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Abstract: Biofouling, the accumulation of marine organisms on submerged surfaces, presents sig-
nificant operational challenges across various marine industries. Traditional detection methods
are labor intensive and costly, necessitating the development of automated systems for efficient
monitoring. The study presented in this paper focuses on detecting biofouling on tidal stream turbine
blades using camera-based monitoring. The process begins with dividing the video into a series
of images, which are then annotated to identify and select the bounding boxes containing objects
to be detected. These annotated images are used to train YOLO version 8 to detect biofouled and
clean blades in the images. The proposed approach is evaluated using metrics that demonstrate the
superiority of this YOLO version compared to previous ones. To address the issue of misdetection,
a data augmentation approach is proposed and tested across different YOLO versions, showing its
effectiveness in improving detection quality and robustness.

Keywords: tidal stream turbine; biofouling; detection; YOLO; data augmentation

1. Introduction

As the demand for renewable energy sources continues to rise, tidal stream turbines
(TSTs) have emerged as a promising technology for harnessing the immense power of ocean
currents. However, one of the significant challenges facing the operational efficiency of
these turbines is biofouling—the accumulation of marine organisms such as algae, barnacles,
and mollusks on submerged surfaces. Biofouling not only increases drag and reduces the
hydrodynamic efficiency of the turbine blades but also accelerates material degradation and
necessitates frequent maintenance, leading to increased operational costs and downtime [1].
Beyond the mechanical and operational challenges, biofouling also poses a significant risk
to the long-term durability of tidal energy infrastructure [2]. The accumulation of marine
organisms can cause corrosion and damage protective coatings, weakening structural
components. Over time, this can lead to more frequent replacements of parts such as
blades and nacelles, reducing the overall lifespan of the turbine. Additionally, biofouling-
induced vibrations can disrupt the dynamic balance of rotating components, amplifying
fatigue stress on mechanical parts. This increases maintenance demands and raises safety
concerns, particularly for large-scale tidal installations deployed in remote or harsh marine
environments [3].

The impact of biofouling on TSTs can be substantial, as illustrated in Figure 1 [4],
which shows the stark contrast between a clean turbine and the one affected by biofouling.
The accumulation of marine organisms on the turbine’s surfaces, as seen in the Sabella TST
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case, highlights the critical need for effective monitoring and maintenance strategies to
mitigate these effects.

Figure 1. Biofouling accumulation on the Sabella tidal stream turbine. Reproduced from [4].

Figure 1 underscores the critical need for effective monitoring and maintenance strate-
gies to mitigate these effects. The early detection of biofouling can enable timely interven-
tions that prevent severe performance degradation, thus optimizing maintenance schedules
and reducing operational costs. Furthermore, the implementation of advanced monitoring
systems, such as real-time imaging and automated detection technologies, can facilitate
proactive maintenance approaches, allowing operators to address biofouling issues before
they escalate. As the deployment of tidal energy systems continues to expand, developing
reliable and efficient biofouling monitoring solutions will be essential for ensuring the
long-term viability and sustainability of this renewable energy technology.

To address this issue, it is crucial to develop effective biofouling detection systems that
can operate in the challenging underwater environment, enabling timely interventions and
maintenance. Traditional methods for biofouling detection often rely on manual inspection
or complex imaging techniques, which can be time-consuming and resource-intensive [5].
Manual inspections may involve divers or remotely operated vehicles (ROVs), both are
limited by human factors such as fatigue, visibility, and safety concerns. Additionally,
complex imaging techniques, such as sonar or high-resolution cameras, can generate
vast amounts of data that require extensive analysis, often leading to delayed responses
in maintenance.

In recent years, machine learning algorithms have shown significant promise in
automating the detection and classification of various underwater phenomena, including
biofouling [6]. Among these, the YOLO (You Only Look Once) algorithm has gained
widespread popularity due to its ability to perform real-time object detection with high
accuracy and efficiency [7–9]. YOLO’s architecture allows it to process images in a single
pass, which is particularly advantageous for monitoring dynamic underwater environments
where conditions can change rapidly. By leveraging YOLO and similar machine learning
techniques, it becomes possible to create robust biofouling detection systems that not
only enhance the accuracy of monitoring efforts but also facilitate proactive maintenance
interventions, ultimately improving the operational efficiency of TSTs.

In this paper, we propose B-FLOWS, a lightweight and optimized adaptation of the
YOLO algorithm, specifically designed for biofouling detection in TSTs. Our approach
aims to combine the robust detection capabilities of YOLO with a streamlined architecture
tailored to the unique requirements of underwater monitoring. B-FLOWS offers a practical
solution for continuous biofouling monitoring in tidal energy systems by reducing the
computational load and improving the real-time processing capability.

This work contributes to the growing body of research focused on enhancing marine
renewable energy technologies’ operational efficiency and sustainability. We evaluated the
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performance of B-FLOWS through extensive testing on datasets collected from a real-world
TST installation, demonstrating its effectiveness in detecting and classifying various forms
of biofouling with high accuracy.

2. Related Works

The application of deep learning to biofouling detection is an emerging area of research.
Previous studies have explored various image processing techniques and machine learning
algorithms, but few have leveraged the capabilities of modern object detection frameworks
like YOLO.

2.1. Advances in Object Detection Networks

Target detection has been one of the most significant advancements in computer vision,
particularly with the rise of deep learning [10,11]. Early methods, such as the Viola–Jones
detector, relied on handcrafted features and traditional machine learning techniques for
object detection [12]. However, the advent of convolutional neural networks (CNNs)
revolutionized the field by enabling automatic feature extraction and end-to-end learning,
leading to substantial improvements in accuracy and efficiency.

The development of target detection networks has seen several milestones. The intro-
duction of the R-CNN (Region-based Convolutional Neural Network) marked a significant
breakthrough by combining region proposal methods with CNNs to improve object detec-
tion accuracy [13]. This was followed by the development of Fast R-CNN, Faster R-CNN,
and Mask R-CNN, which further optimized the speed and accuracy by integrating region
proposal networks directly into the detection pipeline [14].

Another major advancement was the development of single-stage detectors such as
YOLO and SSD (Single-Shot MultiBox Detector) [15]. These algorithms prioritized speed
by eliminating the need for region proposals, enabling real-time object detection. YOLO,
in particular, gained popularity due to its simplicity and efficiency, making it an ideal
choice for applications requiring rapid and accurate detection [16–20].

Recent developments have focused on improving the efficiency and accuracy of these
networks through techniques like feature pyramid networks (FPNs), anchor-free detection,
and transformer-based architectures [21]. Lightweight models such as MobileNet and Tiny
YOLO have also been introduced to facilitate deployment on edge devices with limited
computational resources, which is particularly relevant for real-time biofouling detection
on TSTs.

2.2. Evolution of Biofouling Detection Techniques

Biofouling detection has evolved alongside maintenance policies, starting with cor-
rective maintenance, where the generator was allowed to stop before cleaning could be
considered. The approach then progressed to systematic preventive maintenance, in which
a cleaning schedule was defined to prevent unexpected generator shutdowns. With the
advent of condition-based maintenance and monitoring techniques, it became possible
to schedule inspections to assess the generator’s condition and plan cleaning without
unexpected stops, optimizing its use. Among these monitoring techniques is video monitor-
ing [22]. Unfortunately, the images obtained are generally noisy and require image process-
ing techniques such as thresholding, edge detection and morphological operations [23,24].
However, these methods are often labor-intensive, time-consuming, and prone to inaccura-
cies due to the complex and dynamic nature of marine environments [25]. Maintenance
further evolved toward intelligent maintenance, which aims to replace human interven-
tions with systems based on artificial intelligence. In this context, the task of detecting
biofouling in monitoring images has been assigned to such systems. Artificial intelligence
has advanced toward machine learning, with sophisticated techniques being developed for
biofouling detection [1]. Early approaches used traditional machine learning algorithms,
such as support vector machines and random forests, which were trained on handcrafted
features extracted from images of marine structures. While these methods showed promise,
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they were limited by their reliance on feature engineering and the need for extensive
domain knowledge. The integration of deep learning into biofouling detection has signifi-
cantly improved the accuracy and efficiency of these systems. CNNs have been particularly
effective in automatically learning relevant features from large datasets, reducing the need
for manual feature extraction. This is due to their architecture, which mainly consists of
convolution and pooling layers for extracting features from input images, followed by fully
connected layers to learn from these extracted features. Designing CNNs requires signifi-
cant computational resources, allowing for the fine-tuning of parameters, and the training
data play a crucial role in this process due to the large number of trainable parameters.
To address these challenges, transfer learning has been introduced, allowing researchers to
adapt pre-trained networks (e.g., AlexNet, SqueezeNet, ResNet) for more specific tasks,
often requiring less data and computational effort [22].

While these networks are typically used for image classification, where the entire
image is labeled with a single class, object detection requires a different approach. In object
detection, an image may contain multiple objects, each with its own bounding box and
class label. This means the network not only needs to classify objects but also needs to
localize them within the image. For this reason, object detection networks must optimize
three different aspects: box localization, box confidence, and classification [26].

One of the most popular object detection networks is YOLO (You Only Look Once),
which has evolved significantly since its introduction in 2016. Unlike traditional classifica-
tion networks, YOLO networks are designed to detect multiple objects in an image in real
time, optimizing both speed and accuracy. Over the years, from YOLOv1 to YOLOv8, the ar-
chitecture has improved in terms of object localization, multi-scale detection, and overall
detection efficiency, making it one of the most effective approaches for real-time object
detection tasks [27].

2.3. Biofouling Detection in Tidal Stream Turbines

Biofouling can significantly reduce the efficiency of these turbines by increasing
drag and altering hydrodynamic performance, making early detection and management
crucial for maintaining optimal performance [28,29]. Recent research has focused on
applying deep learning-based detection algorithms to monitor biofouling on TSTs [30–32].
Mo et al. [32] presented a deep learning-based approach for identifying pollutant adhesion
on tidal turbine blades. This method utilized a dataset of underwater images of turbines
subjected to varying levels of artificial biofouling. By employing three different deep
learning algorithms, the study enhanced the quality of biofouling images and applied
image segmentation techniques to accurately extract and identify the location and extent
of biofouling. The results demonstrated that this approach significantly improved the
accuracy of biofouling detection, offering an efficient tool for the operation and maintenance
of TSTs. Chen et al. [33] developed a semi-supervised video segmentation network (SVSN)
for recognizing marine attachments on TST blades. To address the challenge of limited
labeled data, their approach employs a data augmentation algorithm to generate sufficient
labeled images from a smaller set of manually annotated frames. The SVSN utilizes a
modified SegNet as the generator and a fully convolutional network as the discriminator,
applying semi-supervised adversarial learning to integrate both labeled and unlabeled
data. This methodology enhances the model’s segmentation accuracy and generalization
capabilities. The results demonstrate that the SVSN effectively identifies attachments and
estimates uncertainties in harsh underwater conditions, offering a promising solution for
maintaining TST efficiency. The issue of biofouling in TSTs using a soft-voting ensemble
transfer learning approach for detection and classification is discussed by authors in [34].
The study introduced a comprehensive methodology that integrates data augmentation and
preprocessing techniques, such as image resizing and segmentation, to handle biofouling
challenges effectively. The authors acquired two datasets—one from Shanghai Maritime
University (SMU) and another from Lehigh University (LU)—to train three prominent
CNN models: Visual Geometry Group (VGG), Residual Network (ResNet), and MobileNet.



J. Mar. Sci. Eng. 2024, 12, 1828 5 of 14

Their approach achieved notable accuracy rates of 0.83 for the SMU dataset and 0.90
for the LU dataset. The discrepancy in accuracy is attributed to the smaller size of the
SMU dataset. The research highlights the importance of dataset scale in classification
performance and provides valuable insights into improving biofouling detection and
classification for TST systems.

In addition to image-based methods, Xu et al. [35] proposed a confidence-guided
Dempster–Shafer (CDS) method for diagnosing turbine blade faults under the challenging
conditions of swell effects and turbid water. This method combines stator current signals
with image data, adapting to the confidence levels of each to improve the accuracy of
fault diagnosis. The CDS method successfully addresses the limitations of single-sensor
approaches, enhancing diagnostic performance even in complex underwater environments.

In conclusion, integrating deep learning-based object detection and fault diagnosis
methods, particularly those employing models like YOLO, has significantly advanced
the field of biofouling detection for TSTs. These technologies improve the efficiency and
accuracy of monitoring systems and contribute to the sustainable operation of marine
energy technologies by enabling proactive maintenance strategies.

3. Necessary Background
3.1. Biofouling in Images

The marine environment is home to a vast diversity of species, including fish, plants,
algae, etc. Among these living organisms, biofouling stands out as the accumulation of
marine organisms on submerged surfaces, which alters their texture. This phenomenon
is particularly challenging to detect due to its rapid evolution in size and color, as well as
its ability to blend into the surroundings [1]. Despite advances in camera technology and
detection algorithms, these characteristics make biofouling detection a significant challenge,
highlighting the need to develop methods better suited to this complex environment.

Such a problem can be associated with different computer vision tasks: classification,
segmentation, and object detection [26]. Unlike the first two, object detection allows for
the identification of multiple objects in a single image, something that classification cannot
achieve. For example, if a camera is focused on a structure containing four turbines that
need to be monitored, object detection provides a broader view by detecting objects within
bounding boxes rather than analyzing every pixel as in segmentation. This approach makes
it possible to monitor specific objects rather than the whole structure. This is particularly
important, as the attachment of biological fouling to a fixed structure is less of a concern
than on rotating objects such as blades.

3.2. YOLO

YOLOv8 is the latest version of object detection neural networks from Ultralytics,
released in January 2023 by Jocher et al. [36], based on a CNN architecture, as described
in [27]. The strength of this version lies in its integration of advanced feature extraction
mechanisms, namely Cross Stage Partial (CSP) with a Darknet53 backbone, along with
Spatial Pyramid Pooling (SPP). The combination of these two mechanisms enhances the
model’s ability to detect objects of various sizes and scales with high accuracy. Each image
processed by YOLOv8 is associated with a tensor of dimensions S × S × (B × 5 + C), where S
represents the number of grid cells, B refers to the bounding boxes containing five attributes
(center coordinates x and y, width, height, and confidence), and C corresponds to the class
annotations. The YOLO algorithm, in general, is optimized using three objective functions:
Box Loss, Object Loss, and Class Loss (Equation (1)). The Box Loss function is responsible
for adjusting the bounding boxes (Equation (2)). It aims to optimize the drawing of a box
around an object based on the position of its center (x and y coordinates) as well as its
dimensions (width and height). This function minimizes the localization error between
the manually drawn box (ground truth) and the one predicted by the network, taking
these geometric parameters into account. The Object Loss function handles object detection
within the localized box (Equation (3)). It evaluates the probability of the presence or
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absence of an object in the detected box, minimizing the error associated with this binary
detection. Finally, the Class Loss function is involved in the classification of the detected
object (Equation (4)). It is a classification operation that minimizes the error between the
object class assigned in the training images and the one predicted by the network. This
error is measured in terms of recognition probability, thus refining the model’s ability to
correctly classify objects. The mathematical formulation of this optimization problem is as
follows [27]:

YOLO cost function = Localization loss + Confidence loss + Classification loss (1)

Each of these sub-functions is designed to optimize a specific aspect of the object
detection process, and formulated as bellow:

Localization loss =λcoord
S2

∑
i=0

B
∑

j=0
1obj

ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+λcoord
S2

∑
i=0

B
∑

j=0
1obj

ij

[(√
ωi −

√
ω̂i

)2
+

(√
hi −

√
ĥi

)2
] (2)

Confidence loss =
S2

∑
i=0

B
∑

j=0
1obj

ij

[(
Ci − Ĉi

)2
]

+λcoord
S2

∑
i=0

B
∑

j=0
1obj

ij

[(
Ci − Ĉi

)2
] (3)

Classification loss =
S2

∑
i=0

1obj
ij ∑

c∈classes

[
(pi(c)− p̂i(c))

2
]

(4)

where λcoord is a scale factor, i and j, for each grid box, xi and yi are coordinates in the ith
cell, ω and h are coordinates in the ith cell, Ci is the confidence score, pi is the probability
of class c, and, with a caret for predicted values, 1obj

ij is defined as 1 if the object appears
and 0 otherwise.

3.3. Evaluation Metrics

Several metrics are employed to evaluate the quality of object detection using statistical
criteria. The possible outcomes include true positives (TP), where the object is correctly
detected; false positives (FP), where an object is detected but not actually present; false
negatives (FN), where the object is present but not detected; and true negatives (TN), where
no object is detected and none is present. These outcomes contribute to general evaluation
metrics like accuracy and confusion matrices, as well as specific evaluation criteria for each
class, which can be formulated as follows [37]:

Precision =
TP + TN

TP + TN + FP + FN
(5)

Recall =
TP

TP + TN
(6)

Based on these two metrics, mean average precision (mAP) is calculated as follows:

mAP =
N

∑
k=1

P(k) · ∆r(k) (7)

where k represents the number of recognized figures with precision (P) and recall gradient
(∆r(k)).
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4. Proposed Methodology
4.1. Dataset Presentation

Professor Yusaku Kyojuka from the Faculty of Engineering Sciences at Kyushu Univer-
sity in Japan designed a structure equipped with four turbines, each containing three blades
spaced at 60 degrees to the axis of rotation, as shown in Figures 2 and 3. The structure
was submerged on the seafloor next to the pier of Ikitsuki Bridge in Nagasaki, Hirado,
and Kasugacho, Japan, at a depth of 7 m. The monitoring of biofouling attachment was
carried out by a camera over 8 months, from August 2012 to April 2013 [38].

Figure 2. Tidal stream turbine blades structure.

biofouling monitoring and classification in TSTs. By analyzing
images captured by underwater cameras or remotely operated
vehicles (ROVs), image processing techniques can detect and
quantify biofouling growth on turbine components. However,
the accuracy of biofouling detection may be compromised by
the challenging underwater conditions, including poor lighting
[11].

To address these challenges, researchers are exploring ad-
vanced image processing algorithms and machine learning
techniques. These algorithms can learn to extract relevant
features from processed images and classify biofouling in-
stances with greater accuracy. By training models on labeled
datasets of biofouling images, machine learning algorithms can
improve their ability to detect and classify biofouling, even in
conditions of limited visibility [12].

The paper [12] presents a novel method for detecting and
classifying biofouling on TSTs using a soft voting ensemble
transfer learning approach. Through the utilization of pre-
trained deep learning models and data augmentation tech-
niques, the proposed method effectively identifies and cate-
gorizes biofouling levels on turbine surfaces. This approach
offers a promising solution for automated biofouling detection
and extent classification in tidal stream turbines, with potential
applications in monitoring and maintenance.

The paper [13] serves as a comprehensive guide for ad-
dressing the complex issue of biofouling in TSTs. The authors
survey existing research and methodologies, highlighting chal-
lenges and limitations in biofouling detection. This study also
explores emerging technologies and innovations, emphasizing
the importance of data collection and analysis. This roadmap is
a valuable guide in developing effective strategies for detecting
and estimating biofouling in TSTs.

Traditional non-AI methods were less effective due to the
complexity of biofouling [13]. Based on the above-given brief
current state-of-the-art and the roadmap, biofouling monitoring
is crucial for optimizing performance, reducing maintenance
costs, mitigating environmental impact, and ensuring safety
in TSTs. In this context, this paper proposes a Fast R-
CNN approach to address the detection of biofouling on
TST blades. This method categorizes the TSTs into clean
and biofouled. Following detection, this approach will also
calculate the percentage of biofouling coverage on blades. The
proposed Fast R-CNN approach improves accuracy, efficiency,
and robustness, making it superior for predictive maintenance.

II. DATA COLLECTION

The dataset utilized in this study was gathered by Professor
Yusaku Kyojuka from the Faculty of Engineering Sciences
at Kyushu University in Japan. This dataset was previously
employed in a research paper published in Japanese [14].

There are several types of TSTs, most of which are similar
to wind turbines. In this study, the dataset used was collected
using a propeller-driven turbine, as depicted in Fig. 2. The
turbine blades are constructed from three Vinyl chloride plates,
with an inclination angle of 60 degrees to the axis of rotation.

Figure 2. Turbine model for biofouling experiments. Courtesy of Prof. Yusaku
Kyozuka [14]

Figure 3. llustration of installation. Courtesy of Prof. Yusaku Kyozuka [14]

After conducting various surveys to assess real biofouling
conditions, four turbines were installed on the seafloor at
a depth of 7 meters next to the pier of Ikitsuki bridge in
Nagasaki, Hirado, and Kasugacho, Japan for 8 months, from
August 2012 to April 2013, as shown in Fig. 3.

III. PROPOSED FAST R-CNN FRAMEWORK

Acquiring images of biofouling TSTs can be tough due to
challenging conditions like poor lighting, low resolution, and
blurriness. Underwater inspections add to the difficulty with
distortions and varying water conditions. This makes it hard
for learning-based methods to accurately detect biofouling,
especially since it comes in different sizes and there’s an
imbalance in its occurrence. Models must be robust enough
to handle these challenges and accurately identify even small
defects.

To overcome these challenges, we introduce a new, Fast
R-CNN approach for detecting and classifying biofouling in

Figure 3. Submerged tidal stream turbine structure (four turbines (A–D)). Courtesy of Prof. Yusaku
Kyozuka [39].

The dataset used in this study was obtained from two recorded videos of the four
installed turbines. Each video had a duration of 15 s, with a frame rate of 60 frames per
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second (fps), each video consisted of a total of 900 frames (15 s × 60 fps). This high frame
rate provided a detailed view of the biofouling process, allowing for a thorough analysis of
how biofouling developed on the turbine blades over time. The videos were captured at a
resolution of 320 × 240 pixels with a data rate of 2600 Kbits/s using a CMOS sensor with
progressive scan technology, ensuring that each frame is fully captured without interlacing
artifacts. The videos were recorded on 20 October 2012, providing a clear and detailed view
of how biofouling has developed on the turbine blades over time.

4.2. Proposed Model Evaluation

The methodology proposed in this paper, illustrated by the flowchart in Figure 4,
uses images extracted from monitoring sequences of the four turbines described above,
which are mounted on a submerged structure. The obtained images are labeled using a
graphical image annotation tool named label Img.exe, which is used to draw bounding
boxes around objects in the images and label them with the appropriate class names. These
labels are then prescribed in a file containing each box’s boundaries and the corresponding
class. In our case, the boxes are drawn around fouled and clean turbines, and each one is
annotated accordingly.

The obtained images, along with their descriptive files, are divided into training and
testing datasets, which are then used to train and evaluate the network. Due to a lack of
data and relatively low accuracy, we opted for data augmentation to create a more effective
model trained on noisier data, aiming to improve its accuracy. For this purpose, we used
the latest official version of the YOLO series, YOLOv8 (version 8). Training the network
involves defining specific training parameters, which are listed in Table 1 and obtained
through random trial and error. The training process focuses on optimizing the three loss
functions described earlier.

Table 1. Training options.

Options Value

Optimizer SGD
Learning rate 0.01
Mini batch size 16
Epochs 25
Test confidence threshold 0.25

To evaluate the training stage, we used unseen test images. The result of this stage in-
cludes the same test images with annotated boxes indicating the detection and its precision.
The possible cases of false detection after testing are the following:

• Fouled turbines detected as clean.
• Clean turbines detected as fouled.
• Background detected as either clean or fouled.

The evaluation criteria included precision, recall, and mAP50 for the specific evaluation
of each class, as well as the confusion matrix and accuracy for the overall evaluation. These
criteria were calculated based on the confidence level of each detected object.
Sample images with detection boxes are provided to visually demonstrate the detection
performance (Figure 5). The overall evaluation achieved an accuracy of 97.3%, as illustrated
by the confusion matrix in Figure 6. The specific evaluation metrics for each class are
detailed in Table 2.

Table 2. Evaluation metrics.

Class Precision Recall mAP50 mAP50-95

Fouled 0.993 1.0 0.995 0.792
Clean 1.0 0.982 0.995 0.827
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Figure 4. Proposed methodology flowchart.
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Figure 5. Detection samples.

Figure 6. Confusion matrix.

The results obtained from object detection based on YOLOv8 demonstrate its effective-
ness for detecting biofouling in a noisy environment containing other species, as shown in
Figure 5.

4.3. Proposed Model Comparison

To demonstrate the usefulness of this object detection network for biofouling detection,
a comparison was made between YOLOv8 and earlier versions (v3 and v5) with the same
training settings (Table 1). The comparison includes the specific criteria shown in Table 3.



J. Mar. Sci. Eng. 2024, 12, 1828 11 of 14

Table 3. Comparison metrics.

Metric Fouled Clean

YOLOv3

Precision 1.0 0.656
Recall 0.577 0.972

mAP50 0.948 0.907
mAP50-95 0.524 0.510

YOLOv5

Precision 0.444 0.1
Recall 0.286 1.0

mAP50 0.397 0.385
mAP50-95 0.186 0.13

YOLOv8

Precision 0.993 1.0
Recall 1.0 0.982

mAP50 0.995 0.995
mAP50-95 0.792 0.827

As anticipated, YOLOv8 emerges as the most effective model, demonstrating superior
overall results in terms of precision, recall, mAP50, and mAP50-95, as shown in Table 3.
YOLOv8 achieves nearly perfect precision for both the “Fouled” and “Clean” classes and
maintains a high recall rate, reflecting its excellent overall performance. YOLOv3 performs
well but falls short compared to YOLOv8, while YOLOv5 shows significantly lower scores
across these metrics. Notably, YOLOv5 fails to detect any “Fouled” cases, as evidenced by
zero true positives for this class, highlighting major limitations in its detection capabilities.
In contrast, YOLOv3 does manage some detections, although its performance in this respect
remains inferior to that of YOLOv8.

Additionally,YOLOv5 displays multiple detections for the same object with varying
confidence levels, which can lead to information overload and inaccuracies in object label-
ing. YOLOv3 and YOLOv8 handle unique detections more effectively. YOLOv3 excels in
background detection, indicating better handling of non-relevant scenes, while YOLOv5
is next in this aspect, with YOLOv8 being the least effective in background detection but
excelling in detecting the objects of interest. YOLOv8 consistently maintains a confidence
level above 0.85 for true positive detections, a notable improvement over the other models.
The differences in performance among YOLOv3, YOLOv5, and YOLOv8 can be attributed
to advancements in model architecture, training algorithms, and regularization techniques.
YOLOv8’s recent advancements provide a significant edge in precision and robustness.
YOLOv3’s high precision for “Fouled” but low recall suggests a conservative prediction ap-
proach, leading to missed detections. In contrast, YOLOv5’s high recall for “Clean” but low
precision indicates it detects almost everything as “Clean”, often inaccurately. YOLOv8’s
balanced performance across precision and recall makes it the most comprehensive and
effective model for object detection tasks.

4.4. Data Augmentation

Deep neural networks are highly effective for tasks such as detection and classification
but typically require large amounts of training data to achieve accurate results. In the
context of biofouling detection, obtaining an extensive dataset, particularly of faulty or
fouled states, can be challenging due to the limited availability of such real-world conditions.
To mitigate this issue, data augmentation techniques are employed to artificially expand
the dataset by generating variations of the existing images, thereby enhancing the model’s
ability to generalize.

The augmentation techniques used in this study involve introducing structured noise
into the images by randomly adding 10% of lines and columns. This method adds black
lines to a subset of the rows and columns within the image, as illustrated in Figure 7.
The 10% of lines and columns are selected at random for each image, ensuring that the
noise pattern varies across the dataset [40].
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Figure 7. Data augmentation samples.

This augmentation simulates imperfections or artifacts that could naturally occur in
real-world video sequences, such as those caused by environmental factors, sensor noise,
or transmission errors. The added noise provides the model with examples of degraded or
imperfect visual data, helping it become more robust in detecting biofouling even when
the quality of the footage is compromised.

Furthermore, this process is applied uniformly across both the horizontal and vertical
axes, ensuring that the spatial structure of the image is maintained, and the underlying
features of the biofouling (e.g., edges, texture) remain recognizable to the neural network.
Despite the introduction of noise, the essential characteristics of the image are preserved,
and the augmentation technique does not alter the annotated regions of interest. This
means the annotation boxes for the biofouling areas remain intact, ensuring that the model
still learns from the correct labels.

The impact of data augmentation is in line with expectations, improving accuracy for
all learning networks, including the different versions of YOLO in our case. Several points
can be highlighted in Table 4. First, the evolution of the various metrics (precision, recall,
mAP50, and mAP50-95) shows a similar trend, indicating that data augmentation positively
affected both classes (clean and fouled). Second, the improvement was most significant
for YOLOv5, followed by YOLOv3, and finally YOLOv8, reflecting the order from least to
most accurate; hence, the effect of augmentation is more pronounced for the weaker model.
Third, the superiority of YOLOv8 is clear both before and after augmentation, justifying its
effectiveness for biofouling detection.

Table 4. Metric comparison, before and after data augmentation.

Class Clean Fouled Clean Fouled
Before Augmentation After Augmentation

YOLOv3

Precision 1.0 0.656 1.0 0.995
Recall 0.577 0.972 1.0 1.0

mAP50 0.948 0.907 0.995 0.995
mAP50-95 0.524 0.510 0.749 0.733

YOLOv5

Precision 0.444 0.1 0.755 0.616
Recall 0.286 1.0 0.714 1.0

mAP50 0.397 0.385 0.868 0.581
mAP50-95 0.186 0.130 0.581 0.483

YOLOv8

Precision 0.993 1.0 0.995 0.987
Recall 1.0 0.982 1.0 1.0

mAP50 0.995 0.995 0.995 0.995
mAP50-95 0.792 0.827 0.814 0.837
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5. Conclusions

This study demonstrates the potential of utilizing a camera-based surveillance system
combined with YOLO 8 version models for biofouling detection. By converting video
footage into annotated images and training the YOLO model, the system proved effective
in distinguishing between biofouled and clean turbines. The results highlight YOLO
version 8’s superior performance over its predecessors, particularly when enhanced by a
data augmentation approach. This not only improved detection accuracy but also addressed
the issue of misdetection. The findings suggest that the automated detection of biofouling
through advanced machine learning models like YOLO can significantly reduce the labor
and costs associated with traditional methods, offering a promising solution for more
efficient monitoring in marine industries.
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