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Abstract  28 

Trees release Herbivore-Induced Plant Volatiles (HIPVs) into the air in response to damage 29 

inflicted by insects. It is known that songbirds use those compounds to locate their prey, but 30 

more recently the idea emerged that songbirds could also use those odours as cues in their 31 

reproductive decisions, as early spring HIPVs may contain information about the seasonal 32 

timing and abundance of insects. We exposed pre-breeding great tits (Parus major) to the 33 

odours of caterpillar-infested trees under controlled conditions, and monitored reproduction 34 

(timing of egg laying, number of eggs, egg size) and two of its main hormonal drivers 35 

(testosterone and 17β-estradiol in males and females, respectively). We found that females 36 

exposed to HIPVs did not advance their laying dates, nor laid larger clutches, or larger eggs 37 

compared to control females. 17β-estradiol concentrations in females were also similar 38 

between experimental and control birds. However, males exposed to HIPVs had higher 39 

testosterone concentrations during the egg-laying period. Our study supports the hypothesis 40 

that insectivorous songbirds are able to detect minute amounts of plant odours. The sole 41 

manipulation of plant scents was not sufficient to lure females into a higher reproductive 42 

investment, but males increased their reproductive effort in response to a novel source of 43 

information for seasonal breeding birds.   44 
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Introduction  63 

The timing of reproduction of most animal species is tightly linked to the phenology of 64 

other organisms (Durant et al. 2005; Post and Forchhammer 2008). Consequently, many 65 

species try to adjust their reproductive decisions to the surge of resources they need to feed 66 

their offspring (Dias and Blondel 1996; Maillard and Fournier 2004; van Asch et al. 2010; 67 

Cadby et al. 2010; Dunn et al. 2011; Ljungström et al. 2015; Neuheimer et al. 2018; Peláez et 68 

al. 2020). Breeding mismatched to the optimal timing relative to food abundance may have 69 

negative effects on fitness, with offspring potentially experiencing reduced growth or survival 70 

rates (Thomas et al. 2001; Reed et al. 2013; Renner and Zohner 2018). In the case of 71 

predators, they need to predict the date at which their prey will reach a peak of biomass to 72 

initiate their breeding at the appropriate time, which is often weeks before this peak. They 73 

therefore need to use cues present early in their environment to predict the annual phenology 74 

of the lower trophic levels (Wingfield and Moore 1987; Di Bitetti and Janson 2000; Rubenstein 75 

and Wikelski 2003; Visser et al. 2004; Grant et al. 2009; Visser et al. 2009).  76 

 In seasonally reproducing species, photoperiod has been shown to be the primary cue 77 

used by organisms to orchestrate their breeding phenology (Nelson 1985; McAllan and 78 

Dickman 1986; Nelson 1986; Dawson 2008; Rani and Kumar 2014; Nakane and Yoshimura 79 

2019). Changes in photoperiod are, however, the same every year, meaning that photoperiod 80 

alone can not predict yearly variation in the optimal timing of breeding. These species, as well 81 

as non-seasonal organisms (Porton et al. 1987; Hart et al. 2006; Frederick et al. 2012), must 82 

therefore rely on additional cues to decide when exactly to reproduce (Cumming and Bernard 83 

1997; Voigt et al. 2011; Ngalameno et al. 2017). Temperature, for example, has been shown 84 

to exert an influence on the timing of reproduction (Gorman et al. 1981; Crick et al. 1997; Visser 85 

et al. 2009; Schaper et al. 2012; Chambers et al. 2013; Williams et al. 2015; Wegge and 86 

Rolstad 2017). However, several studies failed to show such a causal link with phenology and 87 

its underlying physiological mechanisms (Dawson 2005; Perfito et al. 2005; Visser et al. 2011; 88 

Caro et al. 2013; Verhagen et al. 2020).  89 
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In the well-studied tree-caterpillar-passerine food chains (Perrins 1970; Visser et al. 90 

1998; Both et al. 2009), nestling growth and nestling survival of several insectivorous bird 91 

species almost exclusively depend on the availability of a few caterpillar species (mainly the 92 

winter moth - Operophtera brumata, and the green oak tortrix - Tortrix viridana) (Dias and 93 

Blondel 1996; Naef-Daenzer and Keller 1999; Thomas et al. 2001; Gienapp and Visser 2006). 94 

Caterpillars on the other hand entirely depend on the leafing of a few tree species for their 95 

development (Du Merle and Mazet 1983; Buse and Good 1996; van Asch and Visser 2007; 96 

van Asch et al. 2012). Plant phenology has therefore been suggested to be one of the 97 

supplementary cues that birds could use to predict the phenology of their food source, and 98 

thereby their timing of reproduction. Many studies have indeed found correlations between tree 99 

phenology and laying dates in wild populations of insectivorous birds (Nilsson and Källander 100 

2006; Bourgault et al. 2010; Cole et al. 2015; Hinks et al. 2015; Szulkin et al. 2015), but whether 101 

there is a causal relationship between the two, and through which sensory path this relationship 102 

could come about, is not well understood yet (Visser et al. 2002; Schaper et al. 2011; Voigt et 103 

al. 2011).  104 

Trees respond to insect grazing by releasing Herbivore Induced Plant Volatiles (HIPVs) 105 

(Dicke and van Loon 2000; Arimura et al. 2005; Dicke and Baldwin 2010) that carnivorous 106 

arthropods and parasitoids use to locate their insect prey (Turlings et al. 1990; Kugimiya et al. 107 

2010; Fontana et al. 2011; Giunti et al. 2016). By attracting predators of insects feeding on the 108 

plants, HIPV release provides indirect protection to the plant (Kessler and Baldwin 2001; Kant 109 

et al. 2009; McCormick et al. 2012). Although birds have been considered anosmic for a long 110 

time, it has been shown that foraging birds can discriminate between caterpillar-infested and 111 

uninfested trees only by smell (Amo et al. 2013; Mrazova et al. 2019; Graham et al. 2021; Sam 112 

et al. 2021), and can recognise and orient to an artificial odour mimicking HIPVs (Mäntylä et 113 

al. 2014; Rubene et al. 2022). In a recent study using artificial HIPVs, the authors found an 114 

innate attraction to those odours in blue tits (Cyanistes caeruleus), and birds increased their 115 

reproductive investment by producing more nestlings when artificial HIPVs were added in their 116 

breeding territories (Delaitre et al, in prep.). HIPVs thus represent a promising cue that birds 117 
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could use to infer the phenology of their prey and modulate their reproductive investment 118 

accordingly. However, whether those volatile compounds influence the reproductive 119 

physiology and behaviour of birds has not been explored yet.  120 

Sexual behaviours and reproductive control result from a cascade of physiological 121 

reactions involving steroid hormones produced by the gonads (Wingfield 1994; Ball and 122 

Balthazart 2009). In males, increases in testosterone (T) concentrations is an important 123 

indicator that they are preparing to breed (Kempenaers et al. 2008; Zhang et al. 2017), as it 124 

stimulates territorial defence (Silverin 1980; Chandler et al. 1994), aggressive behaviour 125 

(Wingfield et al. 1987; Beletsky et al. 1990), as well as courtship and mating behaviours 126 

(Silverin 1980; Ketterson et al. 1992; Enstrom et al. 1997; Hill 1999). In females, oestrogens 127 

promote courtship behaviour. For example, the removal of the ovary in ring doves leads to the 128 

disappearance of wing flipping that are normally shown by females in response to male 129 

courtship (Cheng and Lehrman 1975), but treating those females with oestrogens restore their 130 

normal sexual behaviours (Adkins and Alder 1972). Moreover, estradiol is a good predictor of 131 

laying, as it stimulates the production of yolk precursors and peaks just prior females lay their 132 

first egg (Bluhm et al. 1983; Rehder et al. 1986; Sockman and Schwabl 1999; Williams 2012). 133 

If HIPVs exert an effect on bird reproduction, we should observe effects of this olfactory 134 

signal on the mechanisms coordinating reproduction, i.e. on their reproductive hormone levels. 135 

Supporting this hypothesis, Graham et al. (2021) recently found that blue tit males with higher 136 

testosterone concentrations spent more time close to a tree infested with caterpillars compared 137 

to an uninfested tree. Gonads, which produce sex steroids, also developed faster in more 138 

exploratory (a personality trait) female blue tits exposed to HIPVs (Caro et al. 2023). Since 139 

HIPV emissions reflect the timing of emergence and the abundance of caterpillars in the 140 

environment (Horiuchi et al. 2003; Girling et al. 2011; McCormick et al. 2012; Miresmailli et al. 141 

2012), by detecting HIPVs in early spring, songbirds could adjust their onset of breeding to 142 

synchronize the feeding period of their chicks with the timing of maximal caterpillar biomass 143 

(Marciniak et al. 2007), and adjust their clutch size to match the predicted food availability in 144 

their breeding territory (Hussel and Quinney 1985; Marciniak et al. 2007).  145 
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The purpose of this study was to determine experimentally if HIPVs emitted by 146 

caterpillar-infested oak buds induce behavioural and hormonal responses in an insectivorous 147 

songbird in terms of reproductive physiology, timing and investment. For this, we used 36 pairs 148 

of great tits housed in climate-controlled aviaries and induced the release of HIPVs by infesting 149 

oak buds (Quercus robur) with freshly hatched winter moth caterpillars. We hypothesized that 150 

birds exposed to HIPVs would advance and increase their reproductive hormone 151 

concentrations (i.e. testosterone and 17b-estradiol), advance their laying date, and increase 152 

their reproductive investment (i.e., clutch size and/or egg size), compared to control birds.  153 

 154 

Methods  155 

Ethical note  156 

Ethical permits requested for this experiment were provided by the Animal Welfare 157 

Body of NIOO-KNAW (IVD - NIOO 20.09 AVD8010020209246/IVD 1556a).  158 

 159 

Birds and experimental set-up 160 

Birds 161 

The experiment was carried out at the Netherlands Institute of Ecology (NIOO-KNAW) 162 

in Wageningen, the Netherlands. 72 great tits (36 females and 36 males) born in captivity 2020 163 

were used in this experiment. Birds were the second generation of a population originated from 164 

Boslust near Arnhem, the Netherlands, a 70 ha field site consisting of mixed pine-deciduous 165 

forest (van den Heuvel et al. 2022). Eggs were laid in captivity, and subsequently incubated 166 

and reared by foster parents in the wild, up to the age of 10 days. At this stage, chicks were 167 

brought back to the NIOO for hand-rearing, following the procedure described in a previous 168 

study (Drent et al. 2003; van den Heuvel et al. 2022). Adult birds were fed daily as described 169 

in Delaitre et al (2023), with mixture of minced beef heart, canary egg food proteins and 170 

vitamins, dry food, apple and water for drinking and bathing. 171 

 172 

 173 
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Housing in climate-controlled aviaries 174 

To enhance the chances that birds successfully breed in climate-controlled aviaries, a 175 

preference test to pair females with one of their preferred males was conducted. In short, 176 

females could visit six males in a carrousel-shaped six-choice chamber for 90 minutes, and 177 

mate choice was inferred from the amount of time females spent close to each male (see 178 

Delaitre et al. 2023, for details). Time spent by the females in the choice zone of the male has 179 

been shown to predict courtship behaviors, pair formation and reproductive success in other 180 

studies (Balzer and Williams 1998; Gonçalves and Oliveira 2003; Witte 2006; Zandberg et al. 181 

2017). In zebra finches for example, the time females spent in front of a male correlates 182 

positively with the number of solicitation displays directed to that male, therefore, linking mate 183 

preference measured by courtship displays with preference measured through the time a 184 

female spends with a male (Witte 2006). Similarly, in the above-mentioned study, we showed 185 

that female great tits paired with a male with which they spent more time, laid earlier (Delaitre 186 

et al. 2023).   187 

From early February, birds were housed in opposite-sex pairs in 36 climate-controlled 188 

chambers (2 x 2 x 2.25 m) as described in Delaitre et al (2023)(figure 1). Briefly, photoperiod 189 

and temperature were set to mimic natural conditions prevailing outside at the time of the 190 

experiment. Three 58 W high frequency fluorescent tube lights served as the main source of 191 

lighting. Before sunrise and after sunset, a second 7 W incandescent light bulb simulated dawn 192 

and nightfall for five minutes each. From a logistical point of view, it was not possible to adjust 193 

the aviary temperatures to match the outside temperatures on a daily basis. As a result, the 194 

simplest logistical solution was to set the temperatures of the next eight days in aviaries based 195 

on the temperatures of the previous eight days in the wild. Hourly temperatures were 196 

determined from The Royal Netherlands Meteorological Institute (KNMI) database. Perches, 197 

an artificial tree and three nest boxes, allowing females to select their breeding cavity, were 198 

available in each aviary. In order to hide the potted oak trees, a screen (0.85 x 2.25 m, figure 199 

1, figure S1) made of an opaque white fabric was installed in the back-left corner of each 200 

aviary. No visual or acoustic interactions were possible between the pairs. 201 
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 202 

 203 

Figure 1: Housing of birds in climate-controlled aviaries.  204 
Each of the 36 opposite-sex pairs of great tits was housed in a climate-controlled aviary under 205 
an artificial light regime mimicking a natural daylight pattern using three 58W tube lights and 206 
one 7W light bulb. Temperatures were weekly set to mimic the outside temperatures of the 207 
week before. Birds had ad libitum access to food and water. Perches and an artificial tree were 208 
provided to the birds to perch and hide. Three nest boxes were installed in each aviary. An 209 
opaque screen was installed in the back-left corner to hide the two caterpillar-infested trees for 210 
the experimental group, or the two pots filled with soil for the control group. The experimental 211 
birds could thus only smell the HIPVs released by the trees but could not have access, or see 212 
the oak trees and caterpillars.  213 
 214 

Oak Trees  215 

160 common oak trees (Quercus robur; approx. 2 m high, and 0.5 m of diameter) grown 216 

in pots were used as sources of odour. From early January, trees were maintained at different 217 

locations to spread out timing of bud burst over the season. A group was maintained in an 218 

open area fully exposed to sun (n = 60), one was placed in the corner of a building in the shade 219 

(n = 45), and the last group was kept on the east side of a building with partial exposure to sun 220 

(n = 55). Caterpillars being unable to perforate the protective scales of the oak tree buds (Du 221 

Merle and Mazet 1983), the oaks were considered ready to use in the experiment when the 222 

buds began to elongate and to lose their scales (stage 4, figure S2). Out of the 160 trees, 108 223 

were used in the experiment.  224 

 225 
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Caterpillars  226 

The main caterpillar species infesting the common oak in the Netherlands is the winter 227 

moth (Visser et al. 2006). Adult winter moths were collected in Doorwerth, the Netherlands, 228 

between November and December. Adults were kept in 50 mL tubes with paper strips on which 229 

the females laid their eggs. Eggs were kept outdoor protected from rain and direct sunlight. 230 

Caterpillars and trees were thus experiencing similar temperature conditions. 231 

 232 

Bud infestation 233 

Once caterpillars began to hatch, oak trees with buds at an appropriate stage were 234 

infested with caterpillars using a small paintbrush (Graham et al. 2021). Two oak trees were 235 

placed behind the opaque screen in 18 experimental aviaries, whereas two pots filled with the 236 

same soil were placed behind the opaque screen in 18 control aviaries. Every week, one of 237 

the two trees was replaced by a new one with earlier bud stages than the one that had just 238 

been removed. When experimental aviaries were opened to change a tree, control aviaries 239 

were also opened to ensure all birds experienced similar disturbances. Between 20 and 50 240 

caterpillars (depending on caterpillar availability, on average 36 caterpillars per tree) were 241 

placed across five branches with buds at stage 4 (bud elongated, swollen and green) to 6 (bud 242 

bursting, leaf shoots can be distinguished but are still intricated) (figure S2) (Du Merle and 243 

Mazet 1983). During infestation, the experimenter observed the caterpillars for a few minutes 244 

to ensure they entered the buds. In addition, when a tree was removed from an aviary, it was 245 

examined for caterpillar damage on leaves to ensure that HIPVs had been released. A recent 246 

study by Graham and colleagues (Graham et al. 2023) has shown that oak buds emit HIPVs 247 

in early spring when they are grazed by freshly hatched caterpillars, and that HIPV emissions 248 

were proportional to the damages inflicted. Caro et al (2023) also exposed blue tits kept in 249 

airtight compartments (terrariums) to air from enclosures containing caterpillar-infested oak 250 

trees and identified compounds known to be HIPVs in the air reaching the terrariums (Graham 251 

et al. 2023). First trees were introduced in the aviaries between 16th and 20th April. In total, 252 

seven tree changes were done for each experimental aviary until 24th May. When no more 253 
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caterpillars and trees were available for new infestation, we stopped changing trees and let 254 

them progress in the aviaries until the final blood samples were taken (see details below).  255 

 256 

Reproduction monitoring  257 

Nesting material (moss and dog hair) was provided from early March. Reproduction 258 

was monitored as described in a previous study (Delaitre et al. 2023). Briefly, from mid-March, 259 

we monitored nest building and egg laying activities. We began to check the nest boxes once 260 

and then twice a week as birds were closer to lay (Dufva 1996), and then daily until the last 261 

egg of the clutch had been laid. The pair laying date is defined as the date that the first egg 262 

was found. We weighed (to the nearest 0.01 mg with an electronic balance, Eidyer), and 263 

measured all eggs (to the nearest 0.05 mm using a calliper, Ecotone Measy DG) and 264 

calculated their volume (egg volume = 0.4673*length*breadth²+0.042 (Dufva 1996)). The 265 

clutch size was determined after birds laid their last egg. Nests and eggs were removed after 266 

at least five days of incubation, so that birds could start a new clutch. After removing 6 females 267 

that started laying before the first trees and caterpillars were introduced to aviaries, we were 268 

left with 30 pairs to use in analyses. As only three females (one in the control group, two in the 269 

treatment group) produced a second clutch, we only analysed the first clutch laid.  270 

 271 

Physiological measures 272 

Blood samples 273 

We followed the procedures described in Delaitre et al (2023). Briefly, birds were caught 274 

in their aviary and transported to a laboratory room, where they were weighed and bled in the 275 

jugular vein using an insulin syringe (max. 150µl). Blood was transferred to heparinised tubes, 276 

plasma was separated by centrifugation and stored in freezers (−80°C) until assayed for 277 

hormones. Birds were returned to their aviary after the sampling. Each bird was sampled every 278 

two weeks (18 aviaries per week (36 birds)) between 18th March (before first laying) and 17th 279 

June (seven blood samples per bird). Mean time between catching and blood sampling was 3 280 

min 22 s ± SD 46 s for females and 6 min 01 s ± SD 1 min 10 s for males.  281 
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 282 

17β-estradiol assay  283 

 The assay procedure used for 17β-estradiol assay is described in detail in Delaitre et 284 

al (2023) and validated for blue and great tits (Caro et al. 2019). Concisely, plasma 17β-285 

estradiol (E2) was measured using a commercially available double-antibody 125I-E2 286 

radioimmunoassay (DSL-4800, Ultra-sensitive Estradiol RIA, Beckman Coulter, Brea, CA, 287 

USA) modified to increase the sensitivity of the assay (Charlier et al. 2010; Caro et al. 2019). 288 

Steroids were extracted from 30 μL of plasma, dried under nitrogen gas at 40°C, and 289 

reconstituted overnight with PBSg (PBS with 0.1% gelatin) containing 0.7% ethanol (Caro et 290 

al. 2019). Recovery value after extraction was 91.5%. Samples were then assayed in duplicate 291 

and counted on a gamma counter. Seven assays were needed to estimate the concentration 292 

of the 250 samples. The intra- and inter-assay coefficients of variation were 3.73% and 4.10%, 293 

respectively. Assay sensitivity was 0.65 pg/mL. E2 was only assayed in females and not in 294 

males because we were not able to sample enough plasma to assay both testosterone and 295 

E2. E2 would have been interesting to measure in males as well as it is a key determinant of 296 

male-typical behaviors, although this mostly results from local conversion of androgens by 297 

aromatase within the brain (Soma et al. 2003; Ball and Balthazart 2004). 298 

 299 

Testosterone assay 300 

Plasma testosterone was measured using a commercially available double-antibody 301 

125I-testosterone radioimmunoassay (IM1087, RIA Testosterone, Beckman Coulter, Brea, CA, 302 

USA). Steroids were extracted from 50 μL of plasma using diethyl ether (DEE). First, 3 mL of 303 

DEE were added to the plasma. The tubes were dipped in a methanol and dry ice bath for 15 304 

seconds and organic phase was poured in another tube. This step was repeated a second 305 

time with the aqueous phase and with 2mL of DEE. The organic phase was then dried under 306 

nitrogen gas at 40oC. Finally, dried samples were resuspended in 120 μL of extraction assay 307 

buffer and shaked overnight at 4°C. Recovery value after extraction was estimated at 91%. 308 

Concentrations were adjusted for samples that did not have 50 μL of plasma available (n = 32 309 
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out of 237). Resuspended samples were then assayed in duplicate and tubes were counted 310 

on a gamma counter (Automatic Gamma Counter, Perkin Elmer, Waltham, MA, USA). 311 

Concentrations of testosterone were obtained using a linear regression with the log-312 

transformed concentrations of the standards provided in the assay kit. The 237 plasma 313 

samples were run across six assays, and the intra- and inter-assay coefficients of variation, as 314 

estimated by assaying one high and one low concentration testosterone standard in duplicate, 315 

were 2.80% and 7.48%, respectively. Assay sensitivity was 0.075 ng/mL. It was defined as the 316 

highest point on the standard curve whose standard deviation did not overlap that of the blank 317 

standard (Wingfield and Farner 1975). No sample was found to be below the detection limit. 318 

We validated the assay following the methods of Caro et al. (2019). Briefly, pooled plasma 319 

samples were spiked with exogenous testosterone and serially diluted. Percentages of tracer 320 

bound (B/B0) from the serial dilutions were parallel to the standard curve (figure S3). As for E2 321 

in males, we could not assay plasma testosterone in females due to the limited quantity of 322 

plasma available. This could have been interesting given that female testosterone has 323 

sometimes been shown to enhance female aggression (Rosvall 2013; Zysling et al. 2006; but 324 

see Elekonich and Wing 2000; De Ridder et al. 2002), impair or delay onset of breeding 325 

(Clotfelter et al. 2004; Lahaye et al. 2015), reduce clutch size (Rutkowska et al. 2005; López-326 

Rull and Gil 2009), or influence maternal yolk and by extension chick phenotypes (Schwabl 327 

1993). 328 

 329 

Statistical Analyses 330 

Analyses were performed in R version 1.3.1093 (R CoreTeam 2019). The lme4 331 

package (Bates et al. 2015) was used for linear mixed-effects and generalized linear mixed-332 

effect models. Generalized additive models were conducted using the mgcv package (Wood 333 

2017). P-values of mixed-model analyses were obtained with the lmerTest package 334 

(Kuznetsova et al. 2017). Effect sizes were calculated using η2 (Lenhard and Lenhard 2016, 335 

https://www.psychometrica.de/effect_size.html). Plots were created with the ggplot2 package 336 

(Wickham 2016).  337 
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Reproduction  338 

 We compared reproductive parameters between HIPV and control pairs by performing 339 

(i) a linear model on lay date, (ii) a generalized linear model with negative binomial distribution 340 

on clutch size; and (iii) a linear mixed-effect model on egg volume. For clutch size, we also 341 

tried a Poisson distribution, which is regularly used for analysing clutch sizes (e.g. Marini et al. 342 

2017; Thornton et al. 2017; Eyck et al. 2020; Martay et al. 2023). Analysing clutch size with a 343 

Poisson distribution returned a p-value that was close to significance, with larger clutches 344 

under HIPVs (z = 1.89, p = 0.057, η2 = 0.12; details of this statistical model not shown). In the 345 

linear mixed effect model for egg volume, female identification was added as a random 346 

intercept to account for the fact that each female laid several eggs. All models included 347 

treatment as explanatory variable. 348 

 Hormone level analyses 349 

  We tested whether the HIPV treatment played a role on plasma steroid levels in both 350 

sexes. Because we measured a different hormone in each sex, we ran separate models for 351 

males and females. None of the females were removed from the dataset but two males were:  352 

one male with only three blood samplings and one male for which all samples were below 353 

detection limit of the assay kit. We used generalized additive models (GAMs) because we did 354 

not want to impose any prior assumption on the shape of the relationship between hormone 355 

levels and time. We tested whether there was variation in E2 and T concentrations over the 356 

course of the breeding season, whether steroids levels were impacted by the time spent 357 

between the catching and the bleeding of the birds, and whether E2 and T levels differed 358 

between HIPV and control birds over the course of the breeding season. For this we fitted 359 

GAMs with date (continuous variable, centred on first egg date, and ranging from -71 to 66) in 360 

a spline function, time between catching and bleeding (continuous variable, in seconds, 361 

ranging from 143 to 564 seconds for females, and from 270 to 890 seconds for males), time 362 

of day (continuous variable, in minutes; birds were usually sampled between 8:30 am and 363 

2pm), treatment (HIPVs vs Control) and the interaction between time (days from laying date) 364 

and treatment in a spline function as explanatory variables. The bird identification was added 365 
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as a random intercept to take into account repeated hormone measures for each bird taken 366 

during the course of the breeding season. To identify if at some point, the hormone levels fitted 367 

by the GAM models were significantly different in the HIPV compared to the control groups, 368 

we used the “get_smooths_difference” function from the “tidymv” package (Coretta 2022). This 369 

function calculates the difference between the mean control and the mean HIPV curves for 370 

each day and the corresponding 95% confidence interval. When the confidence interval does 371 

not overlap zero, the hormone concentration between the control and the HIPV curves are 372 

considered significantly different. 373 

 374 

Results  375 

 All the 30 pairs included in the analyses built a nest and only one female (from the 376 

control group) did not lay. We found no significant difference in laying date (F1,27 = 1.26, p = 377 

0.27, η2 = 0.04, figure 2A) or clutch size (z = 1.055, p = 0.29, η2 = 0.04, figure 2B) between 378 

HIPV and control birds. Out of the 208 eggs measured, we did not find evidence for a significant 379 

effect of the odour treatment on egg volume (F1,26.67= 1.13, p = 0.29, η2 = 0.004, figure 2C). 380 

Analyses of the other data relating to egg size (length, breadth, weight) also showed no effect 381 

of the treatment (data not shown). 382 

 383 

Figure 2: Effect of HIPVs on reproductive traits in great tits.  384 
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Females did not significantly (A) advance their laying date (n = 29), (B) lay larger clutches (n 385 
= 29) or (C) produce larger eggs (n = 208) when exposed to HIPVs. Large dots and error bars 386 
represent mean ± SE, smaller dots depict raw data.  387 
 388 
 Individual variation in 17β-estradiol and testosterone over time are depicted at figures 389 

3A and 3B, respectively. Both hormones varied significantly over time (E2: F = 6.20, p<0.001, 390 

η2 = 0.03, figure 3A, T: F = 2.87, p = 0.05, η2 = 0.02, figure 3B) and were more elevated around 391 

laying. Time between catching and bleeding did not influence E2 levels of females (F = 0.66, p 392 

= 0.42, η2= 0.003) but influenced T levels of males (F = 4.12, p = 0.04, η2 = 0.02), with T levels 393 

decreasing when the time interval increased. The time at which the blood samples were taken 394 

influenced E2 levels of females (F = 13.64, p<0.001, η2 = 0.06), and T levels of males (F = 395 

8.89, p<0.01, η2 = 0.05), with E2 levels decreasing, and T levels increasing, when the blood 396 

samples were taken later in the day.   397 

The “get_smooths_difference” function, from which the curves in figures 3E and 3F 398 

originate, calculated the daily difference between the control and the HIPV curves of figures 399 

3C and 3D, and the 95% confidence interval. The confidence interval of these curves overlaps 400 

zero over the entire breeding period for E2, meaning that E2 concentrations in females were 401 

not significantly different between the control and HIPV groups over the course of the breeding 402 

season (figure 3E, Table S1A). In males, T concentrations were significantly different between 403 

control and HIPV birds around the laying period, from 11 days before laying until eight days 404 

after (figure 3F, Table S1B). An additional linear model including treatment and time between 405 

catching and bleeding, run on the period 11 days before laying to eight days after, confirmed 406 

that testosterone levels were higher in the HIPV group than in the control group for this time 407 

period (F1,32 = 6.56, p = 0.02, η2 = 0.17, figure 3G). 408 
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409 
Figure 3: Hormonal profiles for 17β-estradiol (E2) in females and testosterone (T) in male 410 
great tits.  411 
A-B: E2/T profiles of females/males relative to the female egg laying date. Each line depicts 412 
one individual.  413 
C-D: E2/T profiles of females/males in the HIPV and control groups. Predicted values of the 414 
GAM model and 95% confidence interval are depicted. 415 
E-F: The line represents the differences between the mean control and the mean HIPV curves 416 
from figures C-D for E2 and T levels, respectively. The area around the line represents the 95% 417 
confidence interval for the estimation of this difference. Line and area are red when the 418 
confidence interval overlap zero, i.e. that hormone concentration between the control and the 419 
HIPV curves are not significantly different, otherwise they are blue. T concentrations is 420 
significantly different around the laying period, from 11 days before laying to 8 days after. 421 
 422 
  423 
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Discussion 424 

 We found no evidence that great tits exposed to HIPVs, an olfactory cue released by 425 

trees in response to caterpillar infestation, advanced their laying date, laid larger clutches or 426 

produced larger eggs in captivity. We however found that males in the HIPV group had higher 427 

concentrations of testosterone than control males just before and during the female laying 428 

period. These results suggest that males, more than females, adjust their sexual behaviours 429 

in response to odorous alarm signals emitted by trees in spring. 430 

 431 

One main finding of our study is that males exposed to HIPVs had higher testosterone 432 

(T) levels during the laying period than control males. Graham and colleagues (Graham et al. 433 

2021) found a similar relationship between HIPVs detection and T levels in male blue tits. After 434 

having trained birds to associate the presence of HIPVs with that of food, they found a positive 435 

correlation between the time spent close to the HIPV-emitting trees and male T levels (Graham 436 

et al. 2021). Males could use HIPVs as an environmental signal indicating higher food 437 

abundance (Horiuchi et al. 2003; Girling et al. 2011; McCormick et al. 2012; Miresmailli et al. 438 

2012) and upregulate their T levels accordingly, as it has been observed with other stimuli like 439 

the presence of a nest box in starlings (Sturnus vulgaris(Gwinner et al. 2002) or food availability 440 

in zebra finches (Taeniopygia guttata(Lynn et al. 2015). Since T concentrations in males are 441 

associated with courtship and mating behaviour (Silverin 1980; Ketterson et al. 1992; Enstrom 442 

et al. 1997; Hill 1999), males could have upregulated their hormonal status in response to 443 

HIPVs to stimulate their female to invest in reproduction.  444 

Males reacted to HIPVs, but we did not find that females adjust their timing of laying, 445 

clutch size or egg size when exposed to the odorous treatment. This goes against our initial 446 

prediction of a higher investment of females following detection of HIPVs, but is in line with a 447 

recent study in which adding artificial HIPVs around nest boxes in the wild did not advance 448 

laying, nor increase individual clutch sizes (Delaitre et al., in prep). Another recent study with 449 

blue tits found that HIPVs increased female ovarian follicle size, but that was restricted to fast 450 

exploring females, a proxy for personality (Caro et al. 2023). The absence of a clearer effect 451 
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of HIPVs on female reproduction remains surprising given that HIPVs represent a seemingly 452 

good predictor of caterpillar phenology and abundance in spring, when insectivorous birds like 453 

great tits start breeding. HIPVs are indeed already emitted when oak tree buds are growing 454 

and young caterpillars just hatched from their eggs (Graham et al. 2023), and high 455 

concentrations of HIPVs in the environment indicate higher herbivorous insect availability 456 

(Horiuchi et al. 2003; Girling et al. 2011; Miresmailli et al. 2012). The present results are also 457 

surprising knowing that female tits are able to detect HIPVs and to use them in a foraging 458 

context (Amo et al. 2013; Rubene et al. 2019; Graham et al. 2021; Sam et al. 2021; Rubene 459 

et al. 2023). We presently see three potential explanations for the lack of an effect of HIPVs 460 

on reproductive timing and investment in our captive great tits. 461 

First, the influence of supplementary cues on reproductive traits is generally subtle and 462 

often requires long-term experiments with large sample sizes to be able to detect an effect at 463 

the individual level. For example, while several correlative studies conducted in the field have 464 

repeatedly shown a link between temperature and seasonal timing of reproduction in birds 465 

(Visser et al. 2003; Dunn 2004; Charmantier et al. 2008), it took almost ten years of 466 

experiments in controlled conditions to understand the direct effect of temperatures on timing 467 

of reproduction in great tits (Visser et al. 2009; Schaper et al. 2012; Verhagen et al. 2020). In 468 

the present study, it is important to stress that we only conducted this experiment for one 469 

breeding season, and with only 30 females analyzed. Advancing laying dates experimentally 470 

using supplementary cues has generally proven difficult, very few studies using natural 471 

photoperiodic profiles managed to induce laying earlier than what females would normally do 472 

(Nilsson and Svensson 1993; Gienapp and Visser 2006; Visser et al. 2009; Schaper et al. 473 

2012).   474 

Second, the sole presence of HIPVs might not be sufficient to trigger laying and 475 

increase investment in reproduction. Contrary to males that already exhibit robust gonadal 476 

response to the change in day length (Farner and Wilson 1957), female reproduction results 477 

from a complex association of several environmental cues (Wingfield and Kenagy 1991; Ball 478 

and Ketterson 2008; Nakazawa et al. 2023), which could explain why it is difficult to show an 479 



19 
 

effect of each cue tested in isolation of the others. This mainly owes to the supplementary 480 

nature of those cues, which only modulate the powerful effect of photoperiod (Wingfield et al. 481 

1992). Temperature, food and water availability, social cues from conspecifics or 482 

heterospecifics are all cues that birds are likely to use to decide when to breed and how much 483 

to invest in it (Chmura et al. 2019), and females, more than males, might integrate those cues 484 

together for their annual reproductive decisions (Caro et al. 2009). For example, social 485 

interactions among breeding pairs were by design completely excluded from this study. If this 486 

isolation was necessary to precisely control the odorous signals to which each pair of birds 487 

was exposed, we cannot exclude that neighboring pairs are eavesdropping each other's in the 488 

wild, or that they come to some kinds of mutual agreements. In that context, future studies 489 

should consider testing the interactive action of multiple cues, like HIPVs and temperature for 490 

example. 491 

Third, for an unknown reason, great tits in climate aviaries started laying particularly 492 

early in 2021. It was in fact one of the first times that captive females at the NIOO laid earlier 493 

than great tits in the wild (first egg date in our experiment : 7th April; first egg date in the wild: 494 

17th April), which on average lay three weeks earlier than in captivity (Visser et al. 2009). 495 

Inducing an even earlier lay date in our experiment was thus probably even more difficult than 496 

usual. Our captive birds also lay surprisingly large or small broods compared to the wild. We 497 

have observed some clutches with only 1 (n = 2), 2 (n = 1) or 3 (n = 1) eggs and others with 498 

18 (n = 1) and 19 (n = 2) eggs, whereas the usual average clutch size in great tit varies from 7 499 

to 12 eggs (Perrins and McCleery 1989). Such a large, unexplained, variance in clutch size 500 

renders the detection of a HIPV treatment effect quite challenging.          501 

We found no evidence for an effect of our HIPV treatment on 17β-estradiol (E2) levels 502 

in females. Given that E2 is tightly correlated with rapid yolk development (Williams et al. 2004), 503 

and that we found no effect of HIPVs on laying dates or clutch sizes, finding no link between 504 

E2 and HIPVs might therefore not be surprising. E2 is also under control of the gonadotropin 505 

hormone LH, which in female great tits was found not to be influenced by the visual 506 

presentation of leafing branches and caterpillars (Schaper et al. 2011). On the other hand, in 507 
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a recent study we found an effect of HIPVs on the growth of ovarian follicles, which produce 508 

E2, but that was restricted to a subset of females that were more exploratory when exposed to 509 

a novel environment (a proxy for personality(van Oers and Naguib 2013; Caro et al. 2023). 510 

  511 

In conclusion, our results do not provide evidence that odours released by developing 512 

tree buds in response to caterpillar infestation trigger laying or increase reproductive 513 

investment in female great tits, even though they have been shown to attract females as well 514 

as males in a foraging context (Amo et al. 2013; Rubene et al. 2019; Graham et al. 2021), and 515 

to modulate female gonadal responses in some cases (Caro et al. 2023). The picture in males 516 

is clearer, with a higher plasma testosterone in the presence of HIPVs (Graham et al. 2021). 517 

The fact that males are generally less picky than females in terms of environmental signals 518 

eliciting a reproductive activation suggests that HIPVs might well be a player in the 519 

reproduction of insectivorous birds, but that it is challenging to detect and requires longer, or 520 

more complex experimental designs. Future studies should now focus on how detection of 521 

HIPVs could affect reproductive decisions, offspring condition and reproductive success in the 522 

wild, and on how females weigh the different environmental signals shaping their reproductive 523 

decisions.   524 
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