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Abstract

Unicellular organisms such as yeast can survive in very different environments thanks to a polysac-
charide wall that reinforces their extracellular membrane. This wall is not a static structure, as it
is expected to be dynamically remodeled according to growth stage, division cycle, environmental
osmotic pressure and ageing. It is therefore of great interest to study the mechanics of these organ-
isms, but they are more difficult to study than other mammalian cells, in particular because of their
small size (radius of a few microns) and their lack of an adhesion machinery. Using flat cantilevers, we
perform compression experiments on single yeast cells (S. cerevisiae) on poly-L-lysine-coated grooved
glass plates, in the limit of small deformation using an atomic force microscope (AFM). Thanks to a
careful decomposition of force-displacement curves, we extract local scaling exponents that highlight
the non-stationary characteristic of the yeast behavior upon compression. Our multi-scale nonlinear
analysis of the AFM force-displacement curves provides evidence for non-stationary scaling laws. We
propose to model these phenomena based on a two-component elastic system, where each layer follows
a different scaling law..

Keywords: yeast wall, multi-layer elastic model, atomic force microscopy, scaling laws

1 Introduction

Among natural kingdoms, plants, fungi and uni-
cellular microorganisms (yeasts, bacteria, algae ...)
differ from multicellular animals by their intra-
cellular structure and a rigid wall that reinforces
the extracellular membrane and can sustain quite
high turgor pressure (from 0.5 MPa in exponen-
tial growth phase to 1.5 MPa in the stationary
phase for yeast) [1]. These cells regulate their vol-
ume, depending on the drop of pressure between

the intracellular (Πi) and the extracellular media
(Πe), the difference ∆P = Πi − Πe is defined
as the turgor pressure. Even if yeast cells have
rather simple geometries, their mechanical behav-
ior integrates different mechanical forces; com-
pressive (or tensile) and shear forces from their
environment with turgor pressure derived forces.
Saccharomyces cerevisiae, also called the bud-
ding yeast, that is investigated here, has often
been approximated by spherical shells. Actually
its shape is more elliptic than spherical, leading
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to a preferential position (polarization) of its bud
which is driven by turgor pressure during mitosis
[2]. Thanks to its β-glucan and titin cross-linked
chains [3], the yeast cell wall (YCW) primary
role is to compensate the tensional stress gener-
ated by turgor pressure. Assuming that the YCW
thickness is negligible versus the cell radius, for a
typical cell radius R of 2.5 µm, the tension T cre-
ated by a turgor pressure of ∆P = 1MPa would
be[4] T = PR/2 = 1.25N/m. The YCW tension
appears therefore as a compromise for both cell
division and survival. Compression experiments
that exceed this wall tension may lead to cascades
of local ruptures or unbinding of the wall glucan
chains and finally a global disruption [5]. Cascades
of local fracture events observed in living cell fiber
networks were described with one-dimensional
catastrophe models following lognormal statistics
[6–8].

Since the early nineties, the atomic force
microscope (AFM) emerged as a powerful tool
because of its ability to probe biomaterials from
nanometre scales (biomolecules) up to several tens
of micron scales (subcellular organelles, cells, mul-
ticellular organisms) with forces in the range of
tens to hundreds of nanoNewtons, under near
physiological conditions [9]. The enthusiasm of
the scientific community for this technique never
faded away, and it is now a gold standard for
cellular imaging and viscoelasticity measurements
at molecular and cellular scales [10, 11]. Whereas
AFM was immediately and predominantly used as
a surface imaging technique for micro-organisms
(see chapter 3 of [10] and [12]), different imag-
ing protocols were tested with liquid or with dried
samples, facilitated by the robustness of these
microorganisms thanks to their wall. Measuring
and interpreting the short and long range forces
involved in AFM indentation on microorganisms
such as bacteria was not straightforward [13],
as it required taking into account both surface
interaction forces and submolecular mechanical
responses (viscoelasticity, hyperelasticity, dam-
age) of the cells to external stresses or strains.
The discrepancy between sharp indentation exper-
iments (small deformations) and micromanipu-
lations (large deformations) remained a source
of confusion. AFM compression of microorgan-
isms, such as bacteria, was not straightforward

[13], as it required taking into account both sur-
face and internal forces (viscoelasticity, hypere-
lasticity, turgor pressure) to analyse the cellular
responses to external stresses or strains. However,
some publications were able to combine the two
approaches and propose original ideas about the
specific mechanical behaviors of S. cerevisae [14]
and Staphylococcus epidermidis bacteria wall [15].

Mathematical models for plant cells with walls
should include not only the features of yeast,
such as turgor pressure, wall tension [16], but
also the possibility of dynamic reorganisation of
the wall chain network (poroelasticity) and/or
water flowing through it. This could mean tak-
ing into account the complex and heterogeneous
macromolecular structure of the wall with inter-
twined glucan fibrils. Although many computa-
tional models have been developed to describe
the intricate fibre networks of planar cell walls
[17, 18], the dynamic reorientation of the fibres
under strain has rarely been considered in living
small unicellular organisms such as yeast. Origi-
nal models for the mechanics of microcapsules and
shells that considered them as elastic membranes
provided a theoretical basis for the identifica-
tion of mechanical parameters from single cell
experiments on yeast [19].

As these early models did not include the
effect of turgor pressure, they were not suitable for
analysing large deformations [20]. More recently,
turgor pressure has also been introduced into
such models [21–23] and compared with single cell
compression on yeast cells. Reminding that the
yeast Saccharomyces cerevisiae is surrounded by
a 100-150 nm wall that represents 10-25% of its
dry mass [24], to properly sense turgor pressure,
it would be necessary to perform deformations
beyond this length and capture the late stress
increase, which would be the signature of either
the turgor pressure within the cell wall (which
implies wall tension) or a larger-scale deformation
of the spherical cell wall. This is an important
issue that was not addressed in this manuscript.
However, the method proposed in this manuscript
is well suited to investigate this issue.

In this work, we combine plane-plane AFM
compression experiments of single yeast cells with
a refined non-linear analysis of force-indentation
curves, based on a multiscale methodology. In
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section 2 we describe the experimental meth-
ods, the AFM force curves calibration, their fil-
tering and correction for further analysis. The
force versus displacement curves were corrected
by cantilever stiffness, filtered, and derivated to
extract different characteristics such as scaling law
exponents, effective tension, dissipative loss. This
study required a quite large number of force curves
to reach a statistical relevance of the mechanical
parameters that were extracted from them. Com-
paring different compression velocities, we con-
clude that for the depth of compression performed
in this study (limit of small deformations), these
cells behave essentially as elastic shells [21]. The
strength and the originality of our approach relies
on a careful computation of the force-displacement
curve derivatives, described in section 2.4.

Thanks to a multi-scale analysis of the force
curves, we demonstrate that the force curves do
not follow simple power laws since the force curve
scaling exponent αeq is not constant but follows
a non-monotonous function with the compres-
sion distance. Interestingly, this exponent crosses
a maximum value at a specific distance which
can be compared to a characteristic scale of
the cell wall sub-layers. Inspired from the differ-
ent models proposed in the literature for elastic
spheres and shells, we generalize Bonilla and co-
authors approach [25] by considering in section 3
the possibility of non-integer scaling laws for the
force-displacement curves and we propose simple
bi-component elastic models that reproduce fairly
well the experimental behavior. The compres-
sion experiments were performed at different scan
velocities simultaneously to the proliferation of
yeasts, keeping the same culture medium, we have
selected for illustration here those performed in
lactate based synthetic medium. In the last section
4, we discuss our experimental results under the
light of the bi-component elastic models intro-
duced in section 3, in particular those including a
self-cancelling sub-layer, suggesting not only that
the fibrillar structure of the wall could produce
its soft-glassy or power-law behavior (nonlinear
elasticity) [26] but also that one of the compo-
nent of the wall (presumably the mannoprotein
outer layer) could be completely compressed to
reveal the mechanical stiffness of the underlying
glucan-chitin network.

2 Materials and Methods

2.1 Yeast cell cultures and growth
survey

The Saccharomyces cerevisiae strain
BY4742(WT) (MATα; his3∆1; leu2∆0; lys2∆0;
ura3∆0) [27] (Euroscarf) was used in this study.
Cells were grown aerobically at 23 oC in a syn-
thetic minimum medium (SMM): yeast nitrogen
base 0.175% (BD Difco SKU 233520) with-
out amino-acids [28], KH2PO4 0.1% (WMR),
(NH4)2 SO4 0.5% (WMR), Casein hydrolysate
0.2% (Merk) with sodium-L-lactate 2% (Sigma-
-Aldrich) and Bactopeptone 1% (Difco) (noted
here SMMLAC medium). The choice of synthetic
media was guided by our tests in enriched media,
such as yeast extract-peptone-dextrose with
lactate where we observed a drastic reduction
of the adhesion of yeast cells on poly-L-lysine
treated surfaces, probably due to the saturation
of the positive charges of this layer by nega-
tively charged polypeptidic chains dispersed in
the culture media. The culture medium was sys-
tematically sterilized by autoclaving at 120oC
with 1 bar pressure for 20 minutes. Three amino
acids (adenine, uracil and tryptophan) filtered at
0.2 µm were added to SSM after autoclaving.

Growth was recorded continuously with a
home-designed opto-fluidic (600 nm wavelength)
batch reactor [29, 30]. This opto-fluidic system
was calibrated at the same wavelength (600 nm)
with a Shimadzu UV-300 spectrophotometer with
both 1 mm and 10 mm cuvettes at each stage of
the preparation of the yeast sample (two precul-
tures followed by the real time culture record-
ing in the batch reactor). The two precultures
were respectively (i) a first growth on solid agar
gel in a petri dish, containing YPD (rich glu-
cose medium: KH2PO4 0.1% (WMR), (NH4)2SO4

0.12% (WMR), yeast extract 1% (Difco), glucose
2% (Sigma-Aldrich) and (ii) an incubation for 12
to 24 hours at 30oC under constant stirring of
two CFUs sampled from the first preculture (i),
diluted in 4 mL of the selected culture medium
(SMMLAC). Prior to each spectrophotometric
measure of absorbance before and after cultures,
the solution was homogenized (vortexed) for 30 s
at 2100 rpm.

A typical proliferation curve recorded with the
opto-fludic batch reactor in SMMLAC is reported
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Fig. 1 (a) Plot of the biomass versus time N(t). (b)
Derivative dN/dt of the biomass. (c) log(N(t)). (d)
dN(t)/N(t) = d log(N(t))/dt. Culture medium: SMMLAC.
I. Latence phase. II. Growth phase. III. Transition phase.
IV. Stationary phase.

in Fig. 1. The different growth phases can be dis-
tinguished from the different representations of
N(t). The inflexion point of the curve N(t), cor-
responds to the maximum of dN/dt (red dot in
Fig. 1) marks the transition from the growth phase
II to the transition phase III. The Boundary line
between the phase I and II is estimated from the
residues of a linear fit of log(N(t)) versus t. The
yeast samples which have been used here were
selected in the growth phase II exclusively.

2.2 Coverslip roughening and
poly-L-lysine coating

Because walled cells such as yeast are non motile
and do not have an adhesion machinery equiv-
alent to mammal cells, adhesive or structured
surfaces have been proposed to facilitate their
immobilization, such as filter membrane pores
[31], negatively charged groups (imide, lysine,
silanes) [32], microstructured PDMS stamps [33]
or glycoproteins (concanavaline (ConA) [24, 34]).

The aim of our surface treatment protocol was
twofold. In a first step the glass was grooved to
prevent lateral sliding of the yeasts with small
trenches. Then the grooved glass surface was
coated with poly-L-lysine to fix the yeasts to the
surface.

Glass grinding Round coverslips (diam.
18 mm, Marienfeld ref: 0111580) were first ground
with a Buehler EcoMet 250 grinding machine.
A grinding disc (grit 360) was magnetically
maintained on the rotating platen. The grinding
operation consisted in applying on each coverslip
with thickness 1.3 to 1.6 mm, a constant and
gentle force with a finger tip for 5 minutes at 120

Fig. 2 (a) Schematic of a tipless AFM cantilever in con-
tact with a sphere (lateral view). Given the cantilever tilt
angle (θ = 10◦), good yeast cell candidates for AFM are
selected close enough (typically < 28µm) to the cantilever
edge. (b) Force curves on a flat glass surface. Red lines:
loading scans, green lines: unloading scans. Scan velocity:
1 µm/s. (c) Image of the tipless AFM cantilever with yeast
cells immobilized on a roughened glass plate coated with
a poly-L-Lysine layer. (scale bar: 20µm). (d) zoom of (c)
highlighting in red a round yeast cell underneath the can-
tilever.

RPM under a constant lubricating water flow.
Then the coverslips were rinsed with ultrapure
water flow for several seconds, then with ethanol.
Finally, the coverslip was let to bathe in a 2%
Hellmanex (Hellma) solution overnight and rinsed
in ultrapure water then ethanol the next day.

Coverslip coating with poly-L-lysine The
grooved coverslip was plasma treated for 20 min-
utes to ensure the hydrophilicity of its surface. It
was positioned on the bottom glass of a 35 mm
diameter petridish (Fluorodish FD35-100). A drop
of poly-L-Lysine (0.01% in water - Sigma-Aldrich
25988-63-0) was deposited on its surface to cover
it almost entirely (approx. 50 µL). The system
petri+glass was incubated for at least 1h at 37◦C.
All the following steps were performed at room
temperature (23◦C). The coverslip was rinsed with
a PBS solution and placed in another petri dish
filled with 3 mL of SMMLAC with the yeast cells
for AFM compression experiments.

2.3 AFM operation

AFM experiments were performed on a JPK
CellHesion 200 (now commercialised by Bruker
Corp. MA - USA). Tipless HQ-NSC36 can-
tilevers (MikroMasch - Estonia, commercialised by
Nanoandmore) with Au/Cr coating (30-20 nm lay-
ers) were used. From the three cantilevers (width
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32.5µm, thickness 1 ± 0.5 µm), the middle and
stiffer one (B) was used for this study with nom-
inal spring constant k=2 N/m ± (0.2 - 9 N/m),
length L=90µm and resonance frequency in air:
fR = 130± 90 kHz. Flat micro-cantilevers were
chosen for several reasons: (i) to avoid twisting,
sliding or torsional effects as the cantilever sur-
face approaches the yeast surface, (ii) to limit
off-centre shearing effects that occur when the
indenter tip size is smaller than the cell size, as this
off-centre shearing produces additional shearing
effects on the cell.

AFM calibration

The calibration of the AFM tips was performed
in two steps: (i) a sensitivity and (ii) a spring
constant calibration [35]. The sensitivity step (i)
was estimated by performing loading-unloading
force curves on a clean glass surface. Typical
sensitivity values were estimated for HQ-NSC36
cantilevers of 18 ± 0.5 nm/V. The thermal noise
measurement method (step (ii)) was based on
the equipartition theorem and the dynamic spring
constants were corrected as described in [36, 37]
to obtain the static spring constants (correction
factor chosen for rectangular cantilevers: 0.8197
[38]). Mean spring constants estimated in air for
NSC36 flat cantilevers were 5 N/m for tips B and
5.5±1 N/m in liquid. Calibration of the cantilever
was repeated before each experimental sequence
(approximately 2 hours in length). The difficulty
of focusing the AFM diode laser at the edge of this
smaller cantilever with reproducibility required
that the calibration be double-checked each time.
Interestingly, although the cantilever was delib-
erately aimed at individual yeast cells to collect
force curves, some of them escaped the zone and
instead left a measurement on the glass surface.
This provided us a few force curves on glass for
each cantilever, from which we checked and cor-
rected, if necessary, the cantilever spring constant
(static spring constant).

Yeast cell imaging under the AFM
cantilever

The JPK CellHesion 200 scanner head was cou-
pled to an inverted microscope (Olympus IX71).
Two imaging modes were implemented on this
device, a transmission mode and a reflexion mode
[39]. We notice in Fig. 2(c,d) that the cantilever

looks as if it were transparent, which is not true.
Surprisingly, we can also distinguish the yeast
bodies below the tip of the cantilever, although
with less contrast. In our setup, the light reflected
from the bottom of the cantilever serves as a sec-
ondary light source from which we recover the
image of the yeast cell under the cantilever (indi-
cated by a red arrow in Fig. 2(d)). Most correlative
imaging studies for AFM-based cell mechanics
have focused on fluorescence microscopy [40].
However, the labelling of cellular components with
fluorophores often leads to artefacts, such as insta-
bility and temporal decay of the staining due
to photobleaching, limitation of the labelling to
specific fractions (targeted proteins, membrane
elements, DNA...) of the cells or tissues, laser
degradation for longer investigations. Fluorescent
staining may also have a potential impact on the
energetic metabolism of cells and consequently on
cell mechanics, which consume large amounts of
ATP [41]. In contrast, in this study, the cells’
state is preserved as much as possible during their
transfert to AFM for mechanical testing.

AFM force curve collection from living
yeast samples

A sample volume of between 20 and 80 µL was
pipetted from the yeast batch reactor and diluted
in a 3 mL volume of SMMLAC culture medium
to give, on average, a single yeast under the AFM
cantilever probe surface (30x30 =900 um2). This
corresponds to approximately 106 yeasts on the
9 cm2 surface of the glass coverslip. It is impor-
tant to note that during the growth phase most
of the cells are budding and therefore appear as
doublets under the microscope. The solution was
gently stirred by pipetting back and forth a few
times before being transferred to the AFM reser-
voir. The yeasts were allowed to sediment and
adhere to the coverslip surface for 10 minutes. We
avoided vortexing the cell samples for transfer to
the AFM in order to keep them in a similar envi-
ronment (growth phase) as they were in the batch
reactor, we can also note in Fig 2 small groups
of cells (two doublets could also appear under the
microscope) suggesting that mother and daughter
cells remained close or in interaction for one or
two cycles.
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Constant velocity Z ramps were performed
with AFM, for both loading (red line) and unload-
ing (green line) curves without delay interval
(Figs 2 and 3). Note that for simplicity we will use
the term force curve in place of force-displacement
curve. Six scan velocities were used for each cell :
0.1µm/s (2), 0.5µm/s (5), 1µm/s (5), 5µm/s (5),
10µm/s (5) and 16µm/s (5), giving a total of 27
force curves. Three separated samples were col-
lected from the growth phase (see Fig. 1)) giving
a total of 3*13 cells, with the same velocity ramps
protocol for each, that is 3*13*27= 1053 force
curves in the growth phase. This experiment in
SMMLAC was repeated four times, giving a total
of 4*1053=4212 force curves that were corrected,
filtered and analysed in this study. The sampling
frequency of the force curves was adjusted for each
velocity to keep δZ close to 0.1 nm ± 0.003. This
required therefore a greater sampling frequency
for larger scan velocities, from 1 kHz (0.1 µm/s) to
160 kHz (16 µm/s). This choice was done to keep
the same spatial resolution for the force curves for
the computation of their derivatives dF/dZ and
d2F/dZ2.

2.4 Force curves derivatives

The continuous wavelet transform (CWT) is a
mathematical technique introduced in signal anal-
ysis in the 1980s [42, 43] and since then applied
in many contexts, from sound and vibrations
in physics and engineering, economics, finance,
earthquakes to music or physiological signals.
With the norm L1, the one-dimensional wavelet
transform of a signal F (x) reads:

Wψ[F ](b, s) =
1

s

∫ +∞

−∞
F (x)ψ∗

(
x− b

s

)
dx, (1)

with b the position and s (> 0) the scale parame-
ter, ψ the analysing wavelet, x is a dummy variable
representing Z or δ according to our interests. In
the frequency domain, the expression of the CWT
reads:

Wψ[F ](b, s) =

∫ +∞

−∞
F̂ (f)ψ̂(sf)e2iπfbdf . (2)

We compute the derivatives from the formula:

Wψ[
dF

dx
](b, s) =

1

s
Wψ′ [F ](b, s) , (3)
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Fig. 3 (a) Force curves F (Z) recorded on a yeast cell
with a tipless cantilever. (b) dF/dZ: Derivative of the force
curves shown in (a). (c) d2F/dZ2: Second order derivative
of the force curves shown in (a). The derivatives in (b) and
(c) were computed from wavelet transforms of F (Z), using
different Gaussian mother wavelet widths wo (see text):
14nm for the first derivative, 24.8nm for the second deriva-
tive. Red lines: loading scans, green lines: unloading scans.
The color and black dots correspond to contact (Zc red),
end (Ze green) and unload (Zu black) points. Scan veloc-
ity: 1µm/s. Black lines: loading scans on glass.

Wψ[
d2F

dx2
](b, s) =

1

s2
Wψ′′ [F ](b, s) , (4)

We choose here the family of Gaussian mother
wavelets obtained by successive derivations of the
Gaussian probability density function [43–45]. The
interest of this wavelet transform is to perform
simultaneously the derivation of F and a filter-
ing with a smooth function (the mother wavelet).
The wavelet analysing window size wo is cho-
sen properly to limit the noise introduced by the
derivation. Examples of force curve derivatives are
shown in Figs. 3 and 4.
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2.5 Force curves correction with the
cantilever stiffness

When the stiffness of the cantilever is not much
larger that the rigidity of the tested material,
its bending also contributes to the displacement,
and it is therefore necessary to perform a cor-
rection of the force curves. Eq. (5) shown below
was proposed in previous literature pieces [46] and
we also provide here original analytical expres-
sions for the corrected force curve derivatives (first
and second derivatives). The black force curve
shown in Fig. 3(a) was recorded on glass (stiff,
non deformable surface) with a scan velocity of
1µm/s. Except on the very first nanometers after
tip-surface contact, this curve is linear (the deriva-
tive of this curve shown in Fig. 3(b) is constant).
This means that the force-deflection relation fol-
lows the Hooke’s law: Fd = k(d − d0), where k is
the spring constant of the cantilever and d−d0 its
deflection. We keep d0 ̸= 0, since there may be a
residual flexion of the cantilever. The indentation
or deformation δ of a soft sample upon compres-
sion with the AFM tip reads as the difference
between the cantilever displacement Z − Z0 and
the relative deflection of the cantilever d− d0:

δ = Z − Z0 − (d− d0) = Z − Z0 −
F

k
. (5)

Z0 correspond to the contact point where F =
0 and δ = 0. Except when F (Z) is linear in Z,
the new coordinate δ is a nonlinear function of Z
and the transformation of F (Z) to F (δ) is also
nonlinear. Taking the derivative of Eq. (5) with
F , the corrected first derivative of F : dF/dδ is
obtained:

dF

dδ
=

1

(dF/dZ)−1 − 1/k
. (6)

The second order derivatives d2F/dδ2 can also be
computed,

d2F

dδ2
=

d2F/dZ2[
((dF/dZ)−1 − 1/k).dFdZ

]2 . (7)

dF/dZ and d2F/dZ2 are first estimated from
the experimental force curves with the wavelet
transform (section 3) choosing a wavelet width
large enough to limit the local fluctuations.
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Fig. 4 Illustration of the correction of the force curves
with the cantilever deflection. Two examples of force curves
collected on two different cells of the same batch are
shown in the two column panels. (a,d) F (Z) (red line) and
its correction F (δ) (blue line). (b,e) dF (Z)/dZ (red line)
and its correction dF (δ)/dδ (blue line). (c,f) d2F (Z)/dZ2

(red line) and its correction d2F (δ)/dδ2 (blue line). Black
lines: cantilever reference force curves recorded on glass.
d2F (Z)/dZ2 maxima are marked with filled disks. Scan
velocity: 5µm/s.

A set of uncorrected (red) and corrected (blue)
force curves are shown in Fig. 4. To limit the
noise amplification due to a second derivation, the
inverse of ((dF/dZ)−1−1/k)2 was computed with
a larger analyzing window width w0 ∼ 30 nm,
i.e. one fifth of the total yeast deformation δ (∼
150 nm) (Fig. 4(e) and (f)).

After correction, the force curves and their
increase rate may change drastically if the force
derivative values become too close to the can-
tilever stiffness, hence some bias can be introduced
by the correction itself. Using stiffer cantilevers
implies also a loss of sensitivity, since the can-
tilever deflection (range of its deformation) is
inversely proportional to its stiffness. These curves
were captured on two different cells with the
same cantilever (with the same ‘static’ stiffness
estimated from glass substrate ∼ 6.4 N/m). We
will further discuss the peculiarities of these force
curves and their derivatives in section 3.
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Fig. 5 (a) Load and unload force curves. Wu (green filled
area) and Wℓ −Wu (red filled area). (b) PDF of Wl values
computed from force curves collected from yeast samples in
SMMLAC in the growth phase for different scan velocities
given in µm/s in the legend. (collection times: 5h55, 22h35,
27h30 and 30h10).

3 Results

3.1 Evidence of yeast elasticity

Loading and unloading force curves collected from
soft glassy materials (including living materials)
are rarely superimposed, reflecting that a fraction
of the loading (input) work Wℓ is lost and not
recovered in the unloading (output) workWu. The
dissipation of mechanical work can be written as
the ratio [11, 47]:

Dl =
Wℓ −Wu

Wℓ
(8)

with

Wℓ =

∫ e

c

Fℓ(δ) dδ and Wu =

∫ u

e

Fu(δ) dδ , (9)

c, e and u are the contact (red), end (black)
and unloading (green) points, marked with color
dots in Fig. 3. The integrals Wu and Wℓ − Wu

are color shaded in green and red respectively
in Fig. 5(a). Four yeast samples have been ana-
lyzed for the reconstruction of the PDF Fig.5, on
the same yeast culture in SMMLAC collected in
the growth phase. Five velocities are shown in
Fig.5(b), corresponding to different sets of force
curves: 70 for v = 0.1µm/s, 189 for v = 0.5µm/s,
187 for v = 1.0µ/s, 182 for v = 5.0µm/s, 179 for
v = 10µm/s. Note that the broader distribution of
Dl for the smaller velocities (0.1µm/s) is due not
only to a smaller statistics, but also because this
small velocity scans (performed first in the veloc-
ity series) are more prone to cells instabilities or
rearrangements when the cantilever moves toward
the cells.

The coefficient Dl measures the reversibility
of the force curves; when Dl is close to zero, the

load-unload curves can be considered as superim-
posed and the system behaves as symmetric. As
Dl approaches 1, all the input work is transferred
to the sample and not recovered on unloading, the
process is fully asymmetric. For mammalian cells,
typical values of Dl are > 0.3 for pre-stressed cells
with high stiffness stress fibres, for less adherent
unwalled cells larger values of Dl have been esti-
mated [11]. If dissipation or loss of mechanical
work is involved, the coefficient Dl is expected to
increase with scanning speed. The fact thatDl val-
ues remain limited to 0.1 and thatDl changes little
with scanning speed (see Fig.5(b)) is strong evi-
dence that in the small deformation regime yeast
cells behave as quasi-reversible systems with little
loss of mechanical work. This conclusion validates
our choice of multi-component elastic models in
the next sections.

3.2 Litterature models for yeast
compression

The force curves, collected from yeast cells with
typical diameter 4-6µm, are quite different from
those observed on larger eukaryote cells, not sim-
ply because they have a wall driven by internal
turgescence but also because they do not use focal
adhesion machineries and are more sensitive to
solutes and metabolites inter-cell exchanges [48].
We have shown that their response to compression
is quasi-elastic, for shallow deformation. Interest-
ingly, the ability of yeast cells to adapt to osmotic
or mechanical stress is also dependent on the avail-
able source of carbon [49]. A careful examination
of the force curve derivatives in Fig. 4(b-f) shows
that they do not follow simple power-laws and that
standard pressurized shell models (including or
not turgescence) would not be efficient for their fit-
ting. Such difficulties were originally discussed by
Oliver and Pharr [50] and more recently reported
in [25] with illustrations on AFM indentations of
Lolium multiflorum cells (walled plant cells) and
PDMS layers.

However, even if previous theoretical models
proposed so far for spherical shape organisms com-
pression do not reproduce what we have observed,
they nevertheless bring a theoretical framework
that guide our experiment interpretation. We
report here rapidly those which seem to us the
most relevant. If the yeast cells were made of plain
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and homogeneous material, the compression force
would be expressed from the Hertz theory as:

F (δ) =
4E

3(1− ν2)

√
R0

[
δ

2

]3/2
=

4E

3(1− ν2)
R2

0

[
δ

2R0

]3/2
, (10)

R0 is the radius of the sphere before compres-
sion, ν is the Poisson coefficient, E is the Young
modulus. ϵ = δ/(2R0) is the relative deformation
of the sphere. The scaling exponent αeq would be
3/2. Except in the very first part of the compres-
sion where αeq(δ) increases from 1 to αm, in a very
limited interval of δ values, this scaling does not
appear in our measures. At the very beginning of
the compression (for δ ≲ 10nm), the force curves
could perharps be approximated by Eq. (10) and a
‘small-regime’ Young modulus could be estimated.
At larger compression this approximation is no
longer valid.

The implication of different regimes was men-
tioned quite early for spherical shallow shells
compression. When the compression force is radi-
ally localized and points inwards, two regimes
were suggested by Landau and Liftzhitz [51] and
formalized by Pogorelov [52]. Pogorelov demon-
strated that when the force is small, the deforma-
tion is localized near the point of application and
grows linearly with the force, whereas when the
force is large, a circular fold around the point of
application appears and the displacement becomes
quadradic with the applied force (buckling of the
shell). The transition between the two regimes is
continuous [53]:

F ∼ Eh2

R0
δ, for δ ≪ h ,

F ∼ Eh5/2

R0
δ1/2, for δ ≫ h .

(11)

More recently, Lulevich and co-authors [19]
proposed another model for microcapsule defor-
mation that includes two contributions respec-
tively an elastic stretching energy and a bending
energy. They did not consider the limit where
buckling may be involved. They modelled the
deformation of microcapsules (radius R0) with
solid spheres (RS), and obtained the total reaction

force (load) for RS ≫ R0:

F (ϵ) = λBEϵ
1/2 + λSEϵ

3 , (12)

where the two prefactors λb =
π

2
√
2
h2 for the bend-

ing energy and λS = 4πhR0 for the stretching
energy, with h is the thickness of the microcapsule,
E its Young modulus, ϵ its relative deformation
ϵ = δ/(2R0) scaled by the radius of the micro-
capsule with no dimension, δ being the total
compression displacement.

Eq. (12) provides a quantitative argumenta-
tion for the change of the scaling exponent which
could be produced by two mechanical components
placed in parallel (we will come back to this aspect
in the next sections). Importantly, this calcula-
tion is correct only in the limit of ϵ ≪ 1, for the
smaller ϵ values the 1/2 scaling exponent should
be observed, whereas for larger deformations the
scaling exponent 3 should be expected. The ϵco
value corresponding to the cross-over ϵco of these
two regimes is estimated from the relation:

ϵco =

[
(1− ν)h

2
√
2R0

]2/5
. (13)

Lately, Vella and coauthors proposed another
modelling for pressurized (including turgor pres-
sure) spherical shell compression [21–23], based on
nonlinear equations of shallow shell theory [54].
They demonstrated both formally and numeri-
cally that the force versus deformation crosses over
between two limit regimes, both with exponent 1:

F ∼ k1δ, for δ ≪ h ,
F ∼ k2δ, for δ ≫ h ,

(14)

with k1 ≃ πpR0/ log(2τ), k2 ≃ πpR0, τ =
1
2

√
3(1− ν2)pR2

0/(Eh
2), p the pressure drop.

3.3 Force curve examination and
power-law identification

Definitely, standard methods, based on predefined
power laws (related to cell and indenter geome-
tries) that were proposed for living cells in the past
decade show limitations for yeast cell compression
with flat cantilevers [6, 44, 45, 55–58]. However,
we take advantage here of our previous expertise
on multi-scale analysis for computing force deriva-
tives and, based on analytical argumentations, we
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generalize the MRA approach [25] to design mod-
els of minimal dimension that reproduces fairly
well the force curves.

If we come back to Fig. 4, we observe two
regimes in these corrected force curves, a first
regime with a fast increase of the force deriva-
tive, corresponding to a greater curvature of F (δ)
and a second regime with a slower increase of
the force derivative. Rarely, we could observe that
dF/dδ converges to a horizontal plateau. Interest-
ingly, the correction of the force curves (Eqs (5,6
and 7) does not cancel completely this slowing
down (Fig. 4(b,d)), the force derivative remains
much below the cantilever stiffness. There must be
another mechanism, hopefully due to the cell wall,
which produces this change during the compres-
sion process. We use the maxima of d2F/dδ2 to
identify numerically these transitions points (filled
colored disks in Fig. 4). The value of the first
derivative of the force at this transition point cor-
responds to a turnover tension undergone by the
cell wall before switching to a second compression
regime. We will call this quantity an effective sur-
face tension. At larger deformation, beyond this
transition, different mechanisms can contribute to
the slowing down of the force derivative increase;
(i) a local distension of the wall fibers producing
a shear thining of the wall, (ii) a perfusion of liq-
uid out of the cell that could deflate progressively
the cell and decrease its internal pressure (poro-
elasticity of the cell wall). All these processes
occur beyond a given deformation, which how-
ever remains below the wall thickness typical value
(100 to 150 nm). The position of this transition
δT will be used together with the force derivative
dF/dδ |δT as mechanical markers for these cells.
Noticeably, these experiments were performed in
the very small deformation limit, purposely to
avoid any large scale rupture and to keep the cells
alive. We define dF/dδ |δT as an effective tension
of the cell wall at which this switch occurs.

The log(F ) versus log(δ) plot shown in
Fig. 6(d) highlights the mechanical transition sug-
gested in previous section. Clearly, it is necessary
to characterize the local slopes of these curves
and their change with the deformation variable δ.
Assuming that the force scales in a finite range of
δ as: F (δ) ∝ δαeq , then the local derivative of F
should scale as dF/dδ ∝ αeqδ

αeq−1, which gives a
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Fig. 6 Extraction of the αeq exponent values from force
curves. (a) Force curves F (δ), after correction for cantilever
deflexion. (b) dF/dδ. (c) Ratio F (δ)/(dF/dδ) (Eq. (16)).
(d) log10 F vs log10 δ. (e) αeq(δ) computed from linear
fitting the ratio F (δ)/(dF/dδ). (f) αeq(δ) computed from
log-log fitting F (δ). Scan velocity 1µm/s. The points cor-
responding to the local maxima of αeq(δ) and d2F/dδ2 are
reported with red stars and blue circles respectively.

simple scaling law for F/(dF/dδ):

F/(dF/dδ) = α−1
eq δ . (15)

It can be easily deduced that:

αeq = (dF/dδ)δ/F . (16)

We have therefore two possibilities for computing
the local exponent αeq, (i) fitting the log(F ) ver-
sus log(δ) curves or (ii) fitting F/(dF/dδ) versus
δ curves. Both methods were tested in parallel.
The second representation offers the advantage to
perform a linear fit with equally spaced δ data
points, giving the same weight to all the points.
For the log(F ) versus log(δ) fits, we had to per-
form an interpolation of the log δ points to get
them equally spaced.

If there exists a range of scale in which the
force curve F (δ) scales with a single exponent,
as suggested by the experimental bi-logarithmic
force curves (Fig. 6(d)), we should get this expo-
nent value with either of these fitting procedures.
However, comparing the αeq(δ) plots obtained
with these two methods (Fig. 6(e,f)), we observe
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that the bilogarithmic fits give much more noisy
estimations than the F (δ)/(dF/dδ) ratio.

We have therefore preferred the extraction
method based on the F (δ)/(dF/dδ) ratio for its
greater robustness. Interestingly, because dF/dδ
is also computed through the wavelet transform
filtering (Eq. (3)), it smooths the computation of
F/(dF/dδ). The shape of αeq(δ) is very interest-
ing, since it highlights the fact that αeq is not
constant; in a first stage αeq increases sharply
from 1 and reaches a plateau (more or less flat-
tened) and in a second stage it decreases more
softly. αeq(δ) is asymmetric, the two regimes which
are involved before and after the transition are
therefore expected to be of different nature. We
note δαm the abscissa are which αeq(δ) is maxi-
mum. It can be estimated from each force curve,
in Fig. 6(e), its position is marked by red stars on
5 consecutive force curves recorded from the same
cell with the same scan velocity (1µm/s). The local
maxima of d2F/dδ2, δT are also marked by blue
circles. These two transition points are close to
each other, but we cannot conclude here that they
overlap.

We have pointed out three types of models in
section 3.2, one model (Eq. (refeq:Hertzsphere))
with a constant exponent, one model with two
exponents giving the force as the sum of two power
laws (Eq. (12)) and two models with two limit
regimes with a different effective scaling exponent
at very small deformation than at large deforma-
tion (Eqs (11) and (14)). Surprisingly, the force
curves obtained from these compression experi-
ments are very different from these theoretical
predictions. However, if we examine closely the
predictions of Vella and co-authors [21–23], we
find that they demonstrate the occurrence of two
distinct power law regimes with the same expo-
nent 1, which would suggest that in the interme-
diate regime the effective exponent α is no longer
1 and that it must make a non-linear incursion
between these two limits. This model is actu-
ally the closest representation of our experimental
configuration, since it considers not only the pla-
nar compression but also the pressurisation of the
shell. It would be interesting to calculate the αeq
introduced here from their simulated data and
compare it with our experimental estimates.

Here we design multi-component elastic sys-
tems, in line with Bonilla and co-authors [25]

Fig. 7 Schematic of the system with two mechanical com-
ponents (1) and (2) in series (a) and in parallel (b).

multi-regime analysis (MRA) elaborated from a
general multi-resistor mechanical system for fit-
ting the experimental data. Two configurations
are considered, a system with two components in
series (Fig. 7(a)) and a system with two compo-
nents placed in parallel (Fig. 7(b)).

3.4 Association of two standard
elastic elements

3.4.1 Parallel association

The ‘parallel’ system involves two mechanical
components placed in parallel (Fig. 7(b)). Each
element follows a generalized stress-to-strain rela-
tion. We have:

F1 = R1

(
δ
ℓ1,0

)α1

,

F2 = R2

(
δ
ℓ2,0

)α2

,

F = F1 + F2 , δ = δ1 = δ2 .

(17)

F is the compression force, R1 and R2 are scal-
ing factors with the dimension of forces, ℓ1,0 and
ℓ2,0 are scaling lengths, δ1 and δ2 are the displace-
ment of each component. δi = 0 when F = 0. We
have introduced factors Ri and ℓi,0, i = 1, 2 for
each component, not only to keep the homogene-
ity of Eqs (17) whatever the exponents α1 and α2,
but also to introduce the characteristic size and
strength of each component.

The computation of dF/dδ is immediate:

dF

dδ
=
dF1

dδ
+
dF2

dδ
=
α1

δ
F1 +

α2

δ
F2 . (18)
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Fig. 8 Force curves predicted by the parallel model
Eq. (17). We take α1 = 1.2, R1 = 8, ℓ1,0 = 5, and
α2 = 1.8, R2 = 0.08, ℓ2,0 = 1, to mimick what is observed
in experimental force curves. (a) Force displacement curves.
(b) Derivatives of the force curves. (c) Force displacement
curves in log-log scales. (d) αeq(δ) curve computed from
the local slope of (c). black lines: component (1), blue lines:
component (2), red lines: sum of components.

αeq introduced in Eq. (16) can be computed as:

αeq =
α1F1 + α2F2

F1 + F2
=
α1 + α2F2/F1

1 + F2/F1
. (19)

Given that

F2

F1
=
R2(ℓ1,0)

α1

R1(ℓ2,0)α2
δα2−α1 = Aδα2−α1 , (20)

with A =
R2(ℓ1,0)

α1

R1(ℓ2,0)α2
, we obtain:

αeq =
α1 +Aα2δ

α2−α1

1 +Aδα2−α1
. (21)

If we assume that 1 ≤ α1 < α2, from Eq. (21) we
get the limit values:

lim
δ→0

(αeq) = α1 and lim
δ→+∞

(αeq) = α2 . (22)

With the parallel association of two mechanical
components, αeq increases monotonously from the
smallest exponent (α1) to the largest one (α2) (see
Fig. 8(d)).

3.4.2 Series association

The ‘series’ system is the sum of two mechani-
cal components placed in series (Fig. 7(a)). The
generalized stress-to-strain relations are:

F1 = R1

(
δ1
ℓ1,0

)α1

F2 = R2

(
δ2
ℓ2,0

)α2

F = F1 = F2 , δ = δ1 + δ2

(23)

The parameters R1, R2, ℓ1,0 and ℓ2,0 are defined as
above for the parallel model. F is the compression
force.

From Eqs (23), we compute the total displace-
ment δ and the derivative of the force dF/dδ:

δ = δ1 + δ2 = ℓ1,0

[
F

R1

]1/α1

+ ℓ2,0

[
F

R2

]1/α2

.

(24)
and

dF

dδ
= F/

[
ℓ1,0
α1

(
F

R1

)1/α1

+
ℓ2,0
α2

(
F

R2

)1/α2
]
(25)

αeq can then be computed from Eq. (15):

δ

αeq
=

F
dF
dδ

=
δ1
α1

+
δ2
α2

, (26)

If we replace δ1 = δ − δ2, we get the relation:

1

αeq
=

1

α1
+
δ2
δ

(
1

α2
− 1

α1

)
. (27)

It is possible in that case of series association to
express δ2/δ in function of F :

δ2
δ

=
ℓ2,0

(
F
R2

)1/α2

ℓ1,0

(
F
R1

)1/α1

+ ℓ2,0

(
F
R2

)1/α2
, (28)

or equivalently

δ2
δ

=
1

1 +
ℓ1,0
ℓ2,0

(
1
R1

)1/α1
(

1
R2

)−1/α2

F (1/α1−1/α2)

.

(29)
Assuming that 1 ≤ α1 < α2, then 1 ≥ 1/α1 >

1/α2; or 1/α1 − 1/α2 ≥ 0. We can calculate the
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Fig. 9 Force curves predicted by series model Eq. (23). We
take α1 = 1.2, R1 = 8, ℓ1,0 = 5, and α2 = 1.8, R2 = 0.08,
ℓ2,0 = 1, to mimick what is observed in experimental force
curves. (a) Force displacement curves. (b) Derivatives of
the force curves. (c) Force displacement curves in log-log
scales. (d) αeq(δ) curve computed from the local slope of
(c). black lines: component (1), blue lines: component (2),
red lines: sum of components.

following limits:

If F → 0 then
δ2
δ

→ 1 and
1

αeq
→ 1

α2
, (30)

If F → +∞ then
δ2
δ

→ 0 and
1

αeq
→ 1

α1
. (31)

In the example of Fig. 9(d), we observe that
αeq decreases monotonously from the largest expo-
nent (here α2) to the smallest one (α1). With the
series mechanical model of Eq. (23), this decrease
of αeq is observed for any couple of exponents
(α1, α2). We can conclude that this model cannot
either reproduce the bell shape of αeq(δ) extracted
from the experiments (such as those of Fig. 6(e)).

3.5 Self-canceling component

The previous parallel and series two mechanical
component systems are not adequate for repro-
ducing the experimental αeq curves. We were
therefore interested in a component that could
not be deformed beyond a thickness h (we take

h = 30 nm as exemple in Fig. 10). In other
words, when the displacement δ gets close to the
value h, the force diverges and the corresponding
mechanical component no longer deforms:

F (δ) = R

[
δ

ℓ0

]α
1

h− δ
, for δ < h . (32)

Mathematically speaking F can be expressed
in the sense of distributions as:

F (δ) = F

[
δ

ℓ0

]α
1

h− δ
[H(δ)−H(δ − h)] , (33)

where H(δ) is the Heaviside function. This expres-
sion is more rigorous from a mathematical point
of view, particularly with regard to discontinu-
ity points of the function δ and/or its successive
derivatives (δ = 0, δ = h). However, its use
leads to more complex calculations, especially
with its successive derivatives and with its loga-
rithm, which require Cauchy principal values (see
chap. 4 of [59]). We will therefore restrict the fol-
lowing calculations to the case where δ ∈]0, h[, for
the sake of simplicity.

The first derivative of F reads:

dF

dδ
=
αh+ (1− α)δ

(h− δ)δ
F . (34)

From Eq. (16), we get the relation for αeq:

αeq =
αh+ (1− α)δ

h− δ
. (35)

and for the limits at the edges of the interval ]0, h[

lim
δ→h−

(αeq) = +∞ , lim
δ→0+

(αeq) = α . (36)

We observe that the plot of αeq versus δ1 in
Fig. 10(d) diverges when δ → h−, in the same
way as F (δ) and dF/dδ(δ). This self-cancelling
mechanical component is particularly interesting
in a formal aspect since if we place it in series with
another component, after a given deformation its
should no longer contribute to the mechanical
response, whereas if we place it in parallel with
another component it should impede a further
compression for the whole mechanical associa-
tion. In the first case, it ‘disappears’ from the
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Fig. 10 Force curves computed for a single self-cancelling
component Eq. (32). α = 1.2, R = 8, ℓ0 = 5, h = 30.
(a) Force displacement curves. (b) Derivatives of the force
curves. (c) Force displacement curves in log-log scales. (d)
αeq(δ) curve computed from Eq. (35) (black line) and from
the local slope of (c) (red dashed line).

response and in the second case it monopolizes the
mechanical response.

We discuss the parallel association of two elas-
tic components in the supplementary ESI file
† (Section 1.2) and conclude that this parallel
association of a self-cancelling element with a non-
linear elastic component cannot reproduce what
has been observed in our single yeast cell com-
pression experiments. We focus here on the more
interesting case of series association.

3.5.1 Self-canceling element in series

We consider now the association in series of a
self-cancelling element with a standard nonlinear
elastic mechanical component. We replace the first
relation of Eq. (23) by a self-cancelling element
and we get:

F1(δ1) = R1

[
δ1
ℓ1,0

]α1
1

h−δ1 , for δ1 < h

F2(δ2) = R2

[
δ2
ℓ2,0

]α2

, for 0 ≤ δ2 ,

F = F1 = F2 , δ = δ1 + δ2 .

(37)

The first derivative of F reads:

dF

dδ1
=

R1

ℓα1
1,0

[
δα1−1
1 (α1h+ (1− α1)δ1)

(h− δ1)2

]
=

(
α1

δ1
+

1

(h− δ1)

)
F (38)

and
dF

dδ2
=

R2

ℓα2
2,0

[
α2δ

α2−1
2

]
=
α2

δ2
F . (39)

From Eq. (16) and previous Eqs (38) and (39),
we can obtain:

αeq =
δ

F

dF

dδ
=

δ1 + δ2
δ1

α1+δ1/(h−δ1) +
δ2
α2

, (40)

with δ = δ1 + δ2, δ1 ≤ h.
Importantly, in the limit of δ → +∞ ≫ h, δ1

is bounded by h and δ = δ1 + δ2. It corresponds
to δ2 → +∞, then αeq ∼ δ2

δ2/α2
= α2. Therefore

αeq → α2 when δ → +∞, independently of α2 >
α1 or α2 < α1.

The limit for δ → 0, δ1 ≪ h and δ1
h−δ1 “small”,

as compared to α1:

αeq ∼
δ1 + δ2
δ1
α1

+ δ2
α2

=
1 + δ2

δ1
1
α1

+ δ2
α2δ1

. (41)

In the limit δ → 0, either δ2/δ1 → 0 and then
αeq → α1 or δ1/δ2 → 0 and then αeq → α2.

The transition regime is obtained when inter-
mediate values of δ1 become close to h and δ =
δ1 + δ2 > h remains finite; we can write δ1 =
h(1− ξ) with ξ ≪ 1 and δ = δ1+ δ2 = h−hξ+ δ2.
From Eq. (40) we get:

αeq =
h− hξ + δ2
h(1−ξ)

α1+(1−ξ)/ξ +
δ2
α2

, (42)

and lim
ξ→0

αeq ∼ α2

(
δ

δ − h

)
. It can be noted that

when δ → h+ (δ1 ∼ h and δ2 → 0+), αeq increases
rapidly.

In Fig. 11 we use α1 = 1.2 and α2 = 1.8,
as with previous two-mechanical component sys-
tems. With the introduction of the self-cancelling
element, we observe a similar behavior as the one
observed on experimental force curves. The local
exponent αeq(δ) goes through a maximum value
αm for δαm

, and the position of this maximum is
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Fig. 11 Force curves computed for a series association of
a self-cancelling component and a nonlinear elastic compo-
nent Eq. (37). α1 = 1.2, R1 = 8, ℓ1,0 = 5 (black lines)
and α2 = 1.8, R2 = 0.08, ℓ2,0 = 1 (red lines), h = 30 nm.
(a) Force displacement curves. (b) Derivatives of the force
curves. (c) Force displacement curves in log-log scales. (d)
αeq(δ) curve computed from Eq. (40) (green dotted line)
and from the local slope of (c) (red line).

not precisely h but is slightly larger than h. Again
this is only an example for which we have chosen
realistic values for α1, α2 and h. The asymmetry
of the αeq(δ) curves is well reproduced also, and
from the range of δ values reported here we may
anticipate that it will converge to the exponent
α2 of the sublayer (2). We can also conclude that
the fact that one of the layer introduces a strong
nonlinearity in the compression response of the
whole system that we would never obtain by a sim-
ple combination of standard power-law mechanical
components. The real situation is probably more
complex than what we have described in Eq. (37),
however it highlights the possibility to use these
compression measures not only to validate the
existence of mechanical sublayers of the YCW
with very different behaviors but also to consider
that one of the layer could undergo a drastic
change in its response, leading to highly nonlin-
ear behavior, where its original scaling law would
break. The scale of the transition phenomena
observed in our AFM experiments could corre-
spond the compression limit value of the YCW
outer layer.

4 Discussion

4.1 About experimental
investigations

The difficulty of the experimental investigations
reported in this paper must first be emphasised.
One of the aims of this research is to analyse
long-term cell proliferation processes and their
relationship to cell mechanics. It should be noted
that long-term cultures are not straightforward,
such very long experiments were difficult to per-
form without encountering unpredictable pertur-
bations (spoilage of the samples by environmental
agents, temperature drifts of the room air con-
ditioning, temperature instabilities, tubing leaks,
evaporation, contamination, loss of computer cou-
pling with the system camera). Considering that
each proliferation required a day of pre-culture,
the total duration of a single run could reach about
100 h.

The AFM measurements were also very time-
consuming, as the collection of force curves could
not be automated because cells sometimes escaped
from the cantilever. Yeast cells are very small,
much smaller than most eukaryotic cells that
are typically characterised mechanically with this
nanomechanical tool. AFM has a very high sen-
sitivity and can therefore detect even minute
perturbations. The yeast cells are not adherent
cells, their rounded shape makes their adhesion to
a sticky layer more unstable, the experiments per-
formed at low speed (100 nm/s) often implied a
small drift or rocking of the cells that we could
not analyse properly (Fig. 5(b)).

This work focused on the global compression
of yeast cells, which had to remain sufficiently
stable in their position to allow measurements
to be taken. The valid measurements were not
immediately apparent from a visual inspection of
the recorded signals, but only after calibration
and analysis. This may explain why at least four
runs for each condition were required to collect
two complete experimental runs for each choice of
culture medium.
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4.2 Comparison of d2F/dδ2 and
αeq(δ) curves

In this paragraph, we compare the plots of
d2F/dδ2 and αeq(δ) and in particular their respec-
tive curves and maxima.

In most force curves recorded during AFM
compression of single yeast cells, we observed that
the curvature of the first order derivative of the
force changes from positive below ∼ 50 nm to neg-
ative above (Fig. 12(b)), corresponding to a local
maximum of d2F/dδ2 (Fig. 12(d)).

Remarkably, this transition occurs in the vast
majority of flat cantilever AFM compression
experiments on yeast cells, independent of culture
media and scan velocities. The same is true for
the shape of the αeq(δ) curves, which does not
change much with scan velocity. These observa-
tions will allow us, in the following, to average
the αeq(δ) curves in order to minimise their noisy
fluctuations.

Moreover, this local maximum of d2F/dδ2 also
seems to correspond to the local maximum of
αeq(δ) (see Figs 6(b) and 12(e,f)).

Fig. 12(f) compares the profiles αeq (panel (e))
and the second derivative of the force d2F/dδ2

(panel (d)) as functions of δ for the same exper-
iment as that shown in Fig. 6, for three different
scan velocities (500, 1000 and 5000 nm/s).

We can observe that the detection of the local
maxima of d2F/dδ2(δ) is strongly impaired and
biased by the fluctuations produced by the deriva-
tion method combined to the intrinsic data noise,
the black empty circles (maxima of d2F/dδ2(δ))
are systematically slightly larger than the red stars
(maxima of αeq(δ)) in Fig. 12(e).

Assuming the weak dependence of the curves
d2F/dδ2(δ) and αeq(δ) on the scan speed, we
compute their averages. αeq(δ) is plotted a with
thicker orange line in Fig. 12(e) and d2F/dδ2(δ) is
plotted with a thicker orange line in 12(d). Finally,
αeq(δ) and d2F/dδ2(δ) are plotted together in
Fig. 12(f).

It can be seen that the averaging of the
αeq(δ) curves recorded for different speeds reduces
the fluctuations, unlike the averaging of the
d2F/dδ2(δ) curves. Nevertheless, the difficulty
remains in correctly identifying the maxima of
αeq(δ).
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Fig. 12 Analyzing the change of the power law exponent
αeq with parameter δ. (a) Corrected force curves F (δ). (b)
dF/dδ. (c) Ratio F (δ)/(dF/dδ). (d) Second derivative of
the force curve d2F/dδ2. (e) αeq(δ) computed from linear
fitting the ratio F (δ)/(dF/dδ). (f) Comparison of the aver-
aged αeq(δ) (blue line) and d2F/dδ2 (orange line) curves.
Scan velocities (5 force curves for each): 500 nm/s (green
lines), 1000 nm/s (read lines) and 5000 nm/s (blue lines).
The averaged curves are plotted with thick orange lines
in (b), (d) and (e). The points corresponding to the local
maxima of αeq(δ) and d2F/dδ2 are reported with red stars
and black circles respectively.

To solve this issue, we introduce an analyti-
cal function Φ(δ) that facilitates this identifica-
tion (dashed black line plotted in Fig. 12(e)).
The definition and illustration of Φ(δ) can be
found in the electronic supplementary informa-
tion (EIS) file†: section 1.1:Modelling and fitting
αeq(δ) curves. This function Φ(δ) is a sum of
two well-documented functions, f(δ) and g(δ), and
is used as a support for the local maximum of
the αeq identification; it is not intended to have
any mechanical meaning here. The black dashed
line in Fig. 12(e) is calculated by fitting the
mean αeq(δ) curve (thick orange line) with Φ(δ).
The local maximum is then estimated numerically
from the fitted function Φ(δ). Once the δ position
δαm

corresponding to the maximum of αeq has
been estimated, δαm

and αm are stored and the
corresponding force derivative dF/dδ |αm

is inter-
polated from the mean curve dF/dδ as a function
of δ and stored.

Another technique for estimating the local
maximum of αeq is proposed here. To do this, we
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Fig. 13 Comparison of αeq(δ) (in blue) with d2F/dδ2 (in
orange) curves for (a) the numerical data of the previous
self-canceling element in series illustrated in Fig. 11 and for
(c) the experimental data illustrated in Fig. 6. Compari-

son of
αeq

δ
−

α2
eq

δ
(in blue) with d2F

dδ2
δ
F

(in orange) curves
for (b) the numerical data of the previous self-canceling
element in series illustrated in Fig. 11 and for (d) the exper-
imental data illustrated in Fig. 6.

analytically derive αeq, defined in eq.(16), as a
function of δ. This is easy to find:

dαeq
dδ

=
αeq
δ

−
α2
eq

δ
+

δ

F

d2F

dδ2
. (43)

And when

αeq
δ

−
α2
eq

δ
=

δ

F

d2F

dδ2
, (44)

then
dαeq

dδ = 0.
Previous equation (44) can allow to estimate
graphically the coordinates of local maximum of
αeq(δ): δαm and αm. This procedure was applied
first to the numerical data of the previous self-
canceling element in series illustrated in Fig. 11
and then to the experimental data illustrated in
Fig. 6.

The results for both cases are shown in Fig.
13(b) and (d), where the two curves (αeq−α2

eq)/δ

and d2F
dδ2

δ
F are plotted as a function of δ, respec-

tively. It can be observed in Fig. 13(b) and (d) that
these curves intersect at a point whose abscissa
is close to that of the maximum of αeq. The fact
that the two curves intersect at a point with an
abscissa close to the maximum of αeq reinforces
our approach of modelling the indentation force

as a function of δ by a power law with a non-
constant exponent that depends on δ. Finally,
from these observations, we can conclude to a first
approximation that the two points δT and δαm

(corresponding respectively to a local maximum of
d2F/dδ2(δ) and αeq(δ)) can be considered as sim-
ilar and that we can choose either method (second
derivative of the force or calculation of the αeq(δ)
curve) to identify them from the force curves.

This is an important clue for understanding
how the YCW structure changes at δαm . From
our discussion above, we can consider the value
δαm as a transition point where the wall ten-
sion increase slows down. This behavior must be
related to a switch in the wall structure, that

reverses its behavior (maximum of d
2F
dδ2 ). Imaging

the different components of the YCW, concomi-
tantly to the progression of the cells in the cycle
would help solve this issue. Several attempts have
been published in the literature to stain the wall
components. One recent publication [60] validates
Trypan Blue as relevant stain for chitin, glucans
and other molecules specific to plant cell walls,
as its spectral properties are suited for confocal
microscopy. However, performing these character-
izations would require specific labelling of the
cells and multiple washings of the sample that
alter their proliferation, which are not compatible
with an in vivo culture that preserves the yeast
proliferation stages.

4.3 Statistical distributions for δαm,
αm and dF/dδαm

We collect in Fig. 14 the δαm
, αm and dF/dδαm

distributions computed from yeast cells compres-
sion in SMMLAC medium in the growth phase
(exponential growth). To group the AFM series
depending on the stage of proliferation, we ana-
lyzed the proliferation curves and their derivatives
with standard theoretical growth models such as
Verhulst, Gompertz or rational fractions [29].

Interestingly, the occurrence of a maximum of
αeq(δ), is observed independently of the stage of
growth, however the mechanical parameters may
change with the growth stage [29] (data not shown
here). In the SMMLAC medium we observe in
Fig. 14 that δαm

corresponding to the maximum
values αm remains in the interval from 30 nm
to 80 nm. We also observe that statistically, the
greater αm values occur preferentially for larger
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Fig. 14 Probability density functions computed from
force curves compression of yeast cells in SMMLAC. (a)
PDF of δαm . (b) Scatter plot of dF/dδαm versus δαm . The
size of the circles is proportional to δm. (c) PDF of αm.
(d) PDF of dF/dδαm . 29 cells (giving a total 29*15= 435
force curves) have been selected from the growth phase to
reconstruct these histograms.

δαm
and larger dF/dδαm

. If we consider that this
increase of αeq during the first part of the compres-
sion experiment corresponds to the self-cancelling
of one part of the YCW which reaches its com-
pression limit, we could conclude that the stiffer
cells with the largest effective tension could sus-
tain greater compression forces. However, it is
important to note that the range of δαm

val-
ues rarely extends beyond 100 nm, as if another
deformation mechanism (the compression of the
second sublayer for instance) would be systemati-
cally involved to release the mechanical stress and
reverse the increase of the exponent αeq.

5 Conclusion

5.1 Discussion on the YCW
multilayered structure

This study confirms that the non-monotonous
variation of αeq(δ) curves cannot be reproduced
by previous spherical shell compression models
and hence that the composition, the fine struc-
ture of the wall, can no longer be ignored. Yeast

cell growth relies on an impressive mechanical wall
machinery. These cells can support plastic defor-
mations above a certain stress threshold, involving
plastic components that would allow much larger
deformations under stress [61]. More importantly,
depending on their stage of growth, YCWs can
become thinner and softer to facilitate their local
stretch. Even if this softening is confined to a
small fraction of the wall area, when these cells
are compressed, these zones are likely to be prone
to plastic deformation and failure. These phenom-
ena have previously been reported [4], and indeed
by endowing their weaker and softer wall compo-
nents with the ability to fluidise, yeast cells could
become more resilient in critical environments.

Knowing the composition of the YCW and
its multilayered structure is therefore essential for
interpreting our measurements. The β-1,3 glucan-
chitin complex is the major constituent of the
inner wall. Chitin and β-1,6 glucans are minor
components. Chitin is essentially a cross-linker of
β-1,3 glucans and contributes to the insolubility of
the fibres and β-1,6 glucans link the components of
the inner and outer walls. On the outer surface of
the wall we find mainly mannoproteins, which are
extensively O- and N-glycosylated. Their dense
packing limits the permeability of the wall to
solutes. However, they are not as highly cross-
linked as other glucan-based polymers of the wall
and give the outer layer of the YCW greater plas-
ticity or deformability. This outer layer of manno-
proteins could play the role of a self-cancelling
layer as proposed in our two-layer elastic model. In
particular, changes that occur in the nanomechan-
ical properties of the YCW, such as its tension,
could be explained by the nature and complexity
of the cross-linking network between β1-6-glucans,
mannans and chitin [24, 62–64] and not simply by
the percentage of each of these polymers.

Lactate, used in this study is a non-
fermentable carbon source, and in this particular
situation the hexose phosphates required for cell
wall biosynthesis must be produced by the inverse
process of glycolysis, gluconeogenesis, which is
a more energetically demanding process. The
growth rate is significantly reduced compared to
other fermentable carbon sources, and moreover,
with the lactate carbon source, less carbon source
can be devoted to cell wall biosynthesis, result-
ing in a thinner YCW with a simpler architecture
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(less reinforcement by β-1,3-glucan cross-links in
particular and β-glucan and chitin proportion dra-
matically reduced [65]). The comparison of the
YCW tension evolution with proliferation stages
will be examined in a forthcoming paper [66].

5.2 Taking modelling further: future
developments

The two-component mechanical models that we
have proposed here provided a quite satisfactory
support for explaining which mechanism could
produce the force curves that were recorded during
compression of isolated yeast cells by a flat can-
tilever. One element that plays a key role in this
respect is what we have called the ‘self-cancelling’
element, which describes a highly non-linear and
sudden change close to a given distance (h). Other
mathematical forms could have been proposed, we
do not argue that this formal model is mechan-
ically relevant, but that it can reproduce in a
mathematical sense what happens in the exper-
iments. There is definitely a regime transition
during compression that can be interpreted as a
gradient in the composition and/or structure of
the cell wall. We do not have the means to carry
out further microscopic characterisation of YCWs,
and we hope that our demonstration will stimulate
further work.

A theoretical aspect that we have chosen not
to discuss in detail here, because it would have
required much more mathematical and technical
development, concerns the possibility of modelling
the cell wall as a mechanical component with
continuously varying mechanical parameters, for
example with R(δ) or α(δ) forms. These func-
tions are not simple constructions, since they
challenge the foundations of convolution integrals,
with mechanical kernels that would no longer be
invariant with deformation (Volterra integrals).
Since we limited our experiment to very small
deformations, we believe that our hypothesis of
kernel invariance is correct.

The advantage of the simple two-component
models proposed here is that they can be straight-
forwardly implemented on computers to identify
mechanical parameters such as Ri, ℓi,0 to compare
different yeast mutants through their mechanical
response to compression. A generalisation of this
two-layer elastic model to an n-layer model with
n > 2 can be done in the same line as Bonilla et

al. [25], as a first step towards a continuous model
with a function α(δ).

From the discrete mechanical model to
a continuous model

In this manuscript we choose a mechanical system
combining two elastic components with constant
(time and deformation invariant) elasticity. We
write Eqs. (23) in a simpler form:

F = A1δ
α1
1 , F = A2δ

α2
2 , δ = δ1+δ2 , (45)

from which we can compute αeq =
(dF (δ)/dδ) δ/F :

F

dF/dδ
=

δ

αeq
=
δ1
α1

+
δ2
α2

. (46)

The symmetry of this equation is worth noting
again, it informs us on how each component of
the system contributes to the scaling exponent of
F (δ). Our computational method is well suited
for the estimation of the exponent αeq. Actually,
implicitely, the exponent αeq changes with δ. But
given that in our experiments we force δ to be a
linear function of time: δ = vt; dδ/dt = Cst = v,
very likely the variation of δ1 and δ2 won’t be lin-
ear with t, except if α1 = α2, which implies also
that A1 = A2, and δ1 = δ2.

δ1 + δ2
αeq

=
δ1
α1

+
δ2
α2

(47)

Let us remind that δ1 and δ2 are ≥ 0 and their
derivatives dδ1/dt and dδ2/dt are also ≥ 0, and
hence δ ≥ 0.

1

αeq
=
δ1/δ

α1
+
δ2/δ

α2
(48)

Let us note z(t) = δ1/δ, 1 − z(t) = δ2/δ, αeq
becomes:

1

αeq
=
z(t)

α1
+

1− z(t)

α2
(49)

1

αeq
− 1

α2
= z(t)[

1

α1
− 1

α2
] (50)

If we multiply these two equations by α2, we get:

z(t) = [
α2

αeq(t)
− 1]/[

α2

α1
− 1] (51)
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The fact that z(t) is always positive (both δ1 and
δ are positive) implies also that

α2/α1 > 1 → α2/αeq > 1 (52)

α2/α1 < 1 → α2/αeq < 1 (53)

Since α1 and α2 play a symmetric role we have:

α1 < α2 → α1 < αeq < α2 (54)

α2 < α1 → α2 < αeq < α1 (55)

αeq is bounded by the values of α1 and α2.
This relation is intrinsically encripted in the series
model of Eq. (23). If the experiments are per-
formed in such a deformation range that the two
mechanical components are fully involved, the
limit values at very small and at very large defor-
mation give the exponents α1 and α2, and the
function z(t) can also be computed. Interestingly,
from z(t), we have also access to δ1(t) = z(t)δ(t)
and δ2(t) = δ − δ1(t) = (1− z(t))δ(t).

The importance of the method reported in this
manuscript is actually to give access to this local
exponent αeq. From this quantity, there is much
more freedom to validate which mechanical model
can be most relevant to parametrize the force-
displacement curves. Whatever the local exponent
αeq change with the deformation, this method
remains valid.

To extend the two component model to a con-
tinuous variation of the material scaling laws, it is
possible to consider that the system is made of the
sum of N elastic components in series, each having
a prefactor Ai and scaling exponent αi. Similarly
to Eq. (45), we have:

F (t) = Fi(t) = Aiδ
αi
i (t) ∀ i = 1, 2, ...N . (56)

where the quantities F and δi depend on time. We
have the additional equality:

δ(t) =

N∑
1

δi(t) . (57)

A similar differentiation of F (δi) versus δi, as
above gives:

F

dF/dδ
=

δ

αeq
=

∑N
1 δi
αeq

=

N∑
1

δi
αi

. (58)

Remind that the quantities F , δ, αeq and δi
depend on time. We have the equality:

N∑
1

δi(t)

(
1

αeq(t)
− 1

αi

)
= 0 , ∀t (59)

As N tends to infinity, the discrete variable δi(t)
can be replaced by a continuous variable of dis-
placement ζ(t, z), and for each z ∈ [0, 1], αi by
an exponent α(z), assuming that α(z) does not
depend on time. The equation Eq. (59) then takes
a continuous integral form:∫ 1

0

ζ(z, t)

(
1

αeq(t)
− 1

α(z)

)
dz = 0, ∀t (60)

In a similar way, Eq. (59) can be rewritten as:∫ 1

0

ζ(z, t) dz = δ(t), ∀t (61)

Eq. (60) can be rewritten as a Fredholm inte-
gral equation of the first kind:∫ 1

0

ζ(z, t)
1

α(z)
dz =

δ(t)

αeq(t)
, ∀t (62)

where δ(t)
αeq(t)

can be accessed by measurement.

Knowing a mathematical expression of the
deformation profile ζ(z, t), we could then obtain
an estimate of 1

α(z) by inverting the previous

inverse problem defined by a first kind integral
problem in Eq. (62).

A complete mechanical model that takes into
account the fine fibrillar structure of the wall
should also include a network of cross-linked elas-
tic elements with a predefined geometry (random
orientation, hierarchical, periodic organisation)
for each sublayer, and the possibility of cross-
linking between the different layers. Pieczywek
and co-authors [17] give a brief review of the ongo-
ing research on numerical models that have been
constructed so far, and highlight important devel-
opments that could be made to include molecular
ingredients for cell wall plasticity, elasticity, soft-
ening or loosening. Furthermore, the dynamic
spatio-temporal organisation of the cell wall com-
ponent during growth or its degradation remains
a challenge for even the most sophisticated mod-
elling techniques. Nevertheless, phenomenological
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models such as those proposed here can be con-
structed to approach the fascinating question of
the real-time adaptation of a living walled unicel-
lular organism to compressive strain.

This work has a broad interest for modeling the
mechanics of walled-cells more generally. These
intrinsic nonlinearities of unicellular wall mechan-
ics at small deformation depths (small compared
to the cell diameter, but not its wall thickness)
should be taken into account for mechanical mod-
elling of larger deformation (plastic) regimes. This
modelling brings an additional perspective to the
structural characterisation previously performed
with electron microscopy, and raises the ques-
tion of the interplay of unicellular wall mechanics
with the proliferation conditions (carbon source,
growth stage, environment, confinement).
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