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There is currently considerable interest in the guided jet mode, as a result of recent works
demonstrating it being the upstream component closing the loop of various resonant
systems. For given supersonic jet operating conditions the mode is known to exist over
only a finite-frequency range that, for a twin-jet system, has been observed to vary
with both jet separation and solution symmetry. Vortex-sheet and finite-thickness linear
stability models are employed to consider the behaviour of the guided jet mode as the two
jets are brought together for both a planar and round twin-jet system. It is demonstrated
that in both cases as the twin-jet system merges it forms a higher-order mode of an
equivalent single-jet geometry. This then imposes a constraint on the guided jet mode as
the existence region must change to meet the existence region of the equivalent geometry
the system merges to, leading to the previously observed dependence on jet separation.

Key words: Authors should not enter keywords on the manuscript

1. Introduction

Modelling of coherent structures in jet flow has been of interest since pioneering works
by Mollo-Christensen (1967) and Crow & Champagne (1971) demonstrated their presence
in the previously considered stochastic flow. Among the structures considered is the
upstream-propagating guided jet mode (k−p ), a mode first studied by Tam & Hu (1989).
It is characterised as having a phase speed very close to the speed of sound, maintaining
radial structure outside of the jet core (as such not confined within it) and travelling
upstream towards the nozzle (Tam & Hu 1989). For a supersonic jet, at any given set
of jet-operating conditions this mode will be propogative only within a finite band of
frequencies - referred to as the existence region of the mode. The lower bound of this
frequency band, where the mode moves away from the sonic line describing the free-
stream sound waves, is referred to as the branch point (cut-on) and the upper bound
as the saddle point (cut-off). This saddle point is formed between the k−p mode and a
downstream-propagating duct-like mode (k+) (Towne et al. 2017). For frequencies above
the saddle point the k−p mode becomes evanescent, whereas it is convectively neutral
between the branch and saddle points.

† Email address for correspondence: michael.stavropoulos@monash.edu



2 M. N. Stavropoulos et al.

Recent interest in the k−p mode has been motivated through the study of aeroacoustic
resonance. The feedback loop characterising a given form of resonance consists of four
components (Edgington-Mitchell 2019). The first is a downstream-propagating distur-
bance, often taken to be the Kelvin-Helmholtz (KH) mode, to some point downstream of
the nozzle. Second is an interaction converting it to an upstream-propagating disturbance,
being the third component of resonance. This disturbance then travels back to the
nozzle where, via another interaction, it then excites a new downstream-propagating
disturbance, the last component, and so closes the resonance loop. The form of the
upstream-propagating component was historically considered to be a free-stream acoustic
wave (Powell 1953), however recent work has suggested that it is instead the k−p mode
which acts as the upstream component to close the resonance loop. A range of cases
that have considered the k−p mode to close resonance include; an impinging jet (Tam
& Ahuja 1990), jet-edge interaction (Jordan et al. 2018), and screech for both single
(Shen & Tam 2002; Gojon et al. 2018; Edgington-Mitchell et al. 2018; Mancinelli et al.
2021) and twin (Nogueira & Edgington-Mitchell 2021; Stavropoulos et al. 2022) round
jets. For the case of screech, high-amplitude discrete-frequency acoustic tones present in
non-ideally expanded jets (Raman 1999; Edgington-Mitchell 2019), the finite existence
region of the k−p mode then also serves as part of an explanation for the cut-on and
cut-off of the screech tones (Mancinelli et al. 2019; Stavropoulos et al. 2023). Recent
work by Edgington-Mitchell et al. (2021), following the hypothesis put forth by Tam &
Tanna (1982), has demonstrated how interactions between the KH mode and the shock-
cell structure can result in the creation of new waves, including the k−p mode. Later in
Nogueira et al. (2022) it was shown that the KH interacts with both the primary and sub-
optimal shock-cell wavenumbers to give rise to the k−p mode for different screech tones.
As the shock-cell structure exhibits variations in the axial direction (Harper-Bourne &
Fisher 1974), sub-optimal wavenumbers appear when taking an axial Fourier transform
and thus represent these variations. This was then generalised by Edgington-Mitchell
et al. (2022) to explain the observed screech mode staging (Merle 1957; Powell et al.
1992) in a round single jet.
The introduction of a second jet introduces additional complexities to the flow, as

indicated through measurements of inter-jet pressure exceeding twice that of the single-
jet value (Seiner et al. 1988), along with the complex, and often intermittent, coupling
behaviour observed (Raman et al. 2012; Bell et al. 2021; Wong et al. 2023). Two new
parameters introduced by the addition of a second jet are the jet separation distance
and the symmetry of the system about each plane. Prior applications of linear stability
theory to the round twin-jet system have shown how these parameters affect the growth
rate of the KH mode (Morris 1990) and the allowable coupling forms (Rodŕıguez et al.
2022). For the k−p mode (upstream component in resonance) these parameters also play
a role as they have been seen to affect its existence region (Du 1993; Stavropoulos et al.
2023). However, there is not currently an explanation as to why this behaviour occurs
for the k−p mode.
In this work linear stability models will be applied to the supersonic twin-jet case, for

both planar and round geometries, to examine the behaviour of the k−p mode as a function
of the added twin-jet parameters jet separation and symmetry. Through considering
changes in frequency of the k−p mode branch and saddle points, and thus the existence
region of the mode, along with their radial structure, an explanation for why these
characteristics are dependent on jet separation and symmetry will be sought.
The paper is organised as follows. The formulations for the numerical models, vortex-

sheet and finite-thickness, utilised are outlined in §2. Results are shown in §3, with
concluding remarks made in §4.
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(a) (b)

Figure 1: Setup of both the planar (a), and round (b) twin-jet geometries.

2. Mathematical models

2.1. Planar twin-jet vortex-sheet model

The planar twin-jet vortex-sheet model considered herein builds upon the planar single-
jet model detailed in Martini et al. (2019). The planar jet is formed using two vortex
sheets, each representing an infinitesimal-width shear layer across which both pressure
and displacement are constant (Lessen et al. 1965; Michalke 1970; Morris 2010). To
extend this to a planar twin-jet configuration, the symmetry line previously imposed at
y = 0 for the single-jet case, is moved to a position of y = −H, the midpoint of the twin-
jet system, and no assumptions are made about the symmetry of the flow within each
individual jet. This resultant configuration is illustrated in figure 1a. The two jets are
separated by a total distance 2H and the length-scale used for non-dimensionalisation is
the jet half-width h. Perturbations about the system of the form

P̃ = P (y)ei(kx−ωt), (2.1)

are considered where k is the wavenumber and ω frequency. Following Martini et al.
(2019) the form of the perturbed pressure amplitude P (y), referred to as the pressure
eigenfunction, which in a given region takes the form

P (y) = Cae
λi,oy + Cbe

−λi,oy. (2.2)

The constants Ca and Cb in 2.2 are referred to as eigenfunction coefficients, and λi,o is

λi =

√
k2 − 1

T
(ω −Mk)2,

λ0 =
√
k2 − ω2, (2.3)

where M is the acoustic Mach number, and T the temperature ratio between jet and free-
stream. Boundary conditions imposed on the twin-jet system are, continuity of pressure
and displacement across each vortex sheet, bounding of the solution as y → ∞, and
imposing the symmetry condition at the midpoint of the two jets (y = −H). This
symmetry condition is the solution having either zero gradient (symmetric) or is zero-
valued (anti-symmetric). This results in the matrix equation

A(k)c = 0, (2.4)

where c contains the eigenfunction coefficients. Further details on the matrix terms can
be found in Appendix B. Setting the determinant of A equal to zero forms the dispersion
relation for the planar twin jet and is used to obtain k, the system eigenvalue, for a given
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set of jet parameters. Once a given k has been found, 2.4 can then be used to obtain the
corresponding eigenfunction coefficients c.

For considerations of the single planar jet the dispersion relation given in Martini et al.
(2019) is used,

tanh(λi)
±1 +

1

T
(1− kM

ω
)2(

λo

λi
) = 0, (2.5)

with the pressure eigenfunctions given by,

P (y) =


eλi ± e−λi

e−λo
e−λoy, y ⩾ h

eλiy ± e−λiy, −h ⩽ y ⩾ h

e−λi ± eλi

e−λo
eλoy, y ⩽ −h

(2.6)

where the ± terms in 2.5 and 2.6 indicate the symmetric or anti-symmetric solution,
about the jet centre, respectively. A further generalisation of the planar vortex-sheet
model for a system of N jets is provided in Appendix D.

2.2. Finite-thickness model

The finite-thickness model follows the formulation used previously for round twin-jet
systems (Nogueira & Edgington-Mitchell 2021; Stavropoulos et al. 2023). The two jets,
each of diameter D, are separated by a centre-to-centre distance S as illustrated in figure
1(b). Solutions for the twin-jet system are denoted as either, SS, SA, AS, or AA, where
each letter denotes symmetry (S) or anti-symmetry(A) about the x− y and x− z planes
respectively (Rodŕıguez et al. 2018). All parameters are non-dimensionalised by D, free-
stream sound speed, and density. The generalised eigenvalue problem can be expressed,
here in terms of pressure, in the form

LP̂ = kRP̂ , (2.7)

with P̂ = Peiµθ and operators L and R functions of the mean flow, its derivatives, and
flow variables ω, Mj , S, and the ratio of specific heats γ. Here µ is the Floquet exponent
resulting from the Floquet ansatz which is associated with the different symmetries of the
flow (Nogueira & Edgington-Mitchell 2021), µ = 0 describes a solution that is symmetric
about the x−z plane and µ = 1 is anti-symmetric about it. Equation 2.7 utilises a Fourier
discretisation in azimuth and Chebyshev polynomials in radius (Trefethen 2000), with
boundary conditions imposed following previous works (Nogueira & Edgington-Mitchell
2021), with the matrix operators detailled in Stavropoulos et al. (2023). A numerical
mapping (Bayliss & Turkel 1992) is applied to ensure appropriate resolution in the shear
layer of the jets. The sparsity of the system is exploited to further reduce computational
cost. The mean flow uses a hyperbolic-tangent velocity profile (Michalke 1971) of the
form

U(r) = M

[
0.5 + 0.5 tanh

((
Rj

r
− r

Rj

)
1

2δ

)]
, (2.8)

with Rj the ideally expanded jet radius and δ used to characterise the shear-layer
thickness. In each case, the mean temperature is obtained from 2.8 through the Crocco-
Busemann relation. A twin-jet mean flow is constructed through the addition of two
single-jet mean flows, following Rodŕıguez (2021). When considering instead an elliptical
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Figure 2: Sample elliptical jet mean flow, U , used for the finite-thickness model.
Computed for Mj = 1.16, AR = 2, and δ = 0.2.

geometry 2.8 is used with Rj = Rb, the boundary curve describing the ellipse

Rb =
ab√

b2cos2(θ) + a2sin2(θ)
. (2.9)

Here b is the ellipse semi-minor axis, and a the semi-major axis as well as the length-scale
used for normalisation. An example of a single elliptical jet mean flow using 2.9 and 2.8
is provided in figure 2, for an ideally expanded jet Mach number (Mj) of 1.16, δ = 0.2
and aspect ratio (AR) of 2.

3. Results

3.1. Planar twin jet

To aid in understanding the behaviour of a round twin-jet system a planar twin-jet
system, as described in §2.1, is considered first. For two jets being brought together
to the point of merging, the simplified geometry of the planar case allows for a more
intuitive understanding of the result. As the planar jets merge they are expected to form
a singular planar jet, with width twice that of the individual planar jets. The effect on the
structure of the pressure eigenfunction as the two jets merge (H → 1) is shown in figures
3 and 4 for both the symmetric and anti-symmetric solutions respectively. In each case
the wavenumber of the k−p (0, 2) mode is found through 2.4. Both the symmetric and
anti-symmetric solutions exhibit coupled behaviour in the inter-jet region even at higher
(H = 20) jet separations. The primary difference observed between the symmetric (figure
3) and anti-symmetric (figure 4) eigenfunctions is the enforced symmetry condition at
the midpoint of the system, which is consistent with results seen for a round twin-jet
system Stavropoulos et al. (2023). It is observed in both cases that as H decreases the
eigenfunctions appear to approach a higher-order mode shape, signified by additional
anti-nodes in the pressure eigenfunction when H = 1 (figure 3(f) and figure 4(f)). As
such, the system reduces to that of a single planar jet with half-width 2h, referred to
henceforth as the double-width jet. This higher-order mode the system reduces to for
H = 1 is different depending on whether the symmetric or anti-symmetric solution is
considered. In the symmetric case (figure 3) the amplitude at the midpoint between the
jets increases with H before forming an anti-node. Conversely, the symmetry condition
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[t]
(a) H = 20 (b) H = 5 (c) H = 2

(d) H = 1.5 (e) H = 1.2 (f) H = 1

Figure 3: Variation in structure of the symmetric planar twin jet pressure eigenfunctions
of the k−p (0, 2) as the two jets merge (H → 1). Computed for, Mj = 1.16, St = 0.25
and T computed through an isentropic relation. Eigenfunctions are normalised with the
absolute value plotted.

for the anti-symmetric case forces a node to form at the centre (figure 4). This results in
the anti-symmetric case converging to a mode of even higher order than the symmetric
case.
A more direct comparison between the twin-jet system at H = 1 and double-width jet

can be seen in figure 5 for both the symmetric and anti-symmetric eigenfunctions. The
solution for the double-width jet is found using the dispersion relation for a single planar
jet, 2.5, but solved at a St twice that of the twin-jet case, due to the present formulation
normalising by jet half-width which then becomes 2h. For both the symmetric and anti-
symmetric case in figure 5 the twin-jet solution matches exactly with the double-width
jet confirming that the converged mode for H = 1 is a single-jet mode. A consideration
of the eigenfunction behaviour of a planar twin-jet system as H → 1 has identified
key behaviours. When the planar twin-jet system merges it becomes equivalent to a
single planar jet of twice the width. At this the point of merging (H = 1) the pressure
eigenfunction converges to a higher-order mode. For the symmetric case, as the two jets
merge, a mode that previously had 3 peaks on each isolated jet forms a mode with 5
peaks in the merged jet (H = 1). An equivalent mode for the anti-symmetric case forms
a mode with 6 peaks, indicating the formation of a higher-order mode for this symmetry.
This convergence to the double-width jet solution of the twin jet as H → 1 can also

be observed when considering the branch and saddle point frequencies of the k−p (0,2)
mode. It has been observed previously that the existence region formed by these bounds is
strongly dependent on jet separation for a round twin-jet system (Du 1993; Stavropoulos
et al. 2023) and this is also seen to be the case for a planar twin-jet system. Figure 6
shows the change in value of the branch and saddle points for both the symmetric and
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[t]
(a) H = 20 (b) H = 5 (c) H = 2

(d) H = 1.5 (e) H = 1.2 (f) H = 1

Figure 4: Variation in structure of the anti-symmetric planar twin jet pressure
eigenfunctions of the k−p (0, 2) mode as the two jets merge (H → 1). Shown for,
Mj = 1.16, T computed through an isentropic relation, and St = 0.27, (a) and (b),
0.29, (c), and 0.3, (d)-(f). Eigenfunctions are normalised with the absolute value plotted.

(a) Symmetric (b) Anti− symmetric

Figure 5: Eigenfunctions of the merged planar twin-jet system (H = 1) compared with
those of the double-width single jet for both the symmetric solution, (a), and anti-
symmetric solution (b). Shown for Mj = 1.16, and T computed through an isentropic
relation. St values are 0.25 and 0.5 for (a), and 0.3 and 0.6 for (b), normalising using the
twin and double-width jet length scales respectively.
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(a) Symmetric branch points (b) Symmetric saddle points

(c) Anti-symmetric branch points (d) Anti-symmetric saddle points

Figure 6: Branch and saddle points for the symmetric and anti-symmetric planar twin jet
as a function of jet spacing H at Mj = 1.16 and T from an isentropic relation. Present
also in each figure is the corresponding value of the symmetric single planar jet. St values
converged to at H = 1 correspond to half those of the double-width jet.

anti-symmetric case. For both symmetries the branch and saddle point values are seen to
begin (large H) from the value of the symmetric planar single jet. This is not unexpected
when considering figure 3 and figure 4, where it can be observed that for largeH the twin-
jet eigenfunctions resemble two symmetric planar jets, with this also seen mathematically
in Appendix B. As H → 1 figure 6 shows the twin-jet branch and saddle points approach
new values. The exception to this being figure 6(a), the symmetric solution saddle point,
which remains virtually unchanged for all H. These new values the branch and saddle
points converge to are all related to the double-width jet, being exactly half the values
of the double-width jet branch and saddle points. Recalling that an equivalent double-
width jet has St twice that of a planar twin jet, then figure 6 is indicating that when the
twin-jet system merges (H = 1) the branch and saddle points change to match those of
the higher-order mode the system has now converged to.
The entire existence region of the k−p (0,2) mode is compared in figure 7 between the

twin-jet system and the double-width jet, with the twin-jet values scaled to match the
double-width jet normalisation. These are plotted for Mj = 1.16, H = 1 and an isentropic
temperature ratio. Both twin and double-width jet are seen to exhibit exact agreement in
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(a) Symmetric (b) Anti-symmetric

Figure 7: Comparison between the k−p (0,2) existence region between the planar twin jet
(H = 1) and double-width jet for symmetric, (a), and anti-symmetric, (b). Computed
for Mj 1.16 and T from an isentropic relation. The twin-jet eigenvalues have been scaled
by a factor of two to adjust them to the double-width jet normalisation.

(a) Symmetric (b) Anti-symmetric

Figure 8: Comparison of (kh, St) eigenvalue pairs between the planar twin jet (H = 1)
and double-width jet for symmetric, (a), and anti-symmetric, (b). Computed for Mj 1.16
and T from an isentropic relation. The twin-jet eigenvalues have been scaled by a factor
of two to adjust them to the double-width jet normalisation.

the symmetric, figure 7(a), and anti-symmetric, figure 7(b), cases. This agreement is to
be expected as the twin-jet system is forced to match the double-width jet as H → 1, a
criterion imposed by the pressure eigenfunction behaviour. This constraint then forces the
branch and saddle points (and consequently, the existence region) of the k−p (0, 2) mode
to align with the higher-order mode of the double-width jet the system has converged to.
A change in branch or saddle point will only not occur if the value already corresponds
to that of the double-width jet, as seen for the symmetric branch point in figure 6(a). A
larger range in St is considered in figure 8, for the same jet parameters as in figure 7. This
demonstrates that the results observed thus far for the k−p (0, 2) mode in a planar jet,
hold for other modes also. These modes also converge to the double-width jet solution as
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(a) SA round (b) Anti− symmetric planar

(c) SS round (d) Symmetric planar

Figure 9: Dependence of the k−p (0, 2) branch point with jet separation for both the SA
(a) and SS (c) round twin jet, and the anti-symmetric (b) and symmetric (d) planar twin
jet. Computed for Mj = 1.16 and δ = 0.2 (round twin jet). Overlaid on (a) and (b) is an
exponential trendline, with a constant trendline on (c) and (d).

H → 1, and will experience changes in their branch and saddle point values with H to
align with the double-width jet solution. This explanation for the k−p (0, 2) mode branch
and saddle point behaviour in a planar twin-jet system now motivates the investigation
of the round twin-jet system.

3.2. Round twin jet

For the round twin-jet system it has been seen previously that the SA symmetry
k−p (0, 2) mode, exhibits a strong dependence on jet separation (Stavropoulos et al.
2023). The behaviour of both the SS and SA symmetry round twin-jet branch points
are compared to those of the symmetric and anti-symmetric planar twin-jet system in
figure 2.7. Results for the round twin-jet system are obtained using 2.7 and 2.8 with
δ = 0.2. In the SA (figure 9(a)) and anti-symmetric (figure 9(b)) systems the branch
points both exhibit a strong exponential trend as the jets are brought together. A similar
agreement in trends can be seen between the SS (figure 9(c)) and symmetric (figure 9(d))
branch points. Here the branch points exhibit a constant trend with jet separation and
only at very low jet separations is there a change (being at lower jet separation than
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previous considerations of the SS k−p (0, 2) mode Du (1993); Stavropoulos et al. (2023))
which is greater for the SS round twin jet than the symmetric planar twin jet. The
similarity in trends of figure 9 suggests that the round twin-jet system is also converging
to an equivalent geometry when S = 1 driving this change in branch point frequency.
The behaviour of the round twin-jet pressure eigenfunctions can then also be considered,
as S → 1. These are presented in figure 10 for the SA symmetry at Mj = 1.16 and
δ = 0.2. As the two round jets are brought together the SA symmetry condition enforced
at the system midpoint becomes an additional node as part of a higher-order mode. This
is the same behaviour as was observed previously for the anti-symmetric planar twin-jet
system (figure 4). The eigenfunction behaviour of the SS symmetry can also be considered
and is illustrated in figure 11. Here the SS symmetry condition enforced at the system
midpoint becomes an anti-node and the twin-jet system reduces to a higher-order mode,
again in-line with observations of the planar twin jet (figure 5). Comparing the SS and
SA eigenfunctions at S = 1 (figures 10(d) and 11(d)) the same difference as previously
identified for the planar twin-jet system (§3.1) is observed, the SA solution converges to
an even higher-order mode than the SS solution. Figures 10 and 11 further indicate that
the round twin-system is converging to some equivalent geometry.

The geometry of a round twin-jet system does not lend itself to an obvious equivalent
geometry when the two jets merge, unlike the planar twin-jet system discussed previously
(§3.1). Instead a comparison will be made with ellipses of differing AR. The two ARs
considered are 1.5 and 2, with each shown superimposed over the S = 1 round twin-jet
system in figure 12. The AR 1.5 case (figure 12(a)) provides a match with the outer
edges of the two jets, whilst the AR 2 case (figure 12(b)) is an ellipse of equal area to
the twin-jet system. The S = 1 SA round twin-jet existence region is compared to (k,St)
pairs computed for the elliptical jet, using 2.9 to define the mean flow boundary, in figure
13. Here Mj = 1.16 and δ = 0.2, with µ = 0, 1 for the ellipse and S = 1 for the twin
jet. In figure 13 both the St and k values for the round twin-jet system are scaled by

a factor of
√

AR
2 to use the same normalisation as the ellipse. It can be seen that of

the ARs considered, the merged round twin-jet system more closely resembles the AR
2 ellipse (figure 13 (b) and (d)). This is evident from the close agreement observed at
the region near the branch point, and the similar behaviour of the twin jet and elliptical
jet mode branches. Conversely in the AR 1.5 case (figure 13(a) and (c)) the existence
regions for the elliptical and round twin jet do not show alignment. Note that this is not
implying that a round twin-jet system converges to a perfect ellipse, but that an AR 2
ellipse could be considered a close approximation to the resultant converged geometry.
Considering now just the AR 2 case, comparisons between the pressure eigenfunctions
for the ellipse and round twin jet can be made to further consider the similarities. These
are given in figure 14 at the branch point, for the radial profile along the y axis (figures
14(a) and (b)), and the pressure contours (figure 14(b)-(d)). In figure 14(a) the shape of
the eigenfunctions agree well between the elliptical and twin-jet solutions. The difference
between the µ = 1 ellipse and SA round twin jet is in the eigenfunction amplitudes, with
the first and third nodes having greater magnitude for the ellipse than the round twin
jet. When considering instead the µ = 0 ellipse and SS round twin jet (figure 14(b)) a
greater degree of difference is observed between the two eigenfunctions. For y/D > 1 the
elliptical eigenfunction decays at a slower rate than the twin-jet eigenfunction, and at
y/D = 0 there is disagreement seen between the two. Comparing the pressure contours
for the µ = 1 ellipse and SA round twin jet (figures 14(c) and (d)) indicates a similar
location for the maximum pressure with differences in the contours occurring outside of
this region. This is similarly observed when comparing the µ = 0 ellipse and SS round
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(a) S = 5 (b) S = 2

(c) S = 1.5 (d) S = 1

Figure 10: Variation in structure of the SA round twin jet pressure eigenfunctions of
the k−p (0, 2) mode as the two jets merge (S → 1). Computed for, Mj = 1.16 and
δ = 0.2. Values of St are 0.595 (a), 0.64 (b), 0.665 (c), and 0.695 (d). Eigenfunctions are
normalised with the absolute value plotted.

twin jet (figures 14(e) and (f)). In both cases greater differences between the elliptical
and twin-jet contours are seen near to the z axis (larger values of θ as described by
figure 1(b)). This result is consistent with comparisons of mean flow velocity profiles
between the ellipse and S = 1 round twin jet (see Appendix C), where it observed that
differences between the velocity profiles occur for large values of θ. Trends in the pressure
eigenfunction radial profiles, from branch point to saddle point are compared in figure 15.
For the SA round twin jet (figure 15(a)) and µ = 1 ellipse (figure 15(b)) both are seen
to display similar behaviour in the pressure eigenfunction as St increases towards the
saddle point value. Differences between the two geometries are observed in the pressure
eigenfunction amplitudes and the profile at the saddle point. When considering the SS
round twin jet (figure 15(c)) and µ = 0 ellipse (figure 15(d)) similar agreement between
the geometries is observed, however at y/D = 0 the SS twin jet increases in amplitude
as St increases to a larger extent than the µ = 0 ellipse does. Combined figures 14 and
15, like figure 13, indicate that the equivalent geometry a round twin-jet system merges
to is close in shape to an AR 2 ellipse.
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(a) S = 5 (b) S = 2

(c) S = 1.5 (d) S = 1

Figure 11: Variation in structure of the SS round twin jet pressure eigenfunctions of the
k−p (0, 2) mode as the two jets merge (S → 1). Computed for, Mj = 1.16 and δ = 0.2.
Values of St are 0.555 (a), 0.565 (b), 0.57 (c), and 0.58 (d). Eigenfunctions are normalised
with the absolute value plotted.

4. Conclusion

This work sought to explain the strong observed dependence of the k−p (0, 2) with
jet separation in a twin-jet system. A planar twin-jet model was first considered due to
the simplified geometry it provided. The model demonstrated that as the two jets are
brought together a higher-order mode is formed, for a single-jet system of twice the jet
width. This then imposes a constraint on the branch and saddle point frequencies of
the k−p (0, 2) to match those of the higher-order mode branch. To meet this constraint
the values must then change with jet separation, leading to the previous observations
of jet separation dependence. The symmetry condition of the system, symmetric or
anti-symmetric, influences the shape of the higher-order mode that is formed. An anti-
symmetric system leads to a greater order mode than a symmetric system, and so results
in a greater change in branch and saddle point values. The same behaviour was observed
also for the round twin-jet system which converges to an equivalent geometry similar
to an AR 2 ellipse. A higher-order mode similar to that of an elliptical jet was formed
as the jets were brought together, with the existence region of the k−p (0, 2) mode then
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(a) AR = 1.5 (b) AR = 2

Figure 12: Geometric comparison between the S = 1 round twin-jet system and an
elliptical jet of AR 1.5 (a), and 2 (b).

constrained to match. As this k−p (0, 2) mode behaviour is due to a geometric effect,
in converging to an equivalent single-jet geometry as the individual jets merge, such
behaviour will be observed in any twin-jet system.
This work was supported by the Australian Research Council under the Discovery

Project Scheme: DP190102220. M. N. Stavropoulos is supported through an Australian
Government Research Training Program Scholarship. Computational facilities supporting
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Appendix A. Variation with jet parameters

This work has focused on the behaviour of the k−p (0, 2) mode with S and solution
symmetry. Here consideration is made for how other jet parameters (Mj and T ) affect
the branch point St value for a round twin-jet system. In each case the value considered
will be Str which is defined as the ratio between the round twin-jet St value and the
equivalent round single-jet St value for the same jet conditions. Calculations here use
the round twin-jet vortex-sheet model (Morris 1990; Du 1993; Stavropoulos et al. 2022),
as the lower computational cost facilitates a wider parameter space exploration. The
dispersion relation for the round twin jet is

∞∑
m=0

Am[annδmn ± (−1)mcmn] = 0, (A 1)

with
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and
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(a) SA µ = 1 AR = 1.5 (b) SA µ = 1 AR = 2

(c) SS µ = 0 AR = 1.5 (d) SS µ = 0 AR = 2

Figure 13: Comparison of the existence regions of the SS and SA S = 1 round twin-jet
k−p (0, 2) mode and the µ = 0, 1 elliptical jet mode branch it lies closest to. Computed
for Mj = 1.16, δ = 0.2, and AR = 1.5 (a), (c) and 2 (b), (d). Values of St for the twin-jet
system are scaled to match the normalisation of the elliptical St. Included also is the
sonic line representing the free-stream acoustic waves in red.

Here In and Kn are the modified Bessel functions of first and second kind, δmn is the
Kronecker delta, ϵn = 0.5 for n = 0 and ϵn = 1 otherwise, m the azimuthal mode
number, and the ± terms in A 1 and A3 describe the solution being symmetric (+) or
anti-symmetric (−) about the x− y and x− z planes respectively. All other parameters
are as described previously for the planar vortex-sheet model (§2.1). Using A1, contours
describing the change in Str across Mj are presented for the SA solution symmetry in
figure 16 for different values of the temperature ratio T . Across the values of T considered
the same trend is observed. The SA branch point Sts are of larger value than the single
jet at lower S, and move towards the single-jet value as S increases. As T is increased it
results in the twin-jet values approaching those of the single jet sooner with increasing
S. It is only in figure 16(a) that a dependence on Mj can be seen. However this result
uses an isentropic temperature relation for T , which is dependent on Mj . As such it can
be stated that Mj does not influence the behaviour of the SA symmetry twin-jet branch
points relative to those of the single jet. A final comparison is shown in figure 17 for
all four solution symmetries of a twin-jet system, SS, SA, AS and AA. As the AS and
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(a) Anti− symmetric (b) Symmetric

(c) SA twin jet (d) µ = 1 ellipse

(e) SS twin jet (f) µ = 0 Ellipse

Figure 14: Pressure eigenfunctions of the µ = 0 and 1 ellipses, and the SS and SA S = 1
round twin jet computed at the branch point. Shown for the radial profile (a) and (b),
anti-symmetric contours (c) and (d), and symmetric contours (e) and (f). Computed for
Mj = 1.16, and δ = 0.2. Eigenfunctions are normalised with the absolute value plotted.

AA symmetries cannot support axisymmetric modes, by construction, the behaviour of
the k−p (1, 1) mode will be considered instead. Comparing figure 17(b) with figure 16(a)
highlights that the (1, 1) mode reaches the single-jet value sooner with increasing S than
the (0, 2) mode. Indicating that as the round twin-jet system merges (S → 1) the different
modes of the jet all converge to higher-order modes at different rates. Comparing the
behaviours of the different symmetries it is seen that the SS and AS symmetries (figure
17(a) and (c)) and the SA and AA symmetries (figure 17(b) and (d)) display similar
behaviour. The SS and AS symmetries branch point values decrease from the single-
jet value as S decreases, whilst the SA and AA symmetry branch points increase in
value. The difference between the two groupings of symmetry is their symmetry or anti-
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(a) SA twin jet (b) µ = 1 ellipse

(c) SS twin jet (d) µ = 0 ellipse

Figure 15: Comparison of the pressure eigenfunction behaviour between the S = 1 round
twin jet, (a) and (c), and the AR 2 ellipse, (b) and (d), when moving from the branch
to saddle point. Computed for Mj = 1.16, δ = 0.2, and AR = 2. Eigenfunctions are
normalised with the absolute value plotted along the y axis.

symmetry about the x− z plane. In §3.2 it was observed that the SS and SA symmetries
converge to a geometry similar to an AR 2 ellipse with symmetry or anti-symmetry about
the x − z plane. Hence, figure 17 is indicating that the higher-order mode the k−p (1, 1)
mode converges to exists at a higher St range for the equivalent geometry the SA and
AA symmetries converge to, than for the equivalent geometry of the merged SS and AS
symmetries.

Appendix B. Matrix terms for the planar model

In the planar twin-jet model the flow can be divided into three distinct regions. These
are; the region between the jets (−H < y < h), the region inside the jet (−h < y < h),
and the region away from the other jet (y > h). Using 2.2 the pressure in each of the
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(a) T isentropic relation

(b) T 1 (c) T 1.5

Figure 16: Variation in the ratio of the SA round twin-jet k−p (0, 2) branch point and the
single-jet equivalent, across S and Mj . Computed for T using an isentropic relation (a),
T = 1 (b), and T = 1.5 (c).

regions can be written as

P (y) = C1e
λoy + C2e

−λoy −H < y < −h,

P (y) = C3e
λiy + C4e

−λiy −h < y < h,

P (y) = C5e
λoy + C6e

−λoy y > h. (B 1)

The requirement for the pressure to be bounded dictates that C5 must be zero. Imposing
the symmetry boundary condition at y = −H yields a relation between C1 and C2,
allowing the pressure in the inter-jet region to be re-written as

P (y) = C1

(
eλoy ± e−2Hλ0e−λoy

)
, (B 2)

where it can be noted that for sufficiently large H the single-jet solution is recovered.
Applying this to B 1 yields the eigenvalue problem described by 2.4 where,
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(a) SS (b) SA

(c) AS (d) AA

Figure 17: Variation in the ratio of the round twin-jet k−p (1, 1) branch point and the
single-jet equivalent, across S and Mj . Computed using an isentropic relation for T and
for SS (a), SA (b), AS (c), and AA (d) solution symmetry.

and

c =


C1

C3

C4

C6

 . (B 4)

Appendix C. Comparison of velocity profiles

Additional detail is provided on the differences between the elliptical jet mean flow
and the merged round twin-jet mean flow. Both mean flows are illustrated in figure 18
for the elliptical (a), and round twin jet (b) respectively. These are computed for Mj =
1.16, δ = 0.2, AR = 2 (ellipse), and S = 1 (round twin jet). A qualitative view of figure
18 indicates that the two mean flows are quite different, particularly in their respective
behaviour close to the z axis. A more quantitative comparison is made in figure 19 where
the velocity profiles are compared along multiple angles, θ, measured from the y axis (see
figure 1(b)). For lower θ (figure 19(a)-(d)) there is strong agreement observed between
the two mean flows. It is only at larger θ (figure 19(e) and (f)) that the two mean flows
display noticeable difference. As such, this provides a strong justification for considering
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(a) Ellipse (b) Twin jet

Figure 18: Visual comparison of the mean flows for an AR 2 ellipse, (a), and S = 1 twin
jet, (b). Computed for Mj = 1.16 and δ = 0.2

(a) θ = 0 (b) θ = 18 (c) θ = 36

(d) θ = 54 (e) θ = 72 (f) θ = 90

Figure 19: Comparison of mean flow axial velocity profiles between the AR 2 ellipse and
S = 1 twin jet. Computed for Mj = 1.16, δ = 0.2 at θ of 0, (a), 18, (b), 36, (c), 54, (d),
72, (e), and 90, (f), all measured from the positive y axis.

an AR 2 ellipse as a substitute for the equivalent geometry of a merged round twin-jet
system.

Appendix D. Formulation for an N-jet planar system

In this work a planar twin-jet vortex-sheet model was described extending the pla-
nar single-jet vortex-sheet model previously considered (Martini et al. 2019). Here the
formulation is generalised even further for a system of n planar jets each separated by
a distance 2H, where n ⩾ 1. In a system of n jets each jet is described using 2 vortex
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(a) Even n (b) Odd n

Figure 20: Set-up of the planar n-jet system for both an even, (a), and odd, (b), number
of jets.

sheets, one for each jet boundary, resulting in a total of 2n vortex sheets. As was done
for the twin planar jet (§2.1) the system of n jets will be divided in two with either a
symmetric or anti-symmetric condition applied at the midpoint, leaving only n vortex
sheets to consider. This set-up is illustrated in figure 20. To begin, the formulation for a
symmetric solution is considered (figure 20(a)). The n vortex sheets result in n+ 1 flow
regions. These regions may be inside or outside of a jet and have a general form for the
perturbed pressure amplitudes following 2.2, where a < b. This results in 2n+2 unknown
coefficients, requiring the same number of boundary conditions to solve. Two boundary
conditions are obtained through applying the symmetry condition at y = −H, and
imposing the solution to be bounded as y → ∞. The remaining 2n boundary conditions
arise from applying continuity of pressure and displacement across each of the n vortex
sheets. Each value Auv of A, in 2.4, is defined as the term multiplying the coefficient Cv

as follows,

e−λoHC1 ∓ eλoHC2 = 0, (D 1)

for u = 1,
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C2n+1 = 0, (D 6)
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for u = 2n + 2. The ∓ term in D1 refers to a symmetric or anti-symmetric solution
respectively. Equations D 2 and D4 describe continuity of displacement whilst D 3 and
D5 describe continuity of pressure. In D2 and D3 the equations describe moving from
a region outside of the jets to a region inside a jet, whilst D 4 and D5 describing moving
from within a jet to outside of it. Factors involving u and 2H in each of the exponential
terms describe the location of the vortex sheet, along the y axis, where that boundary
condition is applied. In this way 2.4 can then be built and subsequently solved to compute
wavenumbers, k, for an n-planar jet system. For odd values of n the midpoint of the
system lies through the middle of a jet (figure 20(b)). This changes the locations of both
the symmetry line and vortex sheets forming a new set of equations,

C1 ∓ C2 = 0, (D 7)

for u = 1,
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for u = 2n+ 2.
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Rodŕıguez, Daniel, Jotkar, Mamta R & Gennaro, Elmer M 2018 Wavepacket models for
subsonic twin jets using 3d parabolized stability equations. Comptes Rendus Mécanique
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