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ABSTRACT

Context. Stars and planets form in regions of enhanced stellar density, subjecting protoplanetary discs to gravitational perturbations
from neighbouring stars. Observations in the Taurus star-forming region have uncovered evidence of at least three recent, star-disc
encounters that have truncated discs (HV/DO Tau, RW Aurigae, and UX Tau), raising questions about the frequency of such events.
Aims. We aim to assess the probability of observing truncating star-disc encounters in Taurus.
Methods. We generated a physically motivated dynamical model including binaries and a spatial-kinematic substructure to follow the
historical dynamical evolution of the Taurus star-forming region. We used this model to track star-disc encounters and the resulting
outer disc truncation over the lifetime of Taurus.
Results. A quarter of discs are truncated below 30 au by dynamical encounters, but this truncation mostly occurs in binaries over
the course of a few orbital periods, on a timescale ≲0.1 Myr. Nonetheless, some truncating encounters still occur up to the present
age of Taurus. Strongly truncating encounters (ejecting ≳10 percent of the disc mass) occur at a rate ∼10 Myr−1, sufficient to explain
the encounter between HV and DO Tau ∼0.1 Myr ago. If encounters that eject only ∼1 percent of the disc mass are responsible for
RW Aurigae and UX Tau, then they are also expected with encounter rate Γenc ∼ 100−200 Myr−1. However, the observed sample of
recent encounters is probably incomplete, since these examples occurred in systems that are not consistent with a random drawing
from the mass function. One more observed example would statistically imply additional physics, such as replenishment of the outer
disc material.
Conclusions. The marginal consistency of the frequency of observed recent star-disc encounters with theoretical expectations under-
lines the value of future large surveys searching for external structures associated with recent encounters. The outcome of such a survey
offers a highly constraining, novel probe of protoplanetary disc physics.
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1. Introduction
Planet formation proceeds in a ‘protoplanetary disc’ of dust
and gas over a timescale of ∼3 Myr (e.g. Haisch et al. 2001).
During this time, nascent planetary systems typically inhabit
star-forming regions with a local stellar density that far exceeds
the average in the galactic neighbourhood (e.g. Lada & Lada
2003). Neighbouring stars in these regions can provide feed-
back on the planet formation process in a variety of ways. These
may include: external irradiation driving thermal winds (Winter
& Haworth 2022, and references therein), chemical enrichment
(Bastian et al. 2013; Lichtenberg et al. 2016; Parker & Schoettler
2023), late-stage gas infall (Dullemond et al. 2019; Kuffmeier
et al. 2020, 2021, 2023) and star-disc encounters (Cuello et al.
2019, 2020, 2023). While all of these processes are of great
interest for understanding the diversity of the observed exoplanet
population, in this work we focus on the latter phenomenon.
‘Star-disc encounters’ refer to gravitational perturbations
⋆ Corresponding author; andrew.winter@oca.eu

experienced by a protoplanetary disc during the close passage
of a neighbouring star.

Various phenomena such as stellar accretion outbursts
(Pfalzner 2008; Forgan & Rice 2010; Vorobyov et al. 2021; Dong
et al. 2022) and spiral arms in protoplanetary discs (e.g. De Rosa
& Kalas 2019) and free-floating planets (e.g. Vorobyov et al.
2017) – possibly including enigmatic binary planet-mass objects
in the Orion Nebula cluster (Pearson & McCaughrean 2023;
Wang et al. 2024; Portegies Zwart & Hochart 2023) – may all
be feasibly attributed to stellar encounters. There remain alter-
native explanations; for example, spiral arms may be produced
by gravitational instability (e.g. Douglas et al. 2013; Meru et al.
2017; Baehr & Zhu 2021) or (sub-)stellar companions (e.g. Dong
et al. 2015; Ren et al. 2020). A search for flyby candidates that
may have generated spiral arms by Shuai et al. (2022) revealed
no evidence that nearby stars recently had a sufficiently close
approach. However, such an effort is challenging due to proper
motion uncertainties and the incompleteness of reliable mea-
surements, particularly if a perturber is very low mass or is itself
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a binary. To assess the role of star-disc encounters for protoplan-
etary disc evolution, we must estimate the rate of encounters in
dynamically evolving star-forming regions.

The rate of stellar encounters, and their role for planet forma-
tion, is dependent on the local stellar density of the star-forming
region. The stellar mass density ρ∗ of star-forming regions can
vary dramatically in the range 1 M⊙ pc−3 ≲ ρ∗ ≲ 106 M⊙ pc−3.
The latter limit represents the most extreme stellar densities in
the galaxy, such as in the cores of globular clusters that remain
bound for a Hubble time (e.g. Krumholz et al. 2019). Interme-
diate densities ρ∗ ∼ 103M⊙ pc−3 are typical in the cores of open
clusters that may survive against galactic tides over 100 Myr or
gigayear timescales. However, possibly the most common envi-
ronments in which stars and planets form are the low density
regions that produce loose ‘associations’, which are globally
unbound against galactic tides. The average density in such
regions has been assumed to be too low to induce frequent tidal
encounters throughout the disc lifetime (e.g. Winter et al. 2018c).

Taurus is an example of a (globally) low density region,
which does however host convincing evidence of at least three
recent close star-disc encounters. These cases are RW Aurigae
(Cabrit et al. 2006; Dai et al. 2015; Rodriguez et al. 2018), HV
and DO Tau (Howard et al. 2013; Winter et al. 2018a), and UX
Tau (Zapata et al. 2020; Ménard et al. 2020). Each of these
systems exhibits a significant external structure that appears to
be explained by recent flybys, sufficiently close such that they
were capable of unbinding disc material. In an unstructured star-
forming region at the average density of Taurus, the probability
of a one-off random encounter over the disc lifetime is vanish-
ingly small. This puzzle may appear to be partially resolved for
some cases if the system is bound, such that close encounters
occur periodically over the binary orbit. However, in isolation
this is not a sufficient explanation. While repeated encounters
in a multiple system can drive spiral arms in the disc (e.g.
Alaguero et al. 2024), the disc should also be rapidly truncated
such that on subsequent close approaches the gravitational pertu-
bation no longer produces large extended tidal tails (e.g. Ménard
et al. 2020). It is therefore necessary to perturb star-disc systems
in Taurus stochastically, and do so over its ∼1−3 Myr lifetime.
In this manuscript, we aim to answer the question: do we expect
sufficient star-disc encounters in Taurus to explain the frequency
of observed recent encounters?

The role of stellar encounters has been the focus of numerous
studies focusing both on the evolution of protoplanetary discs
(e.g. Clarke & Pringle 1993; Ostriker 1994; Pfalzner et al. 2005;
Winter et al. 2018b) and mature planetary systems (e.g. Spurzem
et al. 2009; Shara et al. 2016; Winter et al. 2022; Li et al. 2024).
Studies using N-body simulations often perform parameter stud-
ies or implement scaling relations to model star-forming regions.
For example, one approach is to adopt the putative mass-radius
(e.g. total stellar mass Mc and half-mass radius Rc) relationship
for star-forming regions (e.g. Rc ∝ M1/2

c – Adams et al. 2006).
However, the nature of this relationship varies depending on the
sample and the definition of the mass and radius (Pfalzner &
Govind 2021), and exhibits significant scatter. Mature and mas-
sive star clusters also do not appear to follow this relationship
(Krumholz et al. 2019), and particularly for low mass or density
regions it is challenging to unambiguously define an individ-
ual star-forming region. In addition, even within a well-defined
‘individual’ star-forming region, the internal structure has been
shown to have a strong influence on the role of encounters (e.g.
Craig & Krumholz 2013; Parker 2023). Assessing encounter
rates therefore requires quantitatively matching the present day
position-velocity structure. Yet it is not clear how well the widely

adopted method for generating fractal initial conditions, sam-
pling hierarchical boxes (Craig & Krumholz 2013), reproduces
the observed spatial and kinematic structure in star-forming
regions.

The structure of giant molecular clouds is set by tur-
bulent fragmentation, from which the power-spectrum and
Mach number determine the mass density distribution (e.g.
Vazquez-Semadeni 1994; Padoan et al. 1997). An ideal approach
to studying the role of dynamical encounters in young star-
forming regions is therefore to model the star formation process
directly through hydrodynamic simulations. Such simulations
have shown that encounters are common during early disc
evolution, possibly determining the initial distribution of pro-
toplanetary disc radii (Bate 2018). However, these experiments
are computationally expensive, following star formation only
for ∼0.1 Myr timescales. This makes parameter studies or tai-
lored modelling of individual star-forming regions in this way
impracticable.

Here we present a complementary approach to the above
works, targeted at generating N-body initial conditions tailored
to match young star-forming regions. We achieved this by sim-
ulating a Taurus-like star-forming region, with physically and
empirically motivated initial conditions, including binaries. We
drew stellar positions and velocities from an empirically con-
strained power spectrum, reflecting how turbulent energy is
distributed across different scales. Our main aim has been to
develop a dynamical model to track the history of stellar encoun-
ters in the Taurus star-forming regions. In doing so, we assessed
whether the rate of disc-truncating star-disc encounters in Tau-
rus is sufficient to produce the three known examples: HV/DO
Tau, RW Aurigae, and UX Tau. This goal required ensuring that
our dynamical model closely reproduces the present day spa-
tial and kinematic structure in Taurus. We therefore review these
structural properties in Section 2, which we used to benchmark
our dynamical model. We discuss our approach for initialis-
ing initial conditions and dynamically evolving the model in
Section 3, in which we also draw comparisons with the struc-
ture metrics introduced in Section 2. We discuss the rate of
truncating encounters over time in our simulation in Section 4,
quantifying the degree to which the observed examples of recent
star-disc encounters are statistically expected. We summarise our
conclusions in Section 5.

2. Properties of the Taurus star-forming region

2.1. Aim

An empirically motivated dynamical model for Taurus requires
accurately quantifying kinematic substructure. If we had arbitrar-
ily accurate and complete data for the 3D positions and velocities
of all the stars in Taurus, then it would be trivial to use these
data to generate N-body initial conditions to compute the future
evolution of Taurus. However, as discussed in Section 2.2, while
we have a fairly complete census of stars in terms of their pro-
jected spatial distribution, kinematic data is far more limited.
Given the effects of multiplicity and extinction, parallax mea-
surements also typically have associated uncertainties that make
them impractical for use in setting initial conditions. In addi-
tion, we are interested in quantifying the frequency of encounters
in the past, while we do not have direct measurements of the
early spatial-kinematic stellar configuration in Taurus. For these
reasons, we require metrics that characterise kinematic substruc-
ture. These metrics both guide our choice of initial conditions
and offer a benchmark comparison for our models.
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In the following, we first review the data for the stellar
population in Taurus (Section 2.2). We then discuss how we
quantified spatial structure in Section 2.3 and kinematic structure
in Section 2.4.

2.2. Data

We used the census of Taurus members by Luhman (2023),
with astrometric data from Gaia DR3 (Gaia Collaboration 2016,
2023; Babusiaux et al. 2023). This catalogue contains 532 mem-
bers, with a high degree of completeness for spectral types earlier
than M6–M7. When we considered proper motion differences
between neighbours (Section 2.4), we restricted the sample to
the 271 that have a reliable astrometric solution by the canoni-
cal criteria that the Renormalised Unit Weight Error (RUWE1)
is smaller than 1.4 in Gaia DR3.

We cannot use the observed 3D positions directly to gen-
erate initial conditions for several reasons. Most obviously, the
sample for which we have parallax is incomplete (417/532), and
the typical uncertainties on the parallax correspond to a few pc.
This means that small scale structure is not resolvable along
the line-of-sight. We therefore generate our initial conditions
parametrically, closely comparing with the observed structure in
Taurus. We consider only the projected separations between stars
when inferring the spatial and velocity structure of the region.

2.3. Spatial substructure

We aim to understand the role of close neighbours on disc evo-
lution. A sensible metric to quantify structure is therefore the
normalised pair separation function, which can be defined in two
dimensions Σ̂pairs(∆R). This is the averaged surface density of
neighbours for any given star, normalised to unity when inte-
grated over 2π∆R d∆R. This surface density evolves over time,
and we therefore used this metric to ensure that we captured the
time at which the dynamical state in our simulation is similar to
that in Taurus.

Two related but complementary metrics are the one- and two-
point correlation functions,Ψ(∆R) and ξ(∆R) respectively. These
metrics have been applied by Joncour et al. (2017) and Joncour
et al. (2018) to study the structure in Taurus. They are broadly
defined as the excess of pairs with a given separation compared
to a random, uniformly distributed population of stars in the
same area. The one-point correlation Ψ is an excess of nearest
pairs, while the two-point correlation represents the excess of all
pairs. Of particular relevance for this work, Joncour et al. (2017)
applied the one-point correlation function to demonstrate that
approximately 40 percent of stars in Taurus are in ultra-wide
binaries, with separations in the range 1.6 × 103−5 × 104 au.
We used this inference to motivate our initial conditions, and the
one- and two-point correlation functions to validate our model a
posteriori. In particular, from the one-point correlation function
Joncour et al. (2017) find a region of ‘inhibition’ (a smaller num-
ber of pairs than expected from random sampling) between ∼0.1◦
and ∼0.5◦, while up to ∼0.2◦, Ψ ∝ ∆R−1.5. For the two-point
correlation function, ξ > 1 out to ∆R ≈ 2◦.

2.4. Velocity substructure

Stellar velocities are inherited from the velocities of the
material from which they form, and are thus dependent

1 https://www.cosmos.esa.int/web/gaia/public-dpac-
documents
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Fig. 1. Proper motion difference as a function of angular separation on
the plane of the sky for nearest neighbours in the Luhman (2023) sample
for Taurus. Red data points are the observed sample, with uncertainties
propagated from Gaia uncertainties. The black line shows the velocity
dispersion as a function of separation we adopt for our model, with a
Keplerian component that dominates at small separations. The transi-
tion between the two power-laws is the break between the binary and
individual systems (∼5 × 104 au, comparable to the galactic tidal radius
for typical stars). The colour bar shows the corresponding Maxwell-
Boltzmann distribution, normalised for each separation. See text for
details.

on the kinematic structure of the parental molecular cloud.
This velocity structure in a turbulent medium is driven by
interacting waves that generate an energy cascade that is
described by an energy spectrum E(k). Across a wide range of
length scales λ, it can be approximated by a power-law (e.g.
Elmegreen & Scalo 2004):

E(k) = P(k)k2 ∼
σ2
v,k

k
∝ k−β ∝ λβ, (1)

where P(k) is the (three dimensional) power-spectrum, k is the
wavenumber, σv,k is the characteristic velocity for k.

A range of β values in the interstellar medium (ISM) have
been inferred observationally. These range from the original esti-
mate for the size-linewidth relation for molecular clouds yielding
β ≈ 1.76 (Larson 1981) to larger β ≈ 2.3 (Münch 1958; Heyer
& Brunt 2004, for example). For weakly compressible turbu-
lence, the energy spectrum for density and velocity follow the
same power-law. Qian et al. (2018) find β ≈ 2 on small scales
≲2 pc (suggestive of compressible turbulence) and β ≈ 5/3 in
the range ∼5−10 pc (suggestive of incompressible turbulence,
see also Brunt 2010). Ha et al. (2022) estimated β ≈ 1.7 from the
stellar population and β ≈ 1.8 from Hα, both on ∼10 pc scales.

For our purposes we adopted β = 2, appropriate for super-
sonic, rapidly cooling turbulence (Burgers 1948). The velocity
dispersion relation we adopted is then:

σv(∆r) = σv,0

(
∆r
∆r0

)0.5

, (2)

where we chose normalisation constants σv,0 = 0.6 km s−1 for
∆r0 = 1 pc. This yields a velocity dispersion similar to that
empirically inferred for the youngest stars on galactic scales in
the solar neighbourhood (e.g. Holmberg et al. 2009), while more
importantly matching the dispersion in Taurus down to binary
length scales. In Figure 1, we show the distribution of proper

A43, page 3 of 19

https://www.cosmos.esa.int/web/gaia/public-dpac-documents
https://www.cosmos.esa.int/web/gaia/public-dpac-documents


Winter, A. J., et al.: A&A, 691, A43 (2024)

motion differences for nearest neighbours as a function of their
separation in Taurus. We also show the Maxwell-Boltzmann
distribution:

gND (∆v|σv) =
2∆vND−1

Γ(ND/2)

(
1

4σ2
v

)ND/2

exp
(
−∆v2

4σ2
v

)
(3)

in two dimensions (ND = 2) for Equation (2) with a Keplerian
component appropriate for a star of mass m∗ = 0.5 M⊙ added
in quadrature. This shows that the majority of neighbours fol-
low the expected separation-velocity relation. Neighbours with a
much larger relative velocity may have larger physical than pro-
jected separations. We applied the size-velocity relation given
by Equation (2) to generate stellar velocities, and compared
the appropriate Maxwell-Boltzmann distribution to the nearest
neighbour relative velocities we generate in our model, both
initially and after dynamical evolution.

3. Numerical method

3.1. Overview

Our approach for simulating a Taurus-like star-forming region
was to use a physically and empirically motivated set of initial
conditions, including binary systems. We then benchmarked our
model against the spatial-kinematic properties of the present day
Taurus to ensure that the simulation reflects the observed dynam-
ical state. With this model, we were able to extract encounters
that we converted into the protoplanetary disc radii evolution
using analytic formulae fit to numerical experiments (Winter
et al. 2018c).

In the remainder of this section, we detail this process. First,
we discuss our method for generating physically motivated initial
conditions, starting with a gas density distribution in Section 3.3,
which we converted to a stellar density distribution following the
approach in Section 3.4. We then discuss implementing empir-
ically motivated binaries in Section 3.6 and the appropriate
velocity substructure in Section 3.8. We validated our dynami-
cal model with respect to the observed dynamical state in Taurus
as described in Section 3.9. Finally, we discuss our approach
for extracting close stellar encounters from the simulation in
Section 3.10 and the resultant disc evolution in Section 3.11.

3.2. Nbody code

Throughout this work, we used NBODY6++ (Aarseth 2003;
Spurzem 1999; Wang et al. 2015) to integrate the stars and binary
systems under gravity for 3 Myr. Given our interest in the short
term evolution of a low mass star-forming region, we did not
include stellar evolution. Nor did we include tidal binary circu-
larisation, or an external potential. To capture the role of several
neighbours, we insisted on a short time–step factor for the irreg-
ular force polynomial 5 × 10−3. The parameter adjustment time
in N-body units is 10−4 in code time-units that are 3.22 Myr, at
which the regularisation parameters are updated. The parame-
ter and initial condition file for our fiducial model are available
online2.

3.3. Lognormal gas density field

We aim to initially generate a physically motivated gas density
distribution, from which to draw our stellar population. Numeri-
cal experiments have shown that the mass density ρ of isothermal
2 https://zenodo.org/records/13826302

Fig. 2. Illustration of how we selected a box from which to generate a
lognormal density field from a larger-scale, low resolution lognormal
density field. We illustrate the underlying density grid by drawing faint
black points with density proportional to the local density field. Cyan
points indicate our selection of the top 20 density maxima from the
density field. The red star indicates the position of the adopted box cen-
tre. The dashed red lines indicate the boundary of the new zoom-in box.

turbulent flows is well approximated by a lognormal distribu-
tion (e.g. Vazquez-Semadeni 1994; Nordlund & Padoan 1999;
Ostriker et al. 1999). In order to generate a lognormal gas distri-
bution, we first needed to generate a Gaussian density field over a
3D grid. Generating a density field that we could use to produce
initial conditions for the N-body simulation is not trivial, since
a Gaussian random field may exhibit peaks close to the edges of
the grid. These peaks would be the site of high stellar density (or
‘NESTS’ – Joncour et al. 2018), and may be partially excluded
by the grid. Indeed, the centre of the grid can represent a ‘void’
(underdensity) in the Gaussian field, which would undermine our
goal to explore the interactions between stars in overdensities.
Since we also needed a grid that covers a large dynamical range
(from the size scale of Taurus, down to the wide-binary scale),
it is not practicable to simply choose a subset of the complete
Gaussian random field with a very high resolution. It is therefore
useful to apply an approach that ensures that we can centre the
grid on an overdensity.

While we could have attempted to do this by multiply-
ing the density field by a centrally concentrated profile (such
as a 3D Gaussian or Plummer profile), this would fundamen-
tally change the nature of the density field and corresponding
power spectrum. To avoid this we adopted a two-stage process,
inspired by cosmological zoom-in simulations and applying the
publicly available GENETIC3 code (Stopyra et al. 2020, 2021).
This code generates a zoom-in or splice (Cadiou et al. 2021)
self-consistently within a surrounding Gaussian random field by
Fourier-space filtering. The net effect is that we were able to gen-
erate an initial, coarse Gaussian field, and then zoom in on an
overdensity that represents the centre of our model for Taurus.

Our approach for this is represented graphically in Figure 2.
We first generated a Gaussian random field over a 2563 grid with

3 https://github.com/pynbody/genetIC
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side length 100 pc. We adopted a power spectrum index of −3.
We did not quantitatively fit for this index, but select a posteriori
between indices −2, −2.5, −3 and −4, finding that −3 reproduces
a stellar density structure that matches the observed structure.
Empirically, this index is comparable to that inferred in Taurus
by Brunt (2010).

From the large scale density field, we located local maxima
over 5 pc length scales using the ndimage.maximum_filter
algorithm from SCIPY (Virtanen et al. 2020). We chose the
20 greatest local maxima and selected the closest to the cen-
tre of the grid, ensuring the zoom-in grid will be within the
range of the initial grid. We then used GENETIC to generate a
new Gaussian density field on a grid that is smaller by a factor
three (a box side length of 33 pc), with 10243 grid cells. This
defines a field which has a high density centre, and a resolu-
tion of 0.032 pc, or ∼7000 au, down to length scales comparable
to wide binary separations. Finally, we enforced a dispersion
σln ρ = ln

(
1 + 0.25⟨v2⟩/c2

s

)
= 5 on the logarithmic density field.

This is approximately the expected dispersion given a sound
speed cs = 0.2 km s−1 and the root mean square velocity ⟨v2⟩1/2 =
√

3σv ∼ 5 km s−1 for ∆r ∼ 30 pc, according to Equation (2).

3.4. Stellar spatial distribution

We next drew a stellar spatial distribution from our underlying
gas density profile. To do this, it was necessary to consider which
regions of the cloud are able to rapidly collapse to form stars.
The relevant timescale for this collapse from rest is the free-fall
timescale:

τff = 1.52
(

ρ

100 M⊙ pc−3

)−1/2

Myr. (4)

To infer a free-fall time across our grid, we required an absolute
density scale, for which we assume a total mass within the box
of 104 M⊙, corresponding to the approximate total gas mass in
the Taurus complex (Goldsmith et al. 2008). We then imposed a
constraint that grid cells must have τff < 1 Myr in order to host a
star, comparable to the empirical age dispersion Luhman (2023).
We assigned probabilities to these grid cells p∗ ∝ ρτ−1

ff
∝ ρ3/2 –

that is, the probability of forming a star is proportional to the
quantity of material multiplied by the rate at which that material
is expected to collapse. For a selected grid cell, we then offset
the location of the formed star such that it was placed randomly
within the cell. We validated this choice of spatial distribution in
our dynamical model a posteriori, as presented in Section 3.9.

For the total number of systems, we drew Nsys that yields a
total number of stars N∗ that is broadly consistent with the find-
ings of Luhman (2023). This is not trivial, both because there is
not a clear detection limit for that sample and because we include
binaries stochastically from the initial population of potential
primaries, as well as the ultrawide binary fraction inferred by
Joncour et al. (2017). Further, it is not clear what fraction of bina-
ries are resolved/detected by Luhman (2023). We perform a two
stage process as follows in Sections 3.5 and 3.6.

3.5. Ultrawide pairs

First of all, we corrected the total number of stars for a given
fraction of ultrawide binaries Fuwb = 2/3. We consider 400(1 −
Fuwb/2) = 267 stars with masses > 0.08 M⊙ (half of these would
end up in ultrawide binaries). We then added the fraction of
brown dwarfs we expect below this limit from the initial mass

function (IMF). For this, we used the following IMF (e.g. Kroupa
2001):

ξ(m∗) ∝



m−0.3
∗ 0.01 M⊙ ≤ m∗ < 0.08 M⊙

m−1.3
∗ 0.08 M⊙ ≤ m∗ < 1.3 M⊙

m−2.3
∗ 0.5 M⊙ ≤ m∗ < 1.3 M⊙

m−2.7
∗ 1.3 M⊙ ≤ m∗

0 otherwise

, (5)

with normalisation constants such that ξ is continuous and inte-
grates to unity over all m∗. For each of these stars, we then
drew an ultrawide companion with a total probability Fuwb. This
yielded 660 stars and sub-stellar objects in total, 38 percent of
which with masses <0.08 M⊙. We then drew the masses of all
stars from Equation (5).

The ultrawide pair fraction we adopted is somewhat higher
than Fuwb ≈ 0.55, inferred by Joncour et al. (2017); 186 of the
338 stars in their sample are in ultrawide pairs. However, some
of these companions separate during dynamic evolution. We also
note that Joncour et al. (2017) found evidence that members of
ultrawide pairs are ∼15 percent more likely to be themselves in
a shorter period binary. However, given that this is a relatively
minor correction to the binary fraction, and it is challenging to
disentangle dynamical versus primordial origins for these statis-
tics, we did not include this enhancement. While we do not
forward model the initial fraction, we validated our choice by
comparing the one-point correlation function in our model with
that computed by Joncour et al. (2017) in Section 3.9.

The separations for the ultrawide pairs is approximately log-
uniform between 1.6 × 103 au and 5 × 104 au (see Fig. 7 of
Joncour et al. 2017), and we therefore drew semi-major axes of
these companions similarly. We assumed a uniform eccentricity
distribution up to 0.9, and a random orientation (as described in
Section 3.6).

3.6. Binaries

We defined binaries separately from ‘ultrawide pairs’, described
above and treated as single stars in terms of their mass-function.
We considered the entire population of stars (including each
member of the ultrawide pairs) to be potential primary stars in a
binary system, and added companions to a subset.

The binary population we included is empirically motivated,
based on the findings of Moe & Di Stefano (2017). In brief, we
used the same functional form for the probability of each primary
having a companion in each dex of orbital period space, modified
in a number of ways. Firstly, we excluded binaries with period
P < 105 days (≲30 au); such binaries are close enough to be
largely uninfluenced by encounters, and in the context of proto-
planetary discs may host circumbinary discs. At longer periods,
we removed the exponential taper that Moe & Di Stefano (2017)
infers for P > 105.5 days, instead assuming a constant binary
fraction per dex out to P = 107.7 days, approximately corre-
sponding to the scale at which we transition to ultrawide binaries.
The log-uniform distribution is consistent with the observed sep-
arations for the ultrawide pairs (see Fig. 7 of Joncour et al. 2017),
and for wide binaries in the field (Lépine & Bongiorno 2007).
For all binaries, we drew eccentricities uniformly from 0−0.9
(e.g Abt 2006, and review by Duchêne & Kraus 2013).

Once we had randomly drawn the periods and eccentricities
for the companions of our initial population, we drew the mass
ratio. For the ultrawide binaries, we drew masses from the IMF,
as described in Section 3.4. For the regular binaries, we drew
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Fig. 3. Histogram showing the distribution of companions at a given semi-major axis (left) eccentricity (middle) and mass ratio (right) for primary
stars with masses m∗ > 0.08 M⊙. The red histogram is for those pairs we define as ultrawide pairs, while the blue shows the binaries.

mass ratios q in the range 0.1 < q < 1 from a probability density
function p(q). To construct p, we defined two power-law regime
with indices γsmall for q < 0.3 and γlarge for q ≥ 0.3. Following
Moe & Di Stefano (2017), we also included an excess probability
of the star having a twin, where a twin is defined as having a mass
ratio 1 − ∆twin < q ≤ 1. This is defined in practice by computing
the quantity:

p′twin =

Ftwin
∫ 1

0.1 p′(q̃) dq̃
∆twin(1−Ftwin) 1 − ∆twin < q < 1

0 otherwise
, (6)

where

p′(q) =
{

qγsmall 0.1 ≤ q < 0.3
0.3γsmall

0.3γlarge qγlarge q ≥ 0.3
. (7)

Then finally the probability density function for q is:

p(q) =
p′ + p′twin∫ 1

0.1 p′(q̃) + p′twin(q̃) dq̃
. (8)

Since we only considered P > 105 days and largely low mass
stars, we have only two regimes for the power-law indices. For
P < 106 days we have γsmall = 0.4 and γlarge = −0.4, and oth-
erwise we have γsmall = 0.5 and γlarge = −1.1. We fix Ftwin =
0.1, for ∆twin = 0.05. These values are consistent with obser-
vational constraints, although typical uncertainties are high for
many of these values (El-Badry et al. 2019). When we gener-
ated our initial population, we also excluded any companions
that are generated that have masses below our lower IMF limit
(0.01 M⊙), although in practice this only influences brown dwarf
primaries. The overall binary fraction is ∼30 percent for binaries
with orbital periods >105 days, which is broadly consistent with
the field population (e.g. Niu et al. 2021). We show the statis-
tics of our binary and ultrawide pair distribution for the stellar
population in Figure 3.

Finally, we generated the positions and velocities of the com-
panion population by randomly sampling cos i (for inclination
i), the argument of periapsis, longitude of ascending node and
true anomaly uniformly over the appropriate ranges. We then
computed the appropriate position and velocity vector of the
companion with respect to the primary. We thus produced the
initial binary population that we evolve dynamically during our
simulation.
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Fig. 4. Histogram of stellar masses in our dynamical model for Taurus.
The solid black shows all stars including binary companions, while the
red line is just the primaries and single stars. The black dashed line
corresponds to the number that would be expected in each bin from the
Kroupa (2001) IMF (Equation (5)). The bin sizes are similar to those
adopted by Luhman (2004) in Figure 13, top panel.

3.7. Mass function

We have already described our stellar mass drawing procedure
for single stars and binaries in Sections 3.5 and 3.6. To validate
our mass distribution including the binary population, we show
the histogram of stellar masses in Figure 4. The bins used for this
histogram are similar to those used by Luhman (2004, top panel
of their Figure 13). The number of approximately solar mass
stars found by Luhman (2004) is ∼40. This number is close to
complete for Taurus, and is similar to our drawing from the IMF.
More recently, Esplin & Luhman (2019) found a peak around
m∗ ∼ 0.15 and ∼25 stars with m∗ ≳ 1 M⊙ across the whole of
Taurus, again comparable to our IMF draw. The mass function
for all the stars, including binary companions, is shown as the
black histogram in Figure 4. Despite including a different mass
function for companions, the mass function is not greatly altered
from the Kroupa (2001) IMF we initially assume for the primary
population. We therefore conclude that we have drawn a similar
stellar population to that of Taurus.
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Fig. 5. Proper motion difference versus angular separation assuming a
distance of 140 pc for nearest neighbours from the initial conditions in
our model. The black line shows the one dimensional velocity disper-
sion as a function of separation and the colour bar shows the normalised
Maxwell-Boltzmann distribution for each separation, as in Figure 1.

3.8. Initial velocities

We assigned velocities to the primary stars we have generated
motivated by our discussion in Section 2.4. We tackled this by
generating velocities following a Gaussian process, such that
velocities of stars that are close to each other are more highly
correlated than those of stars at large separations. If ∆r < ∆rmax,
we the corresponding kernel or covariance function is (e.g. see
Equation (2.19) of Rasmussen & Williams 2006):

k(r, r′) = k(∆r) = σ2
v,max − σ

2
v (∆r), (9)

where σv,max = σv(∆rmax). By this definition, the covariance
function is not well defined for large ∆r > ∆rmax, where k
becomes negative. However, we are free to choose an arbi-
trary large ∆rmax. In this case, we can rewrite the covariance
function:

k(∆r) ≈ σ2
v,max

(
1 −D2

r

)
(10)

where we have defined:

Dr =

[
1 − exp

(
−
∆r
∆rmax

)]0.5

. (11)

Equations (9) and (10) are equivalent for large ∆rmax/∆r →
∞, but at large separations Equation (10) defines a maximal
dispersion between stellar velocities. We chose Equation (10)
because it yields well defined covariance for any ∆r. In prac-
tice, we anyway choose ∆rmax = 100 pc so that our choice is not
important. In order to assign velocities given this kernel function,
we defined the covariance matrix K = [ki j] = [k(ri, r j)]. We then
performed a Cholesky decomposition K = LLT, where L is a
lower triangular matrix. We defined a vector wα which is a vector
with a length corresponding to the number of stars for which we
assign velocities. We drew each w jα ∼ N(0, 1) independently for
each spatial dimension α = d1, 2, 3. We then defined the velocity
components for the stellar population uα = Lwα.

In Figure 5 we show the velocity difference between differ-
ent nearest neighbours in our model initial conditions, including

Fig. 6. Normalised pair surface density Σ̂pairs as a function of projected
separation ∆R in parsecs. The red line shows the observed surface
density for Taurus from the Luhman (2023) census, which may be
incomplete at the smallest separations. The coloured lines show the out-
come from our model, at snapshot outputs indicated by the colour bar.
The 1 Myr snapshot is also marked by black crosses, at which time the
pair distribution function is in good agreement between observations
and simulation.

binaries. It is clear that our synthetic stellar population (scatter
points) have relative velocities that follow a similar size-velocity
relation, σv(∆r) as found in Section 2.4 – cf. Figure 1.

3.9. Model validation

We validated our model by analysing the structure metrics dis-
cussed in Section 2. First, we considered the pairwise separation
distribution, as shown in Figure 6. The pair surface density pro-
file Σ̂pairs shows an excess at very small projected separations
(∆R ≲ 5 × 10−4 pc), where the Luhman (2023) sample may be
missing closer binaries. There is also a small excess around the
binary transition at a few 10−2 pc. This excess is quickly lost as
the system evolves, and the spatial structure is in good agreement
with the observed population at ∼1 Myr. We therefore adopted
1 Myr as the ‘present day’ in our simulation.

At this time, the velocity structure, illustrated in Figure 7,
remains similar to the velocity structure we inferred in Tau-
rus in Section 2.4. When comparing Figures 7 to 1, we note
that there are some differences in how they are constructed. For
example, close binaries are complete in our model, but not for
those in Taurus. Indeed, in Taurus the sample is restricted to only
stars with Gaia proper motions, with all the biases that implies.
Nonetheless, the correlation between velocity and separation
remains broadly similar. The transition in nearest neighbour
velocity difference from ‘binary’ to ‘field’ coincides with the
change in the power-law surface density profile in Figure 6 for
∆r ∼ 3 × 10−2 pc.

We also show the one- and two-point correlation functions
in Figure 8. These can be compared directly to Fig. 4 of Joncour
et al. (2017). We find a similar functional form for both, again
indicating that the structure in our model matches the physical
structure of Taurus. We find a very similar region of ‘inhibition’
in which Ψ < 1 in the range of separations 0.1 − 0.5◦, and a
similar power-law for Ψ where ∆R < 0.2◦. We also recover ξ > 1
for ∆R ≲ 1◦, close to the result of Joncour et al. (2017).
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Fig. 7. As in Figure 5, except for our simulation after 1 Myr of evolution.

Fig. 8. One-point (Ψ, blue points) and two-point (ξ, grey points) cor-
relation functions computed from our model at 1 Myr. The red line
shows the Ψ ∝ ∆R−1.5 relationship for ∆R < 0.2◦ and the two dashed
black lines enclose the region of inhibition (where Ψ < 1), as inferred
by Joncour et al. (2017, see their Figure 4).

We conclude that our model, with initial conditions based
on physical and empirical arguments, reproduces the observed
dynamical state of Taurus at 1 Myr. The age in our model of
1 Myr is somewhat younger than the 1−3 Myr typically esti-
mated for Taurus (e.g. Luhman 2023). If Taurus is typically older
on average, this might suggest that the stellar distribution was
initially more compact than the initial conditions in our simu-
lation; although in this case we would also expect more rapid
dynamical evolution. It is also possible that residual gas in the
star-forming region slows down the dispersal of structure. How-
ever, then it would be plausible that discs in the high density
regions are replenished by accretion of this residual gas (e.g.
Kuffmeier et al. 2020), blurring the lines of what ‘t = 0’ means
for disc evolution. In truth, probably a mixture of these influ-
ences, as well as a finite period of star formation, somewhat
influence the dynamical evolution of the region. Nonetheless, for
the purpose of this work, we are satisfied that the current state of
stars and discs in Taurus is well approximated by our simulation

at 1 Myr. In this context, we note that a posteriori we find that the
frequency of strong encounters does not change rapidly between
1−3 Myr in our simulation (see Section 4.3).

3.10. Tracking encounters

Due partly to our inclusion of binaries, interactions between stars
are too complex to be easily identified with a simple criterion
‘on the fly’ during the simulation. We therefore chose to analyse
encounter properties by post-processing high frequency outputs.
Specifically, we output 9299 snapshots from our simulation over
3 Myr, corresponding to a time step of 323 years. To accurately
extract the correct encounter properties, we then performed the
following analysis for each star i:
1. We identified the closest neighbour j(t) for each time step,

spatially separated by vector ∆ri j and with velocity differ-
ence ∆ui j.

2. If the nearest neighbour j to i had a bound companion k
which is separated from j by vector ∆r jk such that |∆r jk | <
0.1|∆ri j|, we considered j and k to be a single star with the
combined mass and momentum of j and k. In the following
we refer to star j as the binary barycentre.

3. We searched for a sign change in the vector ∆ri j · ∆ui j from
negative (approaching) to positive (receding). We define
snapshot l, at time tl, for which |∆ri j| is minimal between
the two adjacent snapshots (l, l + 1).

4. We computed the analytic eccentricity e, closest approach
distance rp, time of pericentre tp. If the predicted closest
approach is not between tl and tl+1, then this must be a
non-hierarchical multiple interaction, occurring on a short
timescale (<323 years). In this case, we assumed that the
closest approach is at tl (with closest approach distance given
by the separation at this time), although in practice this is
rare.

This procedure ensures that, despite the finite temporal resolu-
tion of our simulations, we were able to resolve the majority
of encounters that are relevant to disc truncation. We limited
the number of encounters to one per time step, thus we do not
count every closest approach for close binaries which have an
orbital period <323 years. Although we could in principle have
included multiple encounters per time step, these encounters
anyway quickly truncate the disc on short timescales. While our
method may also not be accurate particularly for chaotic mul-
tiple interactions in cases where multiple interactions occur on
timescales less than 323 years, we show in Appendix A that
our results were not influenced if when we increased the output
frequency.

3.11. Disc truncation and initial radii

To compute the post-encounter disc radius, we used the analytic
functions inferred by Winter et al. (2018c). These functions were
established by fitting a scale-free, angle-averaged expression to
numerical test particle simulations, depending on the ratio of the
closest approach distance rp to the outer disc radius Rout, the
eccentricity of the encounter e and the mass ratio of the per-
turber q. Since these fitting functions were inferred for unbound
encounters, we will adopt e = 1 for encounters with e < 1.
We expect this to be a reasonable approximation. For example,
Manara et al. (2019) fit an analytic functional form to the steady
state truncation radius inferred from the numerical results of
Artymowicz & Lubow (1994). For an equal mass system on a
circular orbit, this estimate implies a truncation radius ∼Rout ≈

0.33rp, which is the same as the steady state truncation radius
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implied by our prescription (see Figure 4 of Winter et al. 2018c).
In practice, the majority of encounters that strongly truncate the
disc at late times also have e ∼ 1. We also consider all discs
which experience encounters with rp < 10 au to be ‘destroyed’,
making the assumption that the resultant compact disc may be
rapidly accreted or photoevaporated (e.g. Clarke et al. 2001).

We initialised all discs with outer radii following (Andrews
2020):

Rout,0 = 250
(

m∗
1 M⊙

)0.9

au. (12)

While this is empirically motivated by observed outer radii as
inferred from CO emission lines, this relationship has a large
scatter (which may in part be driven by dynamical truncation).
The measurements themselves also come with numerous caveats
originating from systematic uncertainties in outer radius defini-
tion, optical depth and chemistry (see e.g. Miotello et al. 2023).
However, with these caveats we here assumed that the relation-
ship is exact. We also did not consider viscous expansion (e.g.
Lynden-Bell & Pringle 1974) or wind-driven contraction (e.g.
Tabone et al. 2022). The discs therefore only evolved (shrank) as
a result of star-disc encounters.

3.12. Caveats for the physical model

There are two main caveats for the dynamical model we present
here. The first is that, while we are interested in establishing the
rate of strongly disc-truncating interactions at a given system
age, this depends on there being a well-defined age of the sys-
tem at large. More specifically, we implicitly assumed that the
spread in stellar ages is much smaller than the age of the sys-
tem itself. This is almost certainly not the case, with the groups
in Taurus having ages in the range ∼1−3 Myr (Luhman 2023).
However, our efforts are still valid in that a star-disc system will
only undergo encounters with nearby neighbours, which we gen-
erally expect to have very similar ages. None of the existing
examples of recent encounters have been suggested to be partic-
ularly young, but our conclusions can be reconsidered depending
on the inferred ages of post-encounter systems.

The other major caveat is that we did not include the self-
gravity of the ISM. Without including a fully hydrodynamical
model, it is not possible to include this potential in a physi-
cal way. Our choice to ignore the gas potential is in a sense
a similar assumption to the one discussed above, specifically
that local star formation is completed instantly, and the gas is
instantaneously dispersed (e.g. by stellar feedback). If instead a
large quantity of residual gas remained within the individual star-
forming regions that comprise the Taurus complex, then groups
of stars may remain bound for longer. This may in turn increase
the local encounter rate at later times. It is not possible to cap-
ture this gas potential without either full hydrodynamics (making
matching exactly the structural properties of Taurus impossible),
or by developing a scheme for integrating a complex potential
that allows several components that co-move with stellar groups
(beyond the scope of this work). However, we did find agreement
between the dynamical state (i.e. correlation functions) in our
model and observations, which would suggest the role of ISM
self-gravity on the population dynamics as a whole cannot be
dramatic. While this nonetheless remains a shortcoming of this
work, we discuss in Section 4.5 that if high density gas alters our
results this would have other interesting physical implications.

4. Results and discussion

4.1. Types of late-stage encounter

First, we qualitatively explored the nature of star-disc encounters
in our simulation. For this we show some examples of encounters
that occur at 1 ± 0.2 Myr in our simulation. The location of all
these close encounters are shown in the central panel of Figure 9,
from which we extracted the following categories:
(a) Stable, long period eccentric binary: possibly the most

straightforward kind of encounter is a very long period
binary which remains unperturbed by unbound stars, as
shown in the top-left of Figure 9. This kind of encounter
can still produce relatively large changes in outer disc radius
if the orbital period is sufficiently long.

(b) Chaotic multiple: shown in the top-middle of Figure 9 is an
example of a bound triple system that interacts to eventually
eject one of the stars at ∼0.8 Myr, leaving a tighter binary
that can further truncate the disc.

(c) Perturbed eccentric binary: if a stable binary is perturbed
by an encounter with an external (unbound) star, then this
may also result in a tightening of the binary. A closer perias-
tron distance can then further truncate the disc. We show an
example of this in the top-right of Figure 9 (although in this
case, the external star is in fact marginally bound).

(d) Random unbound encounters: this is the best-studied type
of encounter, the rate of which can be understood analyti-
cally at a given local stellar density and velocity dispersion.
However, in our simulation, we do not find any examples
of random encounters. These encounters are more common
in denser regions, but in Taurus we find that the major-
ity of star-disc interactions are mediated by wide binary
companions.

While this categorisation illuminates the value of physically
motivated structure and multiplicity within models for star-
forming regions, they are not rigid, and types of encounter
may blur into each other. Our findings emphasise that unbound
encounters and binary interactions cannot be studied separately
during the dynamical evolution of a young star-forming region.

4.2. Disc evolution

We consider how encounters shape the global disc radius dis-
tribution in Taurus. This is illustrated in Figure 10, where we
show the cumulative distribution of disc outer radii over the
course of the simulation. We found that the vast majority of discs
are rapidly truncated below their initial radius by encounters,
and ∼1/4 are truncated below 30 au. However, by the present
time (1 Myr), dynamical encounters are not changing the over-
all distribution of disc radii significantly. This is because, while
external perturbation does sculpt the outer disc for a large frac-
tion of the population, disc truncation mostly occurs in stable
binaries. Observations of discs in binary systems appear broadly
consistent with theoretical expectations (Manara et al. 2019; Rota
et al. 2022). We conclude that, for a region such as Taurus,
the role of encounters for the disc population as a whole is
largely dominated by early interactions in binaries, rather than
an ongoing process of disc truncation.

4.3. Truncating encounter frequency

We now turn to the primary motivation of this work, and ask
the question: do we expect sufficient close encounters in Tau-
rus to produce the examples of recent dynamical interaction? To
answer this question we require two definitions:
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Fig. 9. Spatial distribution of stars (mass > 0.08 M⊙) at 1 Myr and contemporary disc-truncating encounters in our simulation. We show as coloured
star or square symbols the location of all stars that underwent encounters yielding a fractional truncation −∆Rout/Rout > 0.01 over the age range
1± 0.2 Myr. Encounters that yielded −∆Rout/Rout > 0.1 are highlighted with red circles. In the panels along the top we show the separation between
specific stars and their stellar neighbours over the first 1.5 Myr of the simulation. Each line represents the distance to a single stellar neighbour,
linearly interpolated between snapshots, where neighbours that are one of the two closest stars at any given time step are included (if they pass
within 104 au). In each plot, we mark the location of a logged ‘closest approach’ as a cross (inferred analytically from the closest time step – see
Section 3.10).

1. Which encounters produce significant external structures
(e.g. tidal tails)?

2. For how long does this observable external structure persist?
To answer these questions, we consider the rate of encoun-
ters that yield a fractional truncation −∆Rout/Rout above some
threshold in the context of the observed flyby candidates in
Taurus.

4.3.1. HV and DO Tau

The huge extended dust bridge between HV and DO Tau
(Howard et al. 2013) appears to be the result of a strongly
truncating encounter, possibly occurring during the dynamical
decay of a quadruple system (Winter et al. 2018a). While the

model of Winter et al. (2018a) is probably not a unique scenario
for producing the observed structure, we can make some quan-
titative arguments as to the requirements of such an encounter.
Assuming some grain growth occurred within the disc, the mass
of material expelled during the encounter is Mex ∼ 10−4 M⊙
(Winter et al. 2018a), which is ∼10 percent of the current mass
Mdisc of the disc around HV Tau C (Stapelfeldt et al. 2003). If the
surface density of the disc Σ ∝ R−1, for R the cylindrical radius
inside Rout, this implies a fractional truncation −∆Rout/Rout ∼

Mex/Mdisc ∼ 0.1. To reach the present day projected separation of
≳104 au, the encounter must have occurred ∼0.1 Myr ago. This
would suggest a rate of ∼10 encounters per Myr for encounters
that result in a fractional truncation −∆Rout/Rout ≳ 0.1.
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Fig. 10. Disc outer radius Rout evolution for the population of stars
with m∗ > 0.08 M⊙ in our simulation. The colour bar shows the time
at which the distribution is measured. The initial outer radius distribu-
tion is shown in red.

4.3.2. RW Aurigae

For RW Aurigae, the best-fitting model explored by Dai et al.
(2015) had an initial outer radius of 60 au and a final outer
radius in the range ∼40−57 au. This estimate is mostly based
on the geometry of the spiral arm as inferred from their simpli-
fied radiative transfer. The 12CO emission detected around RW
Aurigae is at least partly optically thick, so it is not possible to
reliably infer a total mass that has been ejected in the encounter.
The conclusions of Dai et al. (2015) may change if the apparent
morphology as seen in CO differs when detailed chemistry, pho-
todissociation or radiative transfer effects are taken into account.
If the physical arm is longer and wider than they assume, the
authors show that a weaker encounter can be consistent with the
observed structure. Dai et al. (2015) also infer a time since closest
approach ∼600 years from their dynamical model. This conclu-
sion may depend somewhat on the deprojected geometry of the
spiral and the system orientation.

4.3.3. UX Tau

In the case of UX Tau, Ménard et al. (2020) focused on two
different flyby simulations, with outer radius Rout = 60 au and
90 au, both with rp = 100 au, with a mass ratio of the per-
turber q ∼ 0.08−0.22. The former radius is close to the observed
outer radius (post-encounter). Both simulations produce clear
spiral arms and some extended structure, so a severely truncating
encounter is not required. There are currently no estimates for the
mass of the external structure with respect to the disc mass. From
their simulations, Ménard et al. (2020) estimate ∼1000 years
since closest approach, with some margin for uncertainty in the
system geometry as in the case of RW Aurigae.

4.3.4. Overall rates

The considerations above lead us to conclude that a small frac-
tion of the disc mass may be capable of producing some of
the observed external structures. We therefore explore a range
of fractional truncation thresholds −∆Rout/Rout > 10−3, 10−2

and 10−1. Choosing a threshold smaller than 10−3 makes lit-
tle difference to the overall encounter rate. As discussed above,
‘weak’ encounters with −∆Rout/Rout ∼ 10−2 may be sufficient to

reproduce the structures observed around RW Aurigae and UX
Tau, while the stronger encounter threshold would correspond
to systems like HV and DO Tau. While we cannot be confi-
dent of the exact −∆Rout/Rout that result in RW Aurigae and UX
Tau-like systems, our results will motivate future studies quan-
tifying the mass in the external structure surrounding systems
that have undergone recent encounters, given that Mex/Mdisc ∼

−∆Rout/Rout.
The overall encounter rate is summarised in Figure 11 for

these thresholds. We binned the encounters by the time at which
they occur and by their fractional disc truncation. We also show
the evolution of individual discs by connected lines between
individual encounters, so that the evolution of the outer disc
radii in (for example) binary systems is clear. As expected from
Section 4.2, the majority of discs are truncated rapidly in binary
systems during the first ∼0.1 Myr. However, there remain exam-
ples of individual encounters persisting throughout the course of
the simulation. In order to explore the degree to which our results
are stochastic, we ran two additional versions of our experiment
described in Appendix B.

Quantitatively, we see that the rate of the strongest encoun-
ters −∆Rout/Rout > 0.1 remains at ∼10 Myr−1 in the time range
∼1−3 Myr (see also Appendix B). Thus HV and DO Tau-
like encounters, observable for ∼0.1 Myr, are likely (probability
∼50 percent) to be found somewhere in Taurus. We conclude that
the occurrence of the HV and DO Tau encounter is expected in
the context of our dynamical model.

The more recent RW Aurigae- and UX Tau-like encoun-
ters require a considerably higher encounter rate. The rate of
weaker encounters −∆Rout/Rout > 10−2 is Γenc ∼ 100 Myr−1,
with approximately a factor order unity in stochastic variation
(Appendix B). This rate is a factor ∼2−3 larger for −∆Rout/Rout >
10−3. We can write the probability of observing at least N
encounters from a Poisson distribution:

Pobs(Nobs ≥ N) = 1 −
N−1∑
i=0

(Γencτobs)i exp(−Γencτobs)
i!

, (13)

where τobs is the period for which the encounter is observ-
able. Given that we are equally likely to observe the disc at any
stage during this period of observability, this implies the aver-
age time of observation ⟨tobs⟩ = τobs/2. We therefore adopt a
moderately generous τobs = 2000 years, a factor ∼ 2 larger than
the time since periastron for UX Tau and RW Aurigae. Tak-
ing a range of encounters Γenc = 100−200 Myr−1 for Nobs ≥ 2
(RW Aurigae and UX Tau) yields Pobs = 0.018−0.062. There-
fore, if encounters with −∆Rout/Rout ≳ 10−2 can produce these
systems, then the tension with our model are not significant (or
very marginally significant at ∼2σ). If a much more truncating
encounter is required, then this tension may become significant.
This marginal agreement underlines the importance of future
studies quantifying the fraction of mass in the extended structure.

In the absence of additional constraints, we conclude that the
expected rate of encounters in Taurus is marginally sufficient to
produce UX Tau and RW Aurigae without appealing to addi-
tional physics (see Section 4.5). However, this would not be the
case if the sample of known recent, truncating star-disc encoun-
ters is incomplete. Indeed, there is some reason to suspect that
this may be the case, as discussed below.

4.4. Masses of stars undergoing close encounters

We ask whether truncating encounters occur more or less fre-
quently for high mass stars. We show the distribution of the
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Fig. 11. Global rate of disc-truncating encounters for discs around stars with mass m∗ > 0.08 M⊙ throughout the evolution of our dynamical model.
The top panel shows the rate of all truncating encounters that decrease the disc radius by at least 0.1 percent (light grey), 1 percent (grey) and
10 percent (black) of the pre-encounter radius. The colour scale of the bottom panel shows the encounter rates binned into both the time of the
encounter (x-axis) and the degree of truncation (y-axis). Each logged encounter is shown by a pink square, and subsequent encounters for the same
disc (if any) are connected by faint red lines.

masses of stars that undergo truncating encounters after 1 Myr in
Figure 12. This mass distribution is indistinguishable to the over-
all mass function (m∗ > 0.08 M⊙). By contrast, RW Aurigae A
and B have masses ∼1.3−1.4 M⊙ and ∼0.7−0.9 M⊙ respectively
(Ghez et al. 1997; Woitas et al. 2001). HV Tau C has a mass
∼0.5−1 M⊙ (Duchêne et al. 2010) and DO Tau ∼0.3−0.7 M⊙
(Beckwith et al. 1990; Hartigan et al. 1995). UX Tau A has a
mass ∼1.3 M⊙ and UX Tau C has mass ∼0.16 M⊙ (Kraus &
Hillenbrand 2009; Zapata et al. 2020). The origin of the extended
structures are the discs around RW Aurigae A, HV Tau C, DO
Tau and UX Tau A. The masses of these stars appear to be sys-
tematically greater than what would be obtained from randomly
sampling from the IMF. Assuming nominal masses of 1.4 M⊙,
0.8 M⊙, 0.5 M⊙ and 1.3 M⊙ for RW Aurigae A, HV Tau C, DO
Tau UX Tau A respectively yields KS test p-value 0.023 per-
cent when comparing to the stars that undergo encounters in our
model. It is quite possible that observations could be biased to
detect evidence of encounters involving more massive stars with
brighter discs. However, this would imply many more undetected
external structures that are evidence of encounters involving low
mass stars in Taurus. Following Equation (13), if evidence for
just one more encounter similar to RW Aurigae or UX Tau were
uncovered in Taurus, this would being the 2σ encounter rate to
Γenc ∼ 680 Myr−1. Alternatively, this would yield Pobs ≈ 10−3

even for weak encounters with Γenc ∼ 100 Myr−1. Finding fur-
ther examples would introduce significant tension between the
frequency of such events and the encounter rates in our model
(Section 4.3.4), necessitating additional physics. This highlights
the importance of future unbiased surveys to search for evidence
of recent star-disc encounters in Taurus.

We caveat our findings with the fact that we do not
invoke any primordial mass segregation (Zinnecker et al. 1993;
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Fig. 12. Cumulative distribution function for the masses m∗ of stars
with m∗ > 0.08 M⊙ in our simulation (black line), compared with those
that underwent a truncating encounter −∆Rout/Rout > 0.01 (red line).
The distributions are not significantly different, with KS test probabil-
ity pKS = 0.87. We also show mass estimates for the stars with discs
that are responsible for the observed external structure. We do not show
uncertainties in these estimates for clarity, but errors quoted are typi-
cally approximately ±0.3 M⊙. The distribution of masses of stars that
have been inferred to have experienced recent truncating encounters are
significantly different from those in our simulation, with pKS = 0.023.

Moeckel & Bate 2010; Plunkett et al. 2018). However, mass
segregation is not evident in Taurus (Dib & Henning 2019).
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4.5. Mechanisms to increase late encounter rates

Given the apparently high probability that the observed sample
of discs with external structure produced during a recent star-disc
encounter is incomplete, we consider a number of possibilities
that may enhance the frequency of encounters late-on during the
dynamical evolution of Taurus.

4.5.1. (Viscous) re-expansion

For discs that experience multiple encounters that are either
unbound or in long period binaries, viscous angular momentum
transport (e.g. Lynden-Bell & Pringle 1974) or infall of mate-
rial from the ISM (e.g. Padoan et al. 2005; Manara et al. 2018;
Kuffmeier et al. 2023; Gupta et al. 2023; Padoan et al. 2024;
Winter et al. 2024) may replenish outer disc material such that
subsequent encounters will have a stronger influence than under
our assumption that disc radius is fixed. This replenishment
should be correlated with stellar mass (as suggested by observed
stellar accretion rates – Manara et al. 2017), so this would also
preferentially enhance truncating encounter rates for high mass
stars, consistent with observations (Section 4.4). Conversely, if
angular momentum is extracted by magnetohydrodynamic winds
(e.g. Bai & Stone 2013) then this could exacerbate the encounter
rate problem.

4.5.2. Self-gravity of the interstellar medium

As discussed in Section 3.12, for practical reasons we have
ignored ISM self-gravity in our calculations. If included, we
would expect this self-gravity to increase the time for which
groups of stars remain bound and therefore potentially enhance
the frequency of truncating encounters at late times. This in-
of-itself may explain any shortcoming in the frequency of
encounters in our model compared to observations. However, for
this to keep stars bound together, gas must be at approximately
the critical density to undergo gravitational collapse. On length
scales λ relevant for the Taurus region (σv ≫ cs and λ ≪ h,
the galactic scale height), this is effectively the Jeans criterion:
the gravitational potential must balance the turbulent energy. At
such densities, as discussed above, a number of authors have sug-
gested that disc replenishment by Bondi-Hoyle-Lyttleton (BHL)
accretion may be substantial (Padoan et al. 2005; Throop & Bally
2008; Kuffmeier et al. 2023; Winter et al. 2024).

To test whether we expect stellar dynamics-altering ISM
self-gravity to also substantially replenish protoplanetary discs,
we derived the critical density ρc as a function of λ following
Winter et al. (2024), shown as the black line in Figure 13. We
then estimated the expected typical BHL accretion rate:

ṀBHL ∼
4πG2m2

∗ρc

σ3
v

(14)

for a solar mass star m∗ = 1 M⊙, shown as the red dashed line
in Figure 13. Here σv ∝ λ0.5 as we assumed when implement-
ing kinematic substructure. For typical regions of size λ ∼ 1 pc
(Schmalzl et al. 2010; Joncour et al. 2018), our calculations
imply a BHL accretion rate ṀBHL ∼ 10−8 M⊙ yr−1, compara-
ble to observed stellar accretion rates (e.g. Manara et al. 2023).
Therefore, if local dynamics is influenced by ISM self-gravity,
we expect this also to replenish protoplanetary discs as discussed
above in Section 4.5.1.

We summarise that, while we cannot rule out ISM self-
gravity as a possible driver of present day encounters in Taurus,
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Fig. 13. Critical density at which the ISM is bound against turbulent
pressure (black line, left-hand-side y-axis) and the resultant Bondi-
Hoyle-Lyttleton (BHL) accretion rate for a solar mass star (red dashed
line, right-hand-side y-axis). Both are shown as a function of spatial
scale λ.

this would have extremely interesting consequences for disc evo-
lution. In particular, it would imply that replenishment from the
ISM is indeed common.

4.5.3. Tidal torques from the disc on the perturber

If the disc is sufficiently massive and the encounter sufficiently
close, then it is possible that the tidal dissipation of the orbital
energy of the perturber leads to capture and tightening of the
bound orbit (Clarke & Pringle 1993; Ostriker 1994; Muñoz et al.
2015). In this case the subsequent encounters may be stronger
as the periastron separation decreases. This is a promising way
to generate delayed strong encounters in binary/multiple systems
where multiple encounters have occurred, particularly given the
evidence for several close passages in the RW Aurigae system
(Rodriguez et al. 2018). Since the disc mass is a super-linear
function of star mass (e.g. Ansdell et al. 2016), this mechanism
could also be more effective for perturbations to discs around
massive stars. A key question however, is whether discs retain
sufficient mass to generate orbital decay to the present day; this
may be the subject of future hydrodynamic simulations for RW
Aurigae and UX Tau.

4.5.4. Embedded planets or brown dwarfs

If brown dwarfs or massive planets form and remain embedded
in the protoplanetary discs, then it is possible that during the
encounter they undergo large eccentricity perturbations (Heggie
& Rasio 1996) or chaotic evolution, perhaps to be captured by the
perturbing star (e.g. Fregeau et al. 2004). This would effectively
be a late-stage enhancement of the binary fraction, which may be
expected to enhance the encounter rate. As for the previous two
mechanisms, massive planets appear to be more common around
high mass stars (Johnson et al. 2010). While an interesting pos-
sibility in the context of spiral arms in discs, given the presence
of a stellar-mass perturber in the cases of RW Aurigae and UX
Tau this does not appear to be a convincing explanation.

4.5.5. Spatial variation of the binary fraction

In our simulations, we initiated binaries independently of their
location. It is plausible that binary formation is more probable in
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regions of enhanced local density, where enhanced tides can in
principle result in fragmentation into multiple systems (Horton
et al. 2001). This would enhance the degree to which binaries
typically interact with other stars, and may therefore lead to
enhanced encounter rates. However, RW Aurigae at least does
not appear to be located in a region of high stellar density (e.g.
Pfalzner & Govind 2021).

4.5.6. Prospects

While the explanations discussed in this section are not yet
necessary based on existing constraints, two future develop-
ments may change this conclusion. First, the quantity of mass
in the extended structure surrounding RW Aurigae and UX Tau
could be a substantial fraction of the disc mass (that may imply
|∆Rout/Rout| ≫ 10−2). Second, any new discoveries of extended
structure in Taurus originating from a star-disc encounter will
considerably increase the required encounter rate to Γenc ∼

680 Myr−1, much greater than the rate for even weak encoun-
ters in our model Γenc ∼ 200 Myr−1. Should an additional recent
encounter be discovered, and given the arguments outlined
above, possibly the most promising mechanism for enhancing
the encounter rate is the (viscous) re-expansion or ISM replen-
ishment of the disc. This hypothesis should be quantitatively
investigated in the event of additional discoveries.

5. Conclusions

We have presented an N-body model for the Taurus star-forming
region which is physically and empirically motivated. Our initial
stellar population is generated probabilistically from a turbulent
gaseous medium, via a zoom-in on a Gaussian field using the
cosmology simulation tool GENETIC (Stopyra et al. 2020). We
applied the inferred size-velocity relation in Taurus to gener-
ate an initial velocity dispersion, combined with an empirically
motivated binary population. Without any additional tuning,
this yields a dynamical model with excellent agreement to the
observed structure in Taurus by the metrics of the pair sepa-
ration distribution and separation-velocity correlation. This has
allowed us, for the first time, to accurately assess the global
frequency of encounters in the Taurus star-forming region.

In this way we have shown that, like the bull that is its
namesake, stars in the Taurus star-forming region rarely set-
tle for one close encounter. Instead, star-disc systems act as
stellar matadors, often enduring several close approaches with
a neighbouring star. The closest approach distances change
stochastically over time as binaries are themselves perturbed by
low velocity neighbours. High order multiples can also form and
break up on timescales much shorter than the lifetime of Tau-
rus. As a result, strong encounters at the present day can occur
in one of four ways. The most common are: during the evo-
lution of a chaotic multiple system; when an eccentric binary
is perturbed; or as a result of a close approach in a very long
period eccentric binary. Random encounters between single stars
are rare, with close encounters in Taurus being mostly mediated
through a binary companion. These categories can be blurred,
and in some sense to distinguish between binary and unbound
encounters is a false dichotomy. Since binaries and nearby low
velocity stars influence each other, inferring accurate encounter
rates requires that the spatial and kinematic structure of a region
is quantitatively taken into account.

Overall, ∼1/4 of discs are truncated below 30 au by dynam-
ical encounters. However, the majority of these dynamical

truncation events happen in the first few 0.1 Myr of the clus-
ter evolution, over the course of a few binary periods. After this
time, the role of encounters in sculpting the overall distribution
of disc radii is largely finished in a low density star-forming
region such as Taurus.

Nonetheless, individual strong encounters still occur over the
region as a whole, and we consider whether the examples of HV
and DO Tau (Howard et al. 2013; Winter et al. 2018a), RW Auri-
gae (Dai et al. 2015; Rodriguez et al. 2018) and UX Tau (Zapata
et al. 2020; Ménard et al. 2020) should be observed in our model.
We conclude that events resembling HV and DO Tau can occur
at a rate of ∼10 Myr−1 and therefore, given that it has remained
observable for ∼0.1 Myr, observing one such event at any given
time is expected. If weak encounters that eject only ∼0.1−1 per-
cent of the disc mass are responsible for the external structure
around RW Aurigae and UX Tau, then they are also expected
given the encounter rate Γenc ∼ 100−200 Myr−1 in our model.
However, we highlight that the systems that have been inferred
to have experienced recent truncating encounters do not appear
to be consistent with random drawing from the mass function,
while those in our model are. This hints that the known sam-
ple of discs that have recently experienced truncating encounters
is incomplete: just one more observational example would be in
strong tension with our model, implying additional physics.

We discussed a number of physical mechanisms that should
be explored by future work that may yield enhancements in the
rate of truncating encounters, such as the tightening of bina-
ries due to star-disc interaction (e.g. Muñoz et al. 2015) or
re-expansion/replenishment in the outer regions of protoplan-
etary discs. We also show that substantial replenishment via
BHL accretion must be proceeding if ISM self-gravity, which we
neglect in this work, is significant for the dynamical evolution of
high order multiples across the Taurus complex.

We summarise that star-disc encounters are an important
probe of disc physics. This work highlights the need for a
systematic search for extended structure generated by star-disc
encounters in Taurus.
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Appendix A: Output frequency exploration

Our approach to computing the encounter frequency has been
to post-process high frequency outputs, following the method
described in Section 3.10. For our fiducial model, we adopt an
output frequency of one every 323 years. While this frequency
is sufficient to capture even binary encounters if the semi-major
axis a ≳ 50 au, it is possible that in some instances binary-single
or binary-binary interactions result in miscalculation of the true
encounter properties. Here we test if such events may change our
results.

While it would be laborious (and challenging) to check
every single star’s encounter history in our sample for exam-
ples where our approach does not capture close encounters, we
can more directly test our choice on the disc truncation history.
We therefore decrease the output time step by factor ten (one
every 32 years), and repeat the same analysis on the rate of disc
truncation as before. The results are summarised in Figure A.1,
which can be compared directly to Figure 11. Statistically and
qualitatively, our results are very similar. We therefore conclude
that our approach for extracting encounters is not substantially
altering our conclusions. However, we do notice some small
differences in the encounter history that correspond to a small
number of individual encounter histories. These differences are
not important for our conclusions, but we investigate them as
follows.

We first identify an example of a system for which we
observe differences in the encounter history depending on the
output frequency. We show one such encounter history in Fig-
ure A.2 for our fiducial model, which is a chaotic triple interac-
tion. The close encounters identified by our algorithm are shown
as crosses. Comparison with the high frequency output simu-
lation (Figure A.3) shows that at early times, both encounter
histories are identical. They diverge after ∼ 0.3 Myr, from which
point the dynamics of the systems evolve chaotically to different
end-states. This suggests that the differences in the encounter
histories inferred from Figure A.1 compared to Figure 11 are
not due to differences in our encounter-extraction algorithm, but
differences in the N-body integration itself. While in principle
changing the frequency of outputs should not alter the integra-
tion, NBODY6++ performs a number of accountancy operations
at the time of output. It is possible that these operations slightly
alter other numbers in the code that enter into numerical cal-
culations via, for example, the adjustment of parameters. We
demonstrate that altering the parameter adjustment time step
(DTADJ) can have a similar influence on the dynamical evolution
of chaotic multiples in Figure A.4, where we reduce this time
step by five compared to our fiducial model.

We do not here investigate what changes to the output time
step lead to an altered chaotic evolution of high order multiples
when using the NBODY6++ code. By the nature of chaotic inter-
actions, such changes may be tiny (such as machine precision)
and in this case no particular solution is obviously more accurate.
This is particularly irrelevant physically, since for these cases
other processes may also change the dynamical outcome. How-
ever, we are satisfied that the statistical distribution of star-disc
encounters our model is not dependent on our choice of out-
put time step, and that our algorithm for extracting encounters
is adequate for our purposes.

Appendix B: Stochastic encounter history

To ensure that we are not dominated in our quantitative con-
clusions by stochastic variations in the encounter rates, we per-
form two additional numerical integrations of a Taurus-like re-

gion. We do this by performing two resampling experiments
for the same density field as we adopt for our fiducial model,
then adding a new binary population. The outcome compar-
ing the encounter rates across all the simulations is shown in
Figure B.1. Figures comparable to Figure 11 are shown in Fig-
ures B.2 and B.3. While we are not able to repeat the experiment
enough times to gain a full distribution at each time interval, we
can estimate a factor ∼ 2 variation in the encounter rates is typ-
ical. We conclude that the rate of truncating encounters that we
predict is only stochastic to within a factor of order unity.
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Fig. A.1. As in Figure 11, but for a factor ten higher output frequency.

101

102

103

104

E
n

c.
ra

te
[M

yr
−

1
]

−∆Rout/Rout > 10−3

−∆Rout/Rout > 10−2

−∆Rout/Rout > 0.1

−2.0 −1.5 −1.0 −0.5 0.0

log. Time: log t [Myr]

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

lo
g.

T
ru

n
c.

fr
ac

.:
lo

g
−

∆
R

o
u
t
/R

o
u
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g.

E
n

c.
ra

te
[M

yr
−

1
]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time [Myr]

101

102

103

104

S
ep

ar
at

io
n

[a
u

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time [Myr]

101

102

103

104

S
ep

ar
at

io
n

[a
u

]

Fig. A.2. Example of a chaotic multiple interaction in our fiducial
model. We show the separation of two neighbouring stars from a third
star as a function of time. Crosses mark the location where the closest
encounter is recorded by our post-processing analysis.
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Fig. A.3. As in Figure A.2, but for the same stars but with a factor ten
higher output frequency.
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Fig. A.4. As in Figure A.2, but with a factor five smaller time step
between the adjustment of simulation paramaters (DTADJ parameter in
NBODY6++).
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Fig. B.1. Stochastic variation of the encounter rate between different
simulations (shown by different line styles). The colour of the lines
refers to the threshold truncation used to define the encounter (as in
Figure 11).
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Fig. B.2. As in Figure 11 but for a second random drawing of the stellar and binary population.
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Fig. B.3. As in Figure B.2 but for a third random drawing of the stellar and binary population.
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