

resulting cochleagrams have a temporal resolution of 5 ms, while the frequency axis is discre-

tized into 49 logarithmically-scaled spectral bins.

Linear model (L). The canonical Linear (L) model consists of a spectro-temporal window

spanning all frequency bands and a large set of temporal delays that is convoluted over the

temporal dimension of the stimulus spectrogram. The output of this model at each time step

(i.e., the time-step of the most recent delay) is simply a linear projection of past spectro-tempo-

ral bins into a scalar value, to which a bias term is added to account for spontaneous activity.

The set of weights associated with each input coefficients is also known as the Spectro-Tempo-
ral Receptive Field or STRF. Therefore, for a spectro-temporal window spanning F frequency

bins and T delays, the number of parameters is F × T + 1. Different parametrizations exist to

Fig 3. Schematic expliciting the architecture of the different auditory response models used in combination to AdapTrans. STRF: Spectro-

Temporal Receptive Field(s). CONV: Convolution. BN: Batch Normalization. See main text and associated papers for a detailed description of each

model. (A.) L model. (B.) NRF model. (C.) LN model. (D.) DNet model. (E.) 2D-CNN model.

https://doi.org/10.1371/journal.pcbi.1012288.g003
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reduce this number of free parameters [45–47], which we did not adopt to illustrate the perfor-

mances of the simplest implementation of this model. For the same reasons, we did not apply

any regularization technique like ridge regression [44, 48] or L1 penalty [49, 50] by setting

weight decay to 0. These methods allow to mitigate the high-frequency patterns appearing dur-

ing optimization on unregularized STRFs, but require computationally intensive and often

time-consuming hyperparameter tuning. Furthermore, we noticed that they did not necessar-

ily prove beneficial in terms of performance in our setup, in line with the results reported by

[30]. This observation could be due to our usage of gradient descent (see [51]), whereas previ-

ous literature tended to use order-0 optimization algorithms like boosting [45, 46] to fit these

simple models. For this model and each spectrogram prefiltering condition (i.e., none, IC

Adaptation, AdapTrans), we only used batch normalization (BN) after STRF weights when it

proved beneficial to performance.

Linear-nonlinear model (LN). The LN model differs from the L model in that the output

of the convolution is passed through a static nonlinearity in the form of a sigmoid:

y ¼ sðxÞ ¼
1

1þ expð� xÞ
ð6Þ

where x is the output of the Linear model and y is the output of the nonlinearity. Other forms

of activation functions are commonly used, such as 4-parameter parameterized sigmoids [33,

50], or double exponentials [30, 45], but our preliminary results with the latter did not neces-

sarily yield better results than with the standard sigmoid function. Early experiments showed

the importance of using BN in conjunction with nonlinearities. We thus systematically incor-

porated it between STRF weights and output activation function, for all conditions of this

model backbone.

Network receptive field (NRF). This model, proposed in [41], extends the LN model by

replacing its unique spectro-temporal weighting windows by several. After a pass through a

standard sigmoid activation, the features extracted by each of these channels are then com-

bined into a single output scalar forming the final prediction at the current timestep. With its

multi-filter paradigm, authors argued that this model fitted much better actual

Table 2. Review of the datasets used in this study. Mean CCmax was computed accross neurons and stimuli for responses with more than 1 repeat. Please refer to main

text or their original study for additional details.

Dataset

NS1 Wehr NAT4

PEG A1

Literature original paper [41] [44] [42]

others [50, 52] [53] [30]

Recordings animal model ferret rat ferret

behavioural state anesthetized anesthetized awake

brain areas A1, AAF A1 PEG A1

# valid neurons 73 21 339 777

mean CCmax 89% 96% 59% 61%

Stimuli sound type natural

duration 5 s 7.5–15 s 1 s

# sounds 20 from 3 up to 63 595

# repeats 20 from 1 up to 25 1 (577 sounds), 18 (20)

time bins 5 ms 5 ms 10 ms

# frequency bins 34 49 18

https://doi.org/10.1371/journal.pcbi.1012288.t002
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electrophysiological recordings, due to the fact that auditory neurons react to several spectro-

temporal patterns, and not just one. To follow the LN model (see above) and make its strict

multi-filter extension, we also introduce BN between input weights and the hidden activation

function.

Dynamic network (DNet) model. [50] further extended the NRF model by constraining

its hidden and output units to follow a recurrent, exponentially decaying relationship over

time, similar to a non-spiking Leaky Integrate-and-Fire (LIF) neuron. Authors showed that

this replacement of the sigmoid activation by a simple stateful dynamic observed in biology,

allows to reduce the span of the STRF windows to a more biologically plausible range, without

sacrificing performance. Implementation-wise, removing the spiking condition allows to emu-

late the leaky recurrence by simply convolving an exponential kernel along the time dimension

of each layer’s output. We parametrize the exponential kernel the same way as AdapTrans fil-

ters, and let automatic differentiation learn the time constant, which we express as follows for

numerical stability:

1

t
¼

1

1þ d2
ð7Þ

We mark a difference with these authors, in that we allow the network to learn a different time

constant for each hidden unit, instead of a single one that is shared accross the layer. Similar to

both LN and NRF models, we employed BN in the first layer, between input weights and hid-

den units.

2D Convolutional neural network (CNN). Also based upon convolution operations on

the stimulus spectrogram, this last model differs from the preceding in that it is a fully-fledged,

deep neural network, with a larger number of stacked convolutional layers of small kernels

(i.e. that do not span the entire range of frequencies). Introduced by [30] among other CNN-

based models, it displayed superior performances on the task of elecrophysiological response

fitting, despite its higher number of learnable parameters. Our PyTorch re-implementation

aimed at being as close as possible from the original architecture: a feature extraction backbone

constituted in a series of three 2D convolutions alternating with nonlinear activations, fol-

lowed by a prediction head composed of two fully connected layers. Nevertheless, we added a

minor update by also incorporating BN between each convolution and nonlinear activation

(LeakyReLU with a negative slope of 0.1), as it constitutes a well appreciated solution to miti-

gate overfitting among the deep learning community [40]. Similar to the original paper, we

chose to maintain 10 hidden channels within the convolutional backbone, and 90 hidden units

in the last layer, the size of penultimate layer being determined by flattening the downsampled

spectrogram out of the convolution backbone.

Sound datasets

To demonstrate the generalization ability of our approach, we chose audio data collected in

different cortical areas (ferret A1, ferret AAF, ferret PEG, rat MGB) and at different temporal

resolutions (1, 5 and 10 ms). These data come from recent studies ([41–43]) and are freely

available on the internet. We only report here the main steps for their acquisition and prepro-

cessing (see also Table 2 for an overview of their main characteristics). More details can be

found in the corresponding papers. The preprocessed data, ready for Pytorch development,

are all freely available on our GitHub.

NS1 dataset. This dataset comprises single-unit extracellular electrophysiological record-

ings performed in the primary auditory cortex (A1) and anterior auditory field (AAF) of 6

anesthetized pigmented ferrets exposed to natural stimuli. Natural sound clips (n = 20)
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included either birdsong, ferret vocalizations, human speech and environmental noises (e.g.

wind, water). Each clip last 5 s and was presented 20 times to each animal at a sample rate of

48,828.125 Hz. A Klustawik-based spike-sorting algorithm [54] isolated a total of 73 single

units that matched a certain noise ratio threshold, allowing the construction of their peri-stim-

ulus time histograms (PSTH) by first counting spikes in 5 ms temporal windows, then averag-

ing over repeats, and smoothing by convolution with a Hanning window. This yielded supra-

threshold (i.e. firing probability) response profiles with a temporal resolution of 5 ms for each

unit and sound clip.

Stimuli were first processed into a 34 band mel spectrogram of 5 ms time bins with frequen-

cies ranging from 500 to 22,627 Hz. The log of each time-frequency bin was then computed,

and values below a fixed threshold were set to that threshold. The resulting cochleagrams were

finally normalized to zero mean and unit variance.

This dataset is available online on the Open Science Framework (OSF) website (https://osf.

io/), at the repository associated to its original article [41]. Please refer to the latter for more

details on the acquisition and preprocessing of the data.

NAT4 datasets. The following dataset [55] was acquired from the primary auditory cortex

(A1) and secondary auditory field (PEG) of 5 awake ferrets exposed to a wide range of natural

sound samples. Spiking activity was collected extracellularly through micro-electrode arrays

(MEA) and single- and multi-units were isolated from raw traces using the Kilosort 2 spike

sorter ([56]). In total, 777 auditory-responsive units were identified in A1 and 339 in PEG.

All of the 595 stimuli were 1 s long, and were presented with a 0.5 sec interval of silence.

15% were congenital vocalizations and noises recorded inside the animal facility, while the

remaining 85% were taken from a public library of human speech, music and environmental

sounds [57]. 577 of these sounds were repeated only once, and 18 were repeated 20 times. For

each neuron and stimulus clip, we removed stimulus-response pairs with null PSTHs (i.e.,

without any spike in all response trials). These data are available in online open-access on the

Zenodo platform (https://zenodo.org/), on a dedicated repository associated to its original

paper [42].

Wehr dataset. In this last dataset ([43, 44]), pure tones and natural stimuli were presented

to anesthetized Sprague Dawley rats while membrane potentials of neurons in their primary

auditory cortex (A1) were recorded using a standard blind whole cell patch-clamp technique,

in current-clamp mode (I = 0, sampling frequency: 4,000 Hz). Action potentials were pharma-

cologically prevented by the administration of a sodium channel blocker, therefore allowing

large PSPs at most. For each of the 25 cells recorded in this study, the frequency tuning curve

was determined thanks to the presentation of short pure tone stimuli (20 ms duration with a 5

ms cosine-squared ramp or 75 ms a 20 ms ramp) which were sampled and delivered at 97.656

kHz in a pseudo-random sequence. Natural sounds with various durations (7.5–15 sec with 20

ms cosine-squared ramps at onset and offset) originally sampled at 44.1 kHz were upsampled

and delivered at 97.656 kHz. These natural stimuli were a selection of 122 commercially avail-

able clips of environmental noises and animal vocalizations, and covered frequencies from 0 to

22 kHz. Depending on neurons and experiments, these natural stimuli were repeated up to 25

times. Recorded neural responses in this dataset are characterized by very low variability and

are therefore very reliable. As a result, raw and normalized correlation coefficients reported on

this dataset are very similar.

Because of their nature compared to the other datasets (i.e., membrane potentials vs spikes),

response traces could be subject to drift. These recording artifacts are often meaningless and

difficult for models to bypass, so we detrended responses linearly, which resulted in improved

fitting performances, especially for simpler models.
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Three neurons were reported to be unresponsive to sound stimuli in [44] and we did not

include these neurons in our analyses. We also discarded another one that significantly lacked

data, bringing the total number of units used in our study to 21 for this dataset.

Similarly to previously described data, stimulus spectrograms resulted from a simple short-

term Fourier transform (STFT) in which the frequency axis was logarithmically discretized

into F = 49 spectral bands (12 / octave); temporal resolution was set to dt = 5 ms for our analy-

sis. The resulting energy density spectrum of the sound pressure wave was passed to a log-

compression function and then further multiplied by a factor 20.

This dataset is freely available online on the Collaborative Research in Computational Neu-

roscience (CRCNS) website (https://crcns.org/), and constitutes the first half of the

“CRCNS-AC1” dataset. More details are available in its original article [44].

Task and evaluation of performance

Optimization process. All models, including AdapTrans and the backbone, were trained

using gradient descent and backpropagation, with AdamW optimizer ([58]) and its default

PyTorch hyperparameters (β1 = 0.9, β2 = 0.999). We used a batch size of 1 for NS1 and Wehr

datasets, which have a limited number of training examples, and a batch size of 16 for both

NAT4 datasets, which have consequently more. The learning rate was held constant during

training and set to a value of 10−3, as we empirically found that these values led to better

results. We explored different strategies to reduce overfitting in our modelling, e.g. by using

weight decay (L2 regularization), Dropout or data augmentation (TimeMasking and Frequen-

cyMasking). As none of these strategies significantly improved our results, we did not consider

them further. At the completion of each training epoch, models were evaluated on the valida-

tion set and if the validation loss had decreased in comparison to the previous best model, the

new model was saved. Models were trained until there were no improvement during 50 conse-

cutive epochs on the validation set, at which point the training was stopped, the last best-

performing model was saved and evaluated on the test set.

This unified approach for implementing and optimizing the parameters of each of the mod-

els (i.e., using the same regularization method, fitting approach, number of cochleogram chan-

nels, . . .) allows a fair comparison between them (and also between models equipped with

AdapTrans or not). Indeed, as all the models (L, LN, NRF, DNet and 2D-CNN) were con-

structed using exactly the same pipeline, it implies that a model with higher neural fitting per-

formances is genuinely better. Note that this homogenisation strategy necessarily introduced

differences between our general pipeline and those of the studies that originally described

these models.

Correlation coefficients between recorded and predicted responses. The neural

response fitting ability of the different models has been reported using the raw correlation

coefficient (Pearsons’ r), noted CCraw, between the model’s predicted activity r̂ and the

ground-truth PSTH r, which is the response averaged over trials rn:

r ¼
1

N

XN

n¼1

rn ð8Þ

CCraw ¼
Covðr; r̂Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðrÞVarðr̂Þ

p ð9Þ

with Cov and Var operators performed on the temporal dimension. However, due to noisy sig-

nals and limited number of takes, perfect fits (i.e. CCraw = 1) are impossible to get in practice.
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As a result, in order to give an estimation of the best reachable performance given neuronal

and experimental trial-to-trial variability, several metrics have been proposed, such as the nor-

malized explained signal power [44, 59] or the normalized correlation coefficient CCnorm, as

defined in [60] and [61]; we report the latter in this paper. Namely, for a given optimization set

(e.g., train, validation or test) composed of multiple clips of stimulus-response pairs, we first

create a long sequence by temporally concatenating all clips together. Then, we evaluate the

signal power SP in the recorded responses as:

SP ¼
Varð

PN
n¼1
rnÞ �

PN
n¼1
VarðrnÞ

NðN � 1Þ
ð10Þ

which finally allows us to compute the normalized correlation coefficient:

CCnorm ¼
Covðr; r̂Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SP� Varðr̂Þ

p ð11Þ

In the extreme case of only one trial being available, we set CCraw = CCnorm, corresponding

to the best-case scenario of a fully repeatable recording uncontaminated by noise, therefore

preventing any overestimation of performances by giving a lower bound of the latter, in

absence of data.

Coherence function. To better quantify the contribution of our approach in the fre-

quency domain, we computed the coherence values between the predicted and actual neural

responses (see e.g., [44]). This metric is defined by:

Crr̂ðf Þ ¼
jGrr̂ðf Þj

2

Grrðf ÞGr̂r̂ðf Þ
ð12Þ

where r and r̂ are the neural responses and their predictions. jGrr̂ðf Þj
2

is the squared magni-

tude of their cross-spectral density, and Grr(f) and Gr̂r̂ðf Þ their respective auto spectral densi-

ties. Here, f spans frequencies going from 0 to the Nyquist frequency associated with the

sampling rate. For each frequency, the coherence takes values between zero (no correlation

between measured and estimated response) and one (perfect correlation at this frequency).

Coherence was computed using the Welch’s method available in SciPy library [62], with seg-

ments of 500 ms duration in order to capture the long-range temporal dependencies and con-

textual effects observed in auditory neurons [53]. For coherence plots averaged across neurons

for a given model and dataset, we also provided an upper bound value by computing the aver-

age coherence between the PSTH obtained from one half of the response trials and the one

obtained from the other half, for up to 126 different splits [60]. Similar to our method of calcu-

lation of the normalized correlation coefficient above in the case of single trial data, we set the

coherence upper bound to the worst-case scenario of 1 at all frequencies, in order to avoid any

overestimation of model performances.

Cross-validation methodology. For the NS1 and Wehr datasets, neural recordings were

split into training (70%), validation (10%) and test (20%) sets. For all the measurements of the

NAT4 dataset (i.e., for units in A1 and PEG), we followed the same sets as in [30]: a training

and validation set of 577 stimulus-response pairs with only 1 repeat, and a test set of 18 stimu-

lus-response pairs with 20 repeats. Here, the validation set was constituted of 20% of the total

“trainval” set, and the training set of the remaining 80%. As indicated in the ‘Optimization

process’, the model is fitted on the training set for a limited number of epochs. At the end of

each epoch, the loss over the validation set is computed, and the model with the lowest valida-

tion loss is saved at the end of the fitting procedure. The number of training epochs was deter-

mined manually such that more epochs would not further decrease the validation loss. Finally,
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the saved model was evaluated on the test set. This procedure was repeated 10 times for differ-

ent train-valid-test data splits of NS1 and Wehr datasets and model parameters initializations,

and the test metrics were averaged across splits. In the case of NAT4 datasets, because the

number of stimulus-response pairs and neurons are considerably greater, risks of overfitting

to a specific data split are much lower, and therefore we only report the performances for one

random seed.

Note that this model validation method differs from the one employed in [50], which is not

a “cross-validation” per se. In this study, authors kept a fixed, (i.e. always the same) subset of

data for testing, and used the rest for training and validation. The test set was held-out during

the process of model development, but because of the very small dataset size on NS1 (20 stimu-

lus-response pairs), we found that this methodology was not robust to the selection of the test

set, which could result in overestimated performances (see S1 Table).

Reproducibility

Our simulations were done in Python using the popular automatic differentiation library

PyTorch. Upon publication of this article, we will make our code freely available on Github at

the following address: https://github.com/urancon/deepSTRF. A code example is provided in

S1 Code, to showcase its simplicity and encourage other researchers to build upon it. Jobs

required less than 2 GiB and were executed on Nvidia Titan V GPUs, taking 10 to 15 hours on

NS1, depending on the complexity of the model.

Electrophysiology datasets openly available often come in a variety of formats that each

necessitates a specific pre-processing. In addition, these pre-processing are performed using

different tools and software. Because this lack of harmonization can induce errors and biases,

there have been a few attempts to federate the scientific community around data hubs such as

the Neural Prediction Challenge (https://neuralprediction.org/npc/index.php) or software

toolkits like the NEMS library (https://github.com/LBHB/NEMS/tree/main). In line with these

previous attempts, we provide all the models and the scripts to train them using a unified pipe-

line. We also provide more user-friendly PyTorch Dataset classes for each source of data used

in this study. By building this repository, our constant goal has been to make an easy-to-use

software material that is as plug-and-play as possible. We hope that the code architecture we

have adopted will inspire other researchers by easing the development of future work, and ulti-

mately contribute to make the bridge between experimental and theoretical research.

Results

The aim of this work is to propose a model of auditory ON/OFF responses and adaptation,

which can reproduce actual neural responses and properties measured from electrophysiologi-

cal recordings in a wide range of animals, brain areas, and stimulus types.

Dependence of OFF responses on stimulus fall time

Several studies have empirically demonstrated a dependence of offset responses on the stimu-

lus fall time, in a variety of animal species and in different cortical areas: mouse MGB and

AAF [12], rat AAF, A1 and VAF [22]. This property of offset responses is well captured by our

model as abrupt down steps in the input stimuli elicit higher OFF responses than slow

descending ramps of the same amplitude.

To prove it, we simulated the AdapTrans OFF response to a single-channel stimulus com-

posed of a ramp of variable duration (see Fig 4A). We systematically computed the maximal

offset response at sound termination as a function of fall time, and we searched for the aOFF
and w parameters that yielded the best fit with [12] data (see Fig 4A). Beyond the validation of
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Fig 4. Comparison between OFF responses predicted by our model and neurobiological data. Experimental

measurements were performed in the mouse medial geniculate body (MGB) and anterior auditory field (AAF)(see

[12]). Despite a lesser effect of preceding sound duration than in AAF, MGB responses also follow a saturating

exponential function. We argue that the latter could perhaps become even more evident if probed with smaller sound

durations (i.e., less than 50 ms), as neurons in earlier relays of the auditory pathway tend to have shorter time constants

than cortical neurons. Thus, it could be that authors tested sounds too short compared to MGB time constants,

resulting in a directly saturated effect. (A.) Adaptrans reproduces the decrease in offset response amplitude as a

function of preceding fall-ramp duration. The experimental setup (left) simply consisted of a convolution of an
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the biological plausibility of our model, this simulation also illustrates that our framework eas-

ily permits to test any property. For instance, we can easily extract the latency of offset

responses as a function of ramp duration (see S1 Fig). To our knowledge, it has not been tested

in previous experiments. We hope future studies will explore whether the predictions of our

model are correct in this case.

Dependence of OFF responses on preceding sound duration

Another well-established property of auditory offset responses in the mammal brain is their

dependency on preceding sound duration. This dependency takes the form of a saturating

exponential [11, 12, 20]. In order to test whether AdapTrans can reproduce this relationship,

we fed the OFF channel of our filter with auditory stimuli consisting in binary step functions.

Fig 4B shows the maximum amplitudes of the responses to the offsets of these stimuli. These

values can also be computed from AdapTrans OFF impulse response. If T is the number of dis-

crete timesteps of the step stimulus, the offset response amplitude at sound termination is:

AOFFðT; a;wÞ ¼ ð1 � aÞ
XT

d¼1

ad� 1 ð13Þ

Note that AOFF is an exponential function depending only on T and a (not w) and saturating

to a maximum value as the preceding stimulus gets longer (i.e., in the limit of infinite T).

Indeed, longer step stimuli can build up bigger exponential moving averages (left part of Adap-

Trans kernels in Fig 1A), leading to a bigger difference between present and past values and

therefore to a bigger response when it stops. To further demonstrate the ability of AdapTrans

to capture this biological property, we fitted this function on data collected in two auditory

areas of the mouse cortex [12]. Results are reported in Fig 4B. The predictions of our model

match remarkably well with experimental data (R2 = 0.94). This is notably the case for data col-

lected in the Medial Geniculate Body (MGB, in green) which are less favourable to offset

responses than measurements made in cortical areas such as the Anterior Auditory Field

(AAF, in orange). [12].

The multi-frequency processing scheme of AdapTrans is in line with

experimental data

Auditory neurons in areas MGB and AAF of the mouse auditory cortex can detect the offsets

of different frequency components within complex structures of sound stimuli [12]. To test

whether our approach can reproduce these results, we designed an artificial binary stimulus

composed of three spectral bands with activations set to 1 and turned down to 0 at different

time instants (respectively 0.3, 0.4, and 0.5 s in simulation time, dt = 1 ms, see Fig 2) and fil-

tered through AdapTrans, using different ON and OFF time constants (parameter a) and w
for each frequency band. Each output channel was then rectified and the final neural response

AdapTrans kernel over 1D fall-ramp stimuli; the maximum offset responses over the whole time course were then

reported and the AdapTrans parameters were empirically optimized to best fit biological data (right) (B.) Similarly,

offset response amplitude increases as an exponential function of preceding sound duration, measured in regular

spiking (RS) and fast spiking (FS) neurons. The simulation setup was the same as for the previous panel, except for the

stimuli, which were steps of infinite ramp and variable durations. (C.) Biological responses to multi-frequency stimulus

can be accurately replicated (right) by a simple model (left) built upon the frequency-wise AdapTrans scheme. The

latter processed each spectral component with its own version of AdapTrans, each with 3 parameters (aON, aOFF, w);

after a rectification (ReLU) stage, ON and OFF traces for each spectral component were then weighted and combined

into a single final channel (3 bands × 2 polarities = 6 additional parameters).

https://doi.org/10.1371/journal.pcbi.1012288.g004
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was readout at each timestep through weighted summation of each frequency-polarity bin, fol-

lowing the addition of a bias accounting for baseline neural activity. This simple 15-parameter

model was finally fitted to reproduce experimental data averaged over a large number of tha-

lamic and cortical neurons.

The resulting model activity closely matches the experimental data (see Fig 4C). This obser-

vation strongly supports the use of learnable time constants for each frequency band and

polarity of the cochleagram, rather than the use of the raw sound waveform envelope. This

experiment also demonstrates that AdapTrans can be used as a foundation or building block

for larger models of audition.

AdapTrans filtering enhances the neural fitting performances of a large

spectrum of models

In order to test whether our framework can constitute a valuable extension to gold-standard

models of auditory processing, we trained several computational pipelines, with and without

AdapTrans, on electrophysiological data collected in auditory areas [41–43] (see Materials and

methods, Datasets). This training was performed with supervision using back-propagation in

order to predict new single-unit activity (see the ‘Task and evaluation of performance’ section).

Fig 2 gives an overview of the proposed processing pipeline when the AdapTrans filters are

used. The architecture of the different models of the auditory pathway which were imple-

mented is detailed in the Methods (see the ‘Computational neuron models’ section). For each

model and each dataset, we report in Table 3 the (cross-validated) raw and normalized Pearson

correlation coefficients (CCraw and CCnorm) between the predicted and groundthuth neural

responses, averaged over all units of the dataset.

Table 3. Performances of the models with various prefiltering conditions on the datasets. Correlation coefficients (CC) and normalized correlation coefficients are

given in %. Bold font indicate the best prefiltering for a given model backbone, while underlined scores indicate the best among all models on a given dataset. All bold

entries were deemed statistically significant with unilateral paired t-tests (best versus second best, p = 0.05).

Model Dataset

NS1 Wehr NAT4

PEG A1

Backbone Prefiltering CCraw CCnorm CCraw CCnorm CCraw CCnorm CCraw CCnorm

L None 35.9 49.4 16.1 16.4 25.5 36.0 31.6 43.7

IC Adaptation 42.7 58.8 30.7 31.2 18.3 24.6 23.2 31.1

AdapTrans 43.1 59.2 31.0 31.6 30.4 41.6 37.0 50.1

LN None 33.7 46.6 15.8 16.0 28.4 39.8 34.6 47.8

IC Adaptation 42.3 58.1 26.4 26.9 17.6 23.7 23.6 31.8

AdapTrans 43.3 59.6 27.3 27.7 31.2 43.3 38.0 52.3

NRF None 43.7 60.4 16.5 16.6 30.3 41.6 36.9 49.8

IC Adaptation 46.6 64.2 26.3 26.7 26.1 36.0 26.8 35.5

AdapTrans 46.6 64.3 26.4 26.9 30.0 40.5 37.2 49.6

DNet None 34.0 46.7 13.7 13.9 32.6 45.3 39.0 53.3

IC Adaptation 44.1 60.9 24.5 25.0 27.4 37.9 32.4 44.0

AdapTrans 44.4 61.3 25.5 26.0 36.3 50.8 43.1 59.3

2D-CNN None 47.2 65.1 17.2 17.5 35.2 48.5 41.7 56.8

IC Adaptation 48.6 67.1 26.1 26.6 29.7 40.8 37.0 50.6

AdapTrans 48.3 66.7 26.9 27.4 37.9 52.9 44.3 60.9

https://doi.org/10.1371/journal.pcbi.1012288.t003
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Overall, using AdapTrans significantly increases fitting performances. As an illustration,

Fig 5 shows the predicted responses for different neurons sampled from the three datasets. Pre-

dictions using our approach are qualitatively and quantitatively better (see the associated cor-

relation coefficients on the upper-right parts of the panels). On average, this increase in

performances with AdapTrans reaches 0.059 in CCraw and 0.117 in CCnorm (mean absolute

delta between all baseline and AdapTrans models across datasets). Importantly, for each data-

set, our method consistently provided better correlation coefficients (see the bold and under-

lined scores in the tables), with very few exceptions. This was true for both correlation

coefficients (CCraw and CCnorm). Increases in CC were generally higher for smaller models (L,

LN) but significant improvements were also found for NRF, DNet and 2D-CNN models (see

the values in bold). Interestingly, we noticed that the improvements brought by AdapTrans on

the “Wehr” dataset were close to 50%, even among the more sophisticated models (DNet,

2D-CNN). This dataset was the only one containing whole-cell current clamp recordings and

was characterized by a very low inter-trial variability in neural recordings. Despite this high

quality, it was associated with rather poor fits. It could be that this nature of recording is intrin-

sically more difficult to capture. Additionally, simpler models (L, LN) equipped with Adap-

Trans outperformed the more sophisticated ones, hinting at a possible overfitting problem.

Anyhow, AdapTrans brings a nonlinearity that seems sufficient for the L/LN models to thrive

on this particular set. In any way, the decomposition of the cochleagram into ON and OFF

spectrograms performed by our approach greatly improve the predictions of neural responses

in this case.

To determine whether the improvements observed in Table 3 are specific to some units or

rather uniformly distributed across the neural populations, we provide in Fig 6 scatter plots

with the CCnorm values obtained with (y-axis) and without (x-axis) AdapTrans. For each data-

set, this is done with the 2D-CNN model (which is the best performing baseline model across

all the data) and also for the LN approach because of its simplicity, interpretability and its fre-

quent use in studies modeling auditory processes. Scatter plots associated with the other back-

bones are provided in the supplementary materials (see S2 Fig). We can observe that most

neural units, and especially the most reliable ones denoted by a CCmax close to 1, are better fit-

ted using AdapTrans. AdapTrans was notably beneficial for all neurons of the Wehr dataset

(n = 20) and for a majority of units in the NS1 (70/73) and NAT4 dataset (516/777 for A1 and

229/339 for PEG).

In order to test whether AdapTrans provides a pre-filtering of the input spectrogram that is

more beneficial to the neural response fitting task than previous approaches, we also trained

downstream models using a re-implementation of the IC adaptation method described by [33]

and running under our PyTorch framework. This re-implementation consisted of a cochlea-

gram prefiltering step with the AdapTrans ON channel, frequency-dependent time constants

initialized logarithmically but not learnable, a parameter w = 1 (transient information only),

and a ReLU rectification. The associated performances are provided in Table 3. The IC Adap-

tation prefiltering greatly helped models on NS1, the original dataset on which it was devel-

oped. It also provided substantial improvement on the Wehr dataset, but in a minor extent

than AdapTrans. Importantly, it failed on both NAT4 A1 and PEG datasets, doing worse than

the baseline, whereas AdapTrans rather improved correlation scores. We explain this failure of

IC Adaptation and success of AdapTrans by the prevalence of OFF responses in these datasets.

Because IC Adaptation is in fact the half-wave rectified ON AdapTrans channel, sound offsets

are therefore not present anymore in the stimulus spectrograms given to downstream models,

and as a result the latter struggle to retranscribe OFF responses. This phenomenon is exampli-

fied in Fig 5. These latter results highlight the need of the more general and flexible prefiltering

framework provided by AdapTrans (i.e., IC adaptation does not segregate ON and OFF
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responses, discards all sustained information, and does not treat adaptation time constants as

free, learnable parameters).

In brief, AdapTrans was shown to provide a simple first preprocessing layer that performs

an efficient decomposition of input stimuli into dual features. The use of ON and OFF spectro-

grams almost systematically improves the predictions of neural responses, despite the wide var-

iability in the datasets which contain different temporal (5–10 ms) and spectral (18–49 bins)

resolutions of input cochleagrams, different animal species (rat, mouse, ferret) and areas (A1,

AAF, PEG), different natures of recordings (spike sorted extracellular activity, patch-clamp).

Coherence analysis

To complete our analyses, we also computed the coherence between the measured and esti-

mated neural responses (see e.g., [44]). For each frequency, this metric takes values between

zero (no correlation between measured and estimated response) and one (perfect correlation

at this frequency). As an illustration, coherence values obtained with and without AdapTrans

for the 4 neural units discussed above (units #42 of NS1, unit #5 of Wehr and units #359 and

#29 of NAT4) are also shown on Fig 5. For all these units, coherence is generally higher for pre-

dictions based on AdapTrans, notably at low temporal frequencies. To quantify this effect, we

show in Fig 6 the average coherence (across neural units) for each dataset and confirm that

AdapTrans coherence is above the baseline for low frequencies (0–10 Hz), which could be

associated to transient peaks of activity, such as ON or OFF responses.

Parameters of the model after optimization follow a biologically plausible

distribution

Here we show that AdapTrans parameters learnt through the neural response fitting process

described above (see the ‘AdapTrans filtering enhances the neural fitting performances of a

large spectrum of models’ subsection) converged towards values that are in line with

electrophysiological recordings.

Fig 7 provide the average distributions (across neural units, models) of the w and a parame-

ters. In general and for all datasets, it is interesting to observe that optimal values for w remain

high (i.e., in the [0.5, 1] interval) in all the frequency bands (see panel B). It suggests that neural

responses in auditory areas are more strongly modulated by the transient rather than by the

sustained properties of the input sounds. Time constants (i.e., parameter a, see panel A)

remain overall close to their initialization values which were directly inspired from biological

findings (see Eq 5), in the order of the hundred of milliseconds. It is nonetheless remarkable to

observe that the optimization process led to greater values for the OFF channel rather than for

Fig 5. Various deep learning models fitting auditory neural responses: Model prediction versus actual neural activity.

Top left of each panel: stimulus spectrogram from the test set, used to evaluate the performances of each model. Bottom left:
comparison of groundtruth and model predictions, with and without AdapTrans, or with IC Adaptation. Indicated

percentages represent the normalized correlation coefficients of the corresponding models for these clips. Right: coherence

functions of the models estimated on the entire test set of the neuron. (A.) DNet model predictions on NS1 Dataset (ferret

A1 spikes), unit #42. AdapTrans models often better capture transient variations of activity, in particular the height of

peaks. The major contribution of AdapTrans in terms of coherence seems to lie in the low frequencies (0–10 Hz). (B.)

Network Receptive Field (NRF) model benefits from AdapTrans on Wehr Dataset (rat A1 potentials), unit #5. In contrast

to its baseline counterpart, the AdapTrans-enhanced model was able to better predict neural activity during inter-stimulus

intervals and sustained stimulation. In a similar fashion as the DNet model on the NS1 unit above, AdapTrans primarily

increases the coherence of slow spectral features (0–10 Hz). (C.) 2D-CNN model on NAT4 Datasets (ferret A1 and PEG

spikes), units #359 and #29. This example is an illustration of the presence of OFF responses in these datasets, and shows

that the latter are not properly captured by the IC Adaptation model due to only having the ON spectrogram channel.

Similar to the example from NS1, the coherence improvement seems concentrated at lower response frequencies,

suggesting that the latter are associated to transient responses, regardless of their polarity.

https://doi.org/10.1371/journal.pcbi.1012288.g005
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Fig 6. Comparison of the neural fitting performances with and without the AdapTrans filters. (A) (top panels) Comparative scatter plots showing

the normalized correlation coefficients between model predictions and measured neural responses, for the LN backbone. The x-axis shows

performances of the standard LN-model while the y-axis provides the performances when this model is combined with AdapTrans. Color denotes each

unit’s intrinsic variability, as the CCmax coefficient ([33, 60]) A CCmax of 0 means that the unit is unreliable to the point of only producing noise, while a

value of 1 means that its responses are completely clean. We can see that AdapTrans seems to help reliable units in particular. (bottom panels) Test

coherence function averaged across all units of the dataset. It can be seen that AdapTrans allows a better fit of lower response frequencies. (B) Same

plots for the 2D CNN model. If the improvement in terms of CC brought by AdapTrans is perhaps less clear than for the LN model as performances

saturate (possible through ceiling effect), the scatter distribution remains skewed towards the upper left corner. For NS1, the coherence functions

measured can even surpass the upper bound, which we attribute to the fact that the estimation of the coherence function a statistic and inexact process.

N.B. Coherence values can be obtained through an estimate of power spectral density (PSD), which implies non-exact, statistical methods. In addition,

the coherence upper bound was calculated with a finite number of combinations to create PSTHs. As a result, it can be that a highly performing model

can surpass the upper bound, by chance.

https://doi.org/10.1371/journal.pcbi.1012288.g006
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the ON channel. This was true in the three datasets and for all the models. This result is in line

with the findings of previous electrophysiological studies ([13, 63]) and could reflect statistical

differences between the onsets and offsets of natural sounds ([18, 64]).

Comparing these distributions between datasets can be insightful about how adaptation

properties vary depending on the animal species, brain area, or behavioural state. In particular,

we noticed that time constants from PEG and A1 neurons of the NAT4 dataset were higher

than those estimated from NS1, despite the fact that the associated recordings were performed

in the same animal model (ferret). This faster adaptation for NS1 could be explained by the

behavioural state (ferrets were awaken in NAT4 and anesthetized in NS1) as suggested by [65].

At the opposite, the w parameter controlling for the trade-off between steady and transient sig-

nals followed similar distributions in NS1 and NAT4, with a preference for transients. As a

result, we can hypothesize that behavioural state alters the time scale of filtering processes per-

formed by auditory neurons, but not their nature (i.e., high-pass or low-pass). Finally, we

found similar time-constant distribution in rats (Wehr) and ferrets (NS1, NAT4) A1 neurons,

which might reflect the convergent evolution of the early auditory cortex in these two mammal

species. However, OFF time constants were not higher than their ON counterpart in the case

of the Wehr dataset.

Further performance improvements with an augmented AdapTrans

scheme and neural population training

In this final subsection, we investigate how two simple improvements in our approach can fur-

ther push its performances at neural response fitting.

Adding the raw spectrogram to AdapTrans. AdapTrans is based on bipolar spectro-

grams with per-frequency and per-polarity adaptation mechanisms. Because it is possible that

Fig 7. Distribution of AdapTrans parameters learned during the neural fitting process as a function of frequency. Values were averaged across

neural units and models. The errorbars correspond to ± the standard deviations across neural units, except for the “All” subpanel where it is across

datasets. (A.) ON and OFF time constants. These constants decrease with frequency. Values obtained for OFF responses are almost systematically

higher than those observed for ON responses. (B.) w remains at high values even after learning, thus favoring transient over sustained responses.

https://doi.org/10.1371/journal.pcbi.1012288.g007
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some neurons along the auditory pathway do not adapt to incoming stimuli, we explore here a

new version of our approach that explicitly takes into account this hypothesis. Theoretically,

AdapTrans parameters can be learned such that they implement the identity transform –and

therefore no adaptation– when necessary but there is no strong guarantee that it happens in

practice. In this augmented version, the raw (and thus unadapted) spectrogram is

concatenated with the ON-OFF spectrograms. This 3-channel (adap-ON, adap-OFF, raw)

spectro-temporal representation is then used as an new input for the downstream models. We

tested this on the most consistent model across datasets, that is the 2D-CNN; the CCraw and

CCnorm obtained are shown on Table 4. We can observe that this simple modification systemat-

ically improve performances.

Predicting neural population activity. A recent study suggested that it can be beneficial

for computational models with high parameter-counts to predict the activity of several neu-

rons simultaneously [30]. Such an approach strongly reduces the number of effective degrees

of freedom used for each unit, speeds up the training and boosts performances by learning a

joint and thus more meaningful embedding (i.e. representation) that is less prone to overfit-

ting. As can be seen above, AdapTrans parameters do not seem to vary greatly among units of

the same dataset, so we investigated whether using such an approach as an early processing

step of a population model could be beneficial.

This was done by equipping a model of population activity with AdapTrans, and training it

using the same pipeline as our previous single unit models. The only difference between the

single unit and population models was the number of output units (respectively 1 and N, N
being the total number of valid units in the target dataset). The loss was still given by the mean

squared error (MSE) between the predicted and measured signals, now with an averaging

operation across output units. Note that contrarily to [30], we did not train the whole process-

ing pipeline in two steps –backbone and readout– but all at once. Because this approach

requires the responses of neural units to the same stimuli, which are not available in the case of

Wehr dataset, we only report the performances on NS1 and NAT4 in Table 5 below. We

applied this approach on the 2D-CNN model because of its high parameter count and overall

better performances, but also because it was the model on which this technique was originally

proposed [30]. We find consistent and significant improvements across all datasets, further

pushing the limits of auditory neural response fitting, and showing that AdapTrans is highly

compatible with this efficient optimization process.

As a conclusion, we showed here that AdapTrans can be further improved with simple

additions such as the incorporation of a unadapted version of the spectrogram, and can also

enhance the capabilities of computational models of neural populations.

Discussion

In this paper, we describe a new general, descriptive model of neural responses in the mammal

auditory pathway. Our model is composed of two linear filters that capture the sustained and

Table 4. Performances of the 2D-CNN model with an AdapTrans scheme augmented by the raw, unadapted spectrogram as a third input channel. Correlation coeffi-

cients (CC) and normalized correlation coefficients are given in %. Bold font indicate the best prefiltering for a given model backbone.

Model Dataset

NS1 Wehr NAT4

PEG A1

Backbone Prefiltering CCraw CCnorm CCraw CCnorm CCraw CCnorm CCraw CCnorm

2D-CNN AdapTrans 48.3 66.7 26.9 27.4 37.9 52.9 44.3 60.9

Adap+raw 48.6 67.1 28.0 28.5 38.8 54.2 45.6 62.8

https://doi.org/10.1371/journal.pcbi.1012288.t004
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transient properties of auditory inputs (see [38] for an illustration of this concept in the visual

domain). Contrarily to most previous modeling works, it takes into account both the ON and

OFF responses and processes them independently within each frequency band (see the

‘Model’ section). This segregation is justified by the results of previous studies which estab-

lished that separating the ON and OFF systems improves sensory coding and actually provides

a better code for extracting meaningful information by a downstream decoder (see e.g., [1].

We demonstrated here that our framework accurately reproduces known properties of neural

responses in the auditory cortex such as the dependence of OFF responses on the stimulus fall

time and on the preceding sound duration (see the Dependence of OFF responses on stimulus

fall time and ‘Dependence of OFF responses on preceding sound duration’ subsections). By

combining data from numerous studies collected in different animal models and auditory

areas (see Table 2), we also demonstrated that AdapTrans almost systematically improves neu-

ral fitting performances of a large gamut of models of the auditory pathway (higher correlation

scores were observed in 18 cases over 20), going from simple linear models to state-of-the-art

convolutional neural networks (see Table 3 and Figs 2 and 3). The overall increase of normal-

ized correlation scores was above 0.117 across all datasets tested (see the ‘Results’ section).

Using a coherence analysis, we also showed that our approach improves neural fitting within a

large frequency band and notably at low response frequencies, possibly associated with tran-

sient peaks of activity and action potential generation. Finally, we showed here that AdapTrans

can be further improved with simple additions such as the incorporation of an unadapted ver-

sion of the spectrogram, and can also enhance the capabilities of computational models of neu-

ral populations (as in [30]). This approach significantly speedups training (training time

becomes almost independent of the number of neurons!) and boosts performances (see

Table 5) and should therefore be used in future work. Importantly, except for early stopping

and batch normalization, we did not use any other form of regularization, nor parameteriza-

tion. In preliminary tests, we explored whether weight decay (a L2 penalty readily implementa-

ble in our PyTorch setup) upon spectro-temporal weights could improve performances but

this manipulation had little impact on the results (see S2 Table). This observation is in line

with the results reported in [30], obtained without such optimization constraints.

One of the interests of our framework is that the optimal distribution of the model parame-

ters (τ and w) can be directly derived from experimental data through the neural fitting process

(see the ‘AdapTrans parameters follow biologically-plausible distributions after learning’ sec-

tion). For all the tested models, we encouraged time-constants (parameter τ) to decrease as fre-

quency increase (see Fig 7) through an initialization in line with previous biological findings

[36]. Interestingly, in addition to remaining close to that initial distribution, we found that

optimal time constants were significantly higher for OFF than for ON responses in 3/4 of the

tested datasets. This result is in agreement with previous measurements in the ferret [63] and

cat [13] auditory cortices and might reflect an efficient encoding of statistics in natural sounds

Table 5. Model performances (CC) obtained through fitting whole population activity, rather than single unit activity. Bold fonts indicate the training mode (single /

population) for each of the control and AdapTrans versions.

Model Dataset

NS1 NAT4

PEG A1

Backbone Prefiltering Mode CCraw CCnorm CCraw CCnorm CCraw CCnorm

2D-CNN None Single 47.2 65.1 35.2 48.5 41.7 56.8

Population 47.9 66.2 36.0 50.5 43.4 60.1

AdapTrans Single 48.3 66.7 37.9 52.9 44.3 60.9

Population 50.0 69.2 39.2 55.2 46.4 64.5

https://doi.org/10.1371/journal.pcbi.1012288.t005
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where offsets are usually slower and less salient than onsets [18, 64]. In addition, our approach

also predicts that the optimal w ranges between 0.5 and 1, which confirms that auditory

responses are better captured when both the transient and sustained parts of auditory inputs

are taken into consideration, in line with biological findings (see e.g., [9]). Finally, we also

found that this optimal w remains stable across frequencies. Thus, we predict that the relative

contribution of transient versus sustained responses is frequency independent. To our knowl-

edge, this hypothesis has never been tested in animal models. We hope that future experimen-

tal works will explore this lead.

Previous studies proposed models that shared properties with our framework [27, 33,

34]. [33] modeled adaptation to mean sound level in the auditory midbrain using a high-

pass filter with frequency-dependent time constants. However, they did not segregate

between the ON and OFF pathways and their model can thus only capture whether the

sound intensity has changed in a given frequency band but not whether this modification

reflects an increase or a decrease. In addition, their model only considers transients and

completely discards the sustained properties of the auditory inputs. As we saw it, our frame-

work is more general as it segregates ON and OFF responses and considers both sustained

and transient properties whose relative contributions are controlled with the w parameter

(see Eq 1 in the ‘“AdapTrans” model of auditory ON-OFF responses and adaptation’ sec-

tion). Note that fixing this parameter to one and discarding the OFF channel actually brings

our model back to the IC adaptation model proposed by [33]. It is thus not surprising that

the correlation scores obtained with AdapTrans are (almost) systematically better than

those observed with IC adaptation (the only exception being for the 2D-CNN model on

NS1, see Table 3).

[27] proposed a model based on divisive normalization that takes into account ON and

OFF responses, although these two channels are ultimately merged together. Their method

uses the 1D sound envelope and thus does not process each frequency band separately. Adap-

Trans is based on subtractive normalization and is more general as it is applied on the 2D

sound spectrogram of the auditory inputs and relies on parameters that are frequency depen-

dent. By learning from experimental data, our approach permits to optimize the relative con-

tributions of the ON and OFF channels for each frequency band, whereas this relative

contribution is fixed and global in [27]. Also, our method is more biologically plausible as it

keeps separated the ON and OFF channels along the entire hierarchy of the auditory cortex.

The model proposed by [34] also incorporated adaptation mechanisms in different fre-

quency bands which better accounts for transient and sustained stimulus features than global

adaptation. According to [66], such nonlinear forms of adaptation are paramount for better

encoding models. However, neither of these approaches included polarity tuning in the form

of ON and OFF responses.

There are other biological properties that our approach cannot properly capture in its cur-

rent form. For example, some asymmetries (i.e., in amplitude, latency, spectral tuning) com-

monly observed between ON and OFF STRFs do not seem to emerge implicitly from training

on a machine learning task such as response fitting. This issue could however be easily resolved

by explicitly parameterizing ON and OFF weights subsequent to AdapTrans altogether.

Another example is given by the non-instantaneous buildup times of ON/OFF responses

which are currently not well predicted by our model. This could also be easily sorted out by

replacing the initial Kronecker delta function (see Fig 1A) by a growing exponential, at the

cost of one extra parameter (i.e., the time constant of this added exponential part). These leads

will be explored in future works from our team.

Altogether, we present here a unifying framework that encompasses previous approaches

([27, 33]) and permits to improve our understanding of computations performed in the
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mammal auditory pathway. AdapTrans can serve as a transparent primitive and a key layer of

computation [29] to account for the broad range of neural response patterns observed in the

mammal auditory cortex such as ON, OFF, ON-sustained-OFF, inhibition-OFF, among others

[9, 17, 27, 32]. Such a wide algorithmic-level model (in opposition to Marr’s implementation

level, see [67]) has been lacking so far in the field. We hope it will inspire new modelling works

at the mechanistic level in order to clarify what might be the biophysical implementations of

the computations described here (in the terminology of [68] and [69]). Beyond audition, we

think our approach could also account for processing in other sensory modalities and notably

in the visual system where the segregation between ON and OFF luminance information has

been documented at multiple stages of processing, starting from the retina [2, 3]. Applying

AdapTrans in a pixel-wise manner to temporal image sequences could thus improve the bio-

plausibility of existing models of the early visual pathway. In terms of applicative researches in

artificial intelligence, the integration of our framework within state-of-the-art deep learning

models could improve performances in numerous sensory-based tasks, such as sound classifi-

cation or object detection. In this sense and in order to facilitate the reproduction of our results

and the use of our approach in future studies, we provide all the data, models, processing and

pre-processing codes used in the present work at the following github repository. We also pro-

vide user-friendly Pytorch Dataset classes for each source of data.

Supporting information

S1 Note. Mathematical derivation of AdapTrans properties. We show here how to mathe-

matically derive analytical formulas for the transfer functions, magnitude-frequency curves,

poles and zeroes, as well as a recursive formulation of our AdapTrans filters.

(PDF)

S1 Code. Pseudocode demonstration. We demonstrate here the simplicity of our code, hosted

at the url https://github.com/urancon/deepSTRF, by showing its basic Pytorch flow. As the

code is continuously updated and has been simplified for pedagogical purposes, minor differ-

ences can exist between the following snippet and the online version.

(PY)

S1 Fig. AdapTrans offset response latencies as a function of ramp duration. The simulated

experimental setup described in Fig 4A allows to extract the AdapTrans offset response latency

as a function of the ramp duration. S1 Fig below shows this relationship for different pairs of w
parameter and OFF time constant (tau). Our model predicts that latency increases as fall

ramps become less abrupt. To our knowledge, this has never been tested by electrophysiolo-

gists. We hope that future experimental studies will address this question.

(PDF)

S2 Fig. Scatter and coherence plots for the other models. We present below the scatter and

coherence plots for the L, NRF and DNet models on all datasets.

(PDF)

S1 Table. Risks of using a fixed test set for cross-validation. In [50], a fixed data subset was

held-out during model development, and “opened” back only for testing models, while various

splits of the remaining data were used for training and validation. This strategy might be risky

if the selected dataset is significantly easier or harder than the training and validation sets, and

results in over or under-estimated performances. The table presents Test performances of

models depending on the cross-validation methodology. Models and the rest of the training

pipeline were identical for both conditions. Performance metrics are the correlation coefficient
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and normalized correlation coefficient, in %.

(PNG)

S2 Table. Influence of weight decay on model performance. The auditory response fitting lit-

erature has a long tradition of explicit model regularization in the form of L1 or L2 penalty on

STRF weights. However, initial models were fitted via zero-order algorithms such as boosting,

and not gradient descent (as in this study), an ubiquitous optimization algorithm which may

display some intriguing implicit regularization [51]. Following innovations from the machine

learning community, we have incorporated batch normalization in our models, and followed a

rigorous fitting procedure with separate training and validation sets and an early stopping cri-

terion. During our initial model development phase, we investigated whether the weight decay

readily available in PyTorch could lead to better performances. We report here results of con-

trol models on the NS1 dataset. The table presents test performances as a function of the

weight decay parameter used with AdamW optimizer in our setup. Models and the rest of the

training pipeline was identical for both conditions. Performance metrics are the correlation

coefficient and normalized correlation coefficient, in %.

(PNG)
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