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Abstract
An aircraft engine is a complex structure for which some components can come into contact at high speed. Modelling

this behaviour is very complex as multiple physics must be considered. State-of-the-art methodologies usually account

for permanent contact and thermal modelling. In this paper, a new approach is proposed and embeds various phenomena

such as non-regular and non linear contact mechanics, surface rubbing, wear and non linear heat transfer. A non linear

version of Moreau-Jean algorithm is employed to compute the transient response of the system and to capture accurately
the contact dynamics. Moreover, the full non linear coupling between the dynamics and the heating process is taken
into account through both a semi-analytical formulation and the finite-element method. At the contact interface, heat
flux is generated by dry rubbing and flows into both interacting bodies. The heat flux partition is evaluated thanks to
a coefficient that depends on the material properties of the solids in contact. The proposed method also accounts for
the adhesive wear between the solids through an energetic approach. This methodology is applied to an academic, yet
realistic, disk connected to a rotor shaft that is free to move axially and to rotate around its revolution axis. Gyroscopic
effects and variation of the rotation velocity are included leading to a full non linear mechanical behaviour. The disk
undergoes aerodynamic load moving it to contact with a clamped free pin. The rotor shaft and the pin are both modelled
as 1D elastic bodies while the rotor disk is assumed to be rigid. Through this example, the developed strategy shows its
potential to compute the complete transient highly non linear response of the breaking phenomenon, in an acceptable

time simulation.

Keywords
Thermomechanics, Non linearity, Wear, High velocity, Nonregularity, Turbomachinery, Transient dynamics

1 - Ecole Centrale de Lyon, Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS 5513, 36 avenue Guy de Collongue, écully, 69134, France

2 - Safran Helicopter Engines, Avenue Joseph Szydlowski, Bordes, 64510, France

\_


https://www.ec-lyon.fr/
https://ltds.ec-lyon.fr/

Méthodologie de modélisation de la réponse thermomécanique non linéaire
avec usure lors d’interactions a grande vitesse : application a une
configuration pion-disque.

S. Pontonnier!, S. Quaegebeur!, F. Thouverez!, P.Almeida®

. R N\
Résumé

Un moteur d’avion est une structure complexe dans laquelle certains composants peuvent entrer en contact a grande
vitesse. La modélisation de ce comportement est particulierement exigeante car elle requiert la prise en compte de
multiples phénomenes physiques. Les méthodologies présentes dans la littérature considerent généralement ’aspect
thermique du probléme et se concentrent uniquement sur la phase de contact permanent. Cet article propose une nouvelle
approche intégrant divers phénomenes tels que la mécanique de contact non réguliere et non linéaire, le frottement de
surface, I'usure et le transfert de chaleur non linéaire. Une version non linéaire de I’algorithme de Moreau-Jean est
employée pour calculer la réponse transitoire du systéme, permettant de capturer avec précision la dynamique de contact.
Le couplage entre la dynamique et le processus thermique est assuré par une formulation semi-analytique et la méthode
des éléments finis. A Dinterface de contact, un flux thermique généré par le frottement a sec se diffuse dans les deux
corps en interaction. La répartition de ce flux est déterminée par un coefficient de partage dépendant des propriétés des
matériaux en contact. La méthode prend également en compte 'usure adhésive a I'aide d’une approche énergétique.
Cette méthodologie est appliquée & un cas académique mais réaliste, dans lequel un disque est connecté a I’arbre d’un
rotor, libre de se déplacer axialement et de tourner autour de son axe. Les effets gyroscopiques et la variation de vitesse
de rotation sont intégrés, aboutissant a un comportement mécanique non linéaire. Le disque est soumis & une charge
aérodynamique le mettant en contact avec un pion encastré-libre. L’arbre du rotor et le pion sont modélisés comme des
corps élastiques 1D, tandis que le disque est supposé rigide. Cet exemple illustre le potentiel de la stratégie développée
pour calculer la réponse transitoire complete et fortement non linéaire du phénomeéne de freinage dans un temps de
simulation acceptable.

Mots-clés
Thermomécanique, Non linéarités, Usure, Hautes vitesses, Turbomachines, Dynamique transitoire, Dynamique non
réguliere
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1 Introduction

Aircraft engines are complex structures in which components operate under extreme conditions (high temperature,
and rotating speeds). Braking systems are a crucial component to slow down the system. Developing appropriate
tools to model the whole braking interaction may help to further improve the security and performance of aircraft
engines.

In turbomachinery, this phenomena is covered by rotor/stator interaction for which the literature is abundant.
The rotor can be slowed down by radial [1] or axial rubbing [2, 3, 4, 5]. The latter being the subject of the present
paper, some of the most up to date studies are briefly summarized hereafter. References [2, 3, 1] have proposed a
finite element (FE) methodology to model the transient interaction. Psarra [2] developed wear maps (including
adhesive wear and melt) based on previously obtained FE simulation results. The author have then used this work
to compute directly the wear volume of the stator interacting with the rotor. The developed tool showed good
correlation with FE simulation. However, the full complexity of the melting phenomenon is not entirely represented.
Besides, the dynamics of the rotor is not considered, only purely axial displacement of the rotor is considered.
Capozzi et al. [3] developed a three dimensional FE model accounting for impacts and wear represented by a damage
criteria. This work has then been enhanced by Rojo et al. [4] who added thermomechanical coupling. In order
to decrease the computation cost of such methodology, Eryilmaz et al. [5] proposed a simple analytical model
to represent the instantaneous melt of the stator interface due to rubbing with the rotor, considering linear heat
equation and permanent contact.

This paper focuses on developing a semi-analytical model able to represent the system dynamics before melting
occurs, with a small computation time. Predicting such behaviour is very challenging as plenty of physics is involved.

The first main challenge is to model the impacts occurring within the system. To tackle such problem, two types
of numerical algorithm referred to as event-driven or event-capturing approaches [6] can be used. The former requires
two methods: one to solve the free dynamics and one to solve the contact dynamics. This type of algorithm is not
well suited to problems embedding many impacts, as it becomes time consuming and may not converge. In this
paper, event-capturing method is preferred as it allows to solve the whole response within a single algorithm.

During the braking interaction, the second challenge is to model the friction process and its consequences. The
main parameter governing the phenomena is the friction coefficient 1, which depends on external parameters such as
contact pressure, sliding velocity or temperature [7, 8, 9, 10]. The results of the aforementioned references show that
an increase in pressure or in sliding velocity lead to a decrease of u, down to an asymptotic value.

As a consequence of the rubbing interaction between the solids, both wear and heat generation occur. Various
models have been developed in order to quantify the wear [11], among them energy based method is shown to be
very effective [12]. Early investigations on the heat generation through friction were made by [13, 14, 15] and showed
that heat flux is not equally shared by the contacting bodies highlighting the need for a heat partition factor. The
aforementioned references studied semi-infinite solids in perfect contact with a moving heat source and showed that
the heat partition factor depends on the Peclet number and thus on the properties of the interaction.

Another approach considers that the heat division should only depends on material properties and that no
difference have to be made between the moving and the fixed solid [16]. Charron and al. [17] related the heat
partition factor with the thermal effusivity using semi-infinite solids and Block’s postulate. Charron’s formula is still
being widely used, especially in studies where the interaction is transient and occurs at high relative velocity [5, 18,
19].

The methodology proposed in this work combines different methods into a single framework so that all the
aforementioned physics (contact, friction, wear, and heat processes) can be included. It has been numerically
implemented using Python programming language . The paper is organized as follow: Section 2 presents both
the key equations to model the dynamics as well as the algorithm used to solve it. The modelling of the interface
behaviour is detailed within Section 3. The developed methodology is then applied to a free rotor - fixed pin
configuration explained in Section 4. Due to the complexity of the proposed approach, its full validation is complex.
However, the mechanical model and its temperature evolution are validated against a finite element model, using
Ansys Workbench , in Section 5. Finally, the developed methodology is employed to compute the complete system
dynamics in Section 6. The influence of the thermal modelling and the wear is studied.
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2 General formulation

2.1 Governing equations
In this paper, non linear thermomechanical coupling is considered. The governing system of equations is

div(e (T)) — pi = 0,
aT . (1)

pCp(T)E = VIV (MND)T) — pu™V4C,(T)T,
where u and T are the unknowns of the system referring to the internal displacement and temperature. Appropriate
initial conditions and boundary conditions have to be applied in order to solve Eq. (1). The scalars Cp, A, and p
denote the heat capacity, the thermal conductivity, and the density respectively. Vx is the gradient with respect to
x (which is here the space variables). The operator T denotes the transpose operator. The tensor o refers to the
stress tensor. The first line of Eq. (1) describes the mechanical behaviour of the system while the second line gives
the non linear heat conduction in the solids [20]. It should be noted that the term due to elastic deformation has
been omitted in the second line of Eq. (1) as it only has significant impact on mesoscopic systems. The coupling
between the two lines of Eq. (1) comes from the material properties dependence on the temperature

o (T) = H(T) : [ee - athexpTI} ) (2)

with H(T") the elasticity tensor, €° the deformation tensor and cihexp the thermal expansion coefficient. The matrix
I refers to the identity matrix.
The finite element method is applied to the system given in Eq. (1) and provides

].\7_[61 + éq + Kq = fext + fcont- (3)

The matrix K gathers the stiffness and thermal conductivity matrices as well as their coupling. A similar construction
is obtained for M and C (which includes the structural damping matrix, the gyroscopic matrix and the thermal
mass matrix). A full detailed example is provided in Section 4.4. The vectors fox(q, q,t) and feont corresponds to
the external load and contact forces respectively. The vector q is defined as q = [qT, TT]T, where q denotes the
mechanical degrees of freedom and T the thermal degrees of freedom.

2.2 Algorithm for transient non-smooth problem
The contact force in Eq. (3) must satisfy the Signorini conditions,

0<ut

norm

where v, . vt both represent the normal velocity before and after impact respectively. A is an equivalent to a
Lagrange multiplier and corresponds to an impulse. Finally, e is the restitution coefficient from Newton impact law.
In case of e = 0 there is no bounce and the contact is fully dissipative. In the opposite, e = 1 the contact is elastic
and bounces occur.

To handle such non-linearity, Moreau-Jean algorithm [6, 21, 22] is here employed. However, its classical
formulation has the drawback of presenting residual penetrations in some cases [1, 6]. A corrected formulation has
been proposed in [23], and is thus used in this paper. In the present study the algorithm is further adjusted in order
to account for the thermo-mechanical behavior. The following derivations give a brief description of the algorithm
as well as its improvements, the reader is referred to [6] for the full detailed derivation. Eq. (3) is integrated in time
providing the first line of the following system

\ tn 1p
f(tnatn+1] Mdv + ftn THdt = f(tn,7tn+1] cenadfeont

v o ((1+ + ch(t)> dt, (5)

q(tn+1) = Jt,

with dv a differential measure that provides

/(tn,tnﬂ] Mdv = M (él+(tn+1) - (LlJr(tn)) (6)
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and ~ R .
f=Kq+ Cq — fext. (7)

In Eq. (5), df.ont is an impulse due to the contact and v(t) is an added multiplier at the velocity level to ensure
non residual penetration. The second line of Eq. (5) corresponds to the integration of the velocity with the added
corrector providing the displacement. Vectors cy and cyp allow to pass from the local normal direction to the global
reference frame. After performing time discretization on Eq. (5) with use of the #—method, the residual R is defined

_ %1 _ M(Qn—ké)(an—i—l - (in) + Atfn-{-@ — Pn+1

Rl = e e G 7 ®)
mQ qn+1 —qn — AtanrG — Tn+1

R is split into two parts PR1 and Ry, which denote the residual in terms of dynamics and displacement. In Eq. (8),

f,.¢ is defined as f,,9 = f(q s Qo) and Gnig is equal to Gpig = OGnp1 + (1 —6)qy,. The vectors pni1, Tri1
correspond to reaction terms in the global frame, defined as

(9)

Pn+1 = eNA(Qn+1)Ant1 & ft o] CNAdfcont7
Tnt1 = ON(Ans1)kns1 = ft Cen(t
The system in Eq. (8) is non linear and thus a Newton-Raphson algorithm is employed to solve it. Superscript ? is

used to denote the i-th iteration of the algorithm. It should be pointed out that gradients of M, cn and cna with
respect to 4, q and T are neglected within the loop [23]. The linearization of the residue is noted Ry, and is equal to

41 i M(G . ,) + AtdCq ] =5 AtOK ],
m (qn—ill’qntll) i)%(q’ﬂ-i-l’qn-‘rl) + l: (qn-‘__g)AteI V:| ( n—:}l - qn+1) =+ |: 1 v:| ( n—:-ll - qn—i—l)' (10)

+1 1+1

with Cy = véln+ f 19 and Ky =Vg, n+9 During Newton’s procedure, mL(an,an) is taken equal to 0 in

Eq. (10). Therefore, the second line provides
A = @+ AL (0G5 + (1= 0)an ) + it (11)

This equation is substituted into the first line of Eq. (10) and allows to express the velocity at the iteration ¢ + 1

dith =it (N) B, (12)
with the iteration matrix M’ equal to
M’ = M(&,4) + AtOCy + At?6°K . (13)
In Eq. (12), vii! is the predicted velocity defined as
Vil =gl - M (8" + At0K et ) ! (14)
with ‘ ' - - _
8 = R (@l y1, ) + AWK (G + Al — &) (15)

In order to detect the contact between the two solids, the gap must be evaluated. It is equal to the normal distance
(along 2) between the solids and it is defined by

9 =go+enTa (16)

1As in [23], the system is decoupled by considering 7,11 at the Newton iteration i rather than i + 1.
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i+1 : : Sil il
In case of g'™" > 0, no correction is made and q,,",; = vj;

are solved [6]. The first one is written at the velocity level

. Otherwise, two linear complementarity problems (LCP)

CNT(QZ+1)((~12—E-11 JF edn) = Wiz—:-ll_A;tll + CNT(Q%H)(Vgl +edn) (17)
0 < enT (@) (Vil! +edn) LA, >0,
with Wf;_fl = cN(q;H)Tl\A/I_lpf;_ll. The second one in case of Aﬁlt_ll =0,
g;iltl]_ = gZH,l + CNT(q%-‘,—G)(qn + At (961;111 + (1 - 9)@71) - (lewl + CN(QZ+9>TZT|»11) (18)
0< gflt_ll 1 Hﬁlt_ll > 0.

If Af:jrll > 0, then s}t is obtained by solving gifl = 0. The Newton loop ends when either the absolute or relative
residual verify
~14+1 s 1
H%(Qiﬁh qifﬂ)H

i+1 H

<10~¢
Hpn-&-l B

(19)

“%(qil-‘:Fll?qiltll)H <1071

2.2.1 Tangent matrices

To compute the predicted velocity (see Eq. (14)), terms K¢ and Cy must be evaluated, in the present paper they
are equal to

KV = K’L + an+1 (K’L) qil-‘ra + vqn+1 (Cl) azl"re

(20)
Cy = Véln+1 ((3”) a’;l+9 + CZ + Vanﬂ (KZ) qil+9 — Van+lféxt7n+9.
3 Modeling of the contact interface

When two solids are in contact with a relative velocity, a friction force fr, opposed to the movement, is generated.

Coulomb law is widely used [10] for macro-modeling and is here employed. During sliding, the tangent force is given
by
vg(t)
fr(t) = —pfu(t) 72 (21)
VeI
with fy the normal force due to contact and v, the sliding velocity. fx is greater than 0 in case of contact and null
otherwise. The notation ||| stands for the Ly norm. In order to simplify the present study, the friction coefficient

has been assumed constant with 4 = 0.1. This value is frequently found in the literature for materials made of
inconel 718 (]2, 24]) . This friction process leads to two main phenomena: wear and heat generation whose modeling
in the proposed method is detailed next.

3.1 Adhesive wear

The rubbing between the solids damages the contact interface by ripping adhesive joints created between contacting
surface asperities [25]. It is modelled in this paper with an energetic formulation [12]. The wear depth Ly, is assumed
to evolve linearly with the dissipated energy at the interface

Ly = kEappn (t)|[ve ()], (22)

where pn(t) denotes the normal contact pressure. This formulation allows to account for variation in the contact
pressure and in the friction coefficient. Also, the coefficient xg, only depends on the material in contact. This
methodology has been used in [12, 26] for a fretting process.
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Methodology for Modeling non linear Thermomechanical Response With Wear at High-Speed Interactions:
Application to a Pin-Disk Configuration

Figure 1. Studied configuration.

3.2 Heat flux generation

Energetic balance at the interface under rubbing and wear has been expressed in [27] with the use of Clausius-Duhem
equation

(LWPN +PT||Vg||> + qgontncont =0 (23)

where pr is the tangential pressure. Also, QT Neont = g0 + q*2n*2, with q** being the flux in solid ** while
getting closer to the contact interface I'cont. The final expression of the heat flux generated at I'copnt is obtained by
substituting Eq. (22) in Eq. (23)

q;:rontnCOIlt = — (KEapN + 1) MPNHVg”' (24)

Due to the roughness of the interacting surfaces, thermal contact is not perfect and a temperature discontinuity
across the contact interface exists [28]. However, the thermal conduction is limited by a thermal contact resistance.
This parameter decreases with contact pressure, temperature, surface roughness [29] or sliding velocity [30, 31]. In
the present study, it is assumed that the thermal resistance is low enough so that the temperature difference is
negligible. This assumption is also relevant as the heat flux produced by friction reaches very high values. Thus, the
overall heat flux entering the bodies is expressed as

sl __
qs2 Q(cont (25)
q - = (1 - O‘)Qcont-

In Eq. (25), « refers to the heat partition factor. Under the assumption of short transient interaction [32], it is
obtained by Charron’s formula

551 (Tsl)
a= ,
é’sl(Tsl) + 552(T52>
with &5F =/ pCpL(TsF)N(T*F). Notice that the dependency of £ on the temperature allows to model the progressive
temperature disymetry in the contact [32].

(26)

4 Application to a pin-rotor disk configuration

4.1 Configuration of interest

The methodology proposed in Sections 2 and 3 is now employed on a pin-rotor configuration presented in Fig.1. It is
composed of a rotor free to move axially and a clamped pin distant from the rotor disk by a distance go (initial gap).

Soufiane Pontonnier et al.
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The rotor is supposed to be supported by bearings at its extremities modelled by dampers and springs along the

and Z directions. They are respectively equal to ¢, and k,. The rotor shaft is free to move axially, leading to
ill-conditioned matrices. To avoid this problem, a spring ks of 10N-m~! is added along ? at the rear extremity of
the shaft. The value of the spring stiffness is chosen small enough to not disturb the system dynamics . The pin and
the rotor shaft are assumed to be elastic bodies whereas the rotor disk is purely rigid and rotates at a varying speed
Q with an initial speed €y. Constant aerodynamic loads are applied to the rotor. They are composed of an axial
force F . which brings the rotor into contact with the pin and a driving torque C,e, which accelerates the rotor
disk. Inconel 718 is used for the rotor and the pin. Material properties are taken from [33, 34]. The value for kg, in
Eq. (22) is equal to kg, = 11.31-107° MPa~!. It corresponds to the mean value provided in Tab.6 for untreated
inconel 718 in [35]. The rest of the data are available in Tables 1 and 2.

Part  Length (mm) Outter radius (mm) Inner radius (mm)

Shaft 110 20 —
Disk 30 80 20
Pin 18 9 -

Table 1. Geometric properties.

F.er (N) C.er (Nm) go (mm) [ (mm)
1500 20 1 60

Qo (RPM)  kp (Nm~1) ¢, (Nm~1s71) (Ypin, Zpin) (mm)
20000 107 102 (28, —28)

Table 2. Complementary data.

4.2 Non linear thermomechanical behavior of the pin
4.2.1 Non linear thermal equation
The heat equation presented in Eq. (1) is applied to the pin, neglecting the term paTVC,(T)T. Due to the rotating
air in the boundary layer of the disk, the pin is submitted to forced convection modeled by a heat loss term. The
1D-non linear heat equation in the pin is written as

oT(x,t) 0 OT (x,t)

pCy(T) = 5-(MT)

T (z,t) 0 ) 2hpin
ot ox

ox Tpin

T(x,t), (27)

with hpin the convective coefficient applied on the pin 2. Material properties are obtained from [33] and interpolated
in the temperature range [298 K, 1,400 K]. Temperature dependent material properties are assumed to follow a
polynomial expansion. Based on material data [33], the following expressions are obtained

Co(T)=1359.34+022x T (28)
Apin = 317+ 0.023 x T — 4.9 x 1076 x T?

The finite element formulation of Eq. (27) gives
Cth(T)T + (Kth<T) + KCV(qPiH7 Q)) T =0, (29)

2Modeling of hpin is presented in Appendix A
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where Cyy, is the thermal matrix of the pin and Ky stands for the thermal conductivity matrix. The associated
boundary conditions are

T(L,t) =0
Qfcont .
aT(0,1) |-~ ifg=0, (30)
_— = pin
or

0 otherwise.

4.2.2 Non linear mechanical equation

The finite element method is applied to the pin which is modeled as an 1D truss. Thus, from Eq. (1) the following
system is obtained
Mpindpin + Cpindpin + Kpin(T)qpin + Kathexp (T)T = 07 (31)
where Mpin, Cpin, and K, denote the mass, damping, and stiffness matrices of the pin respectively. The matrix
Ko e, (T) denotes the thermal expansion matrix of the pin. The vector qpi, corresponds to the mechanical degrees
of freedom of the pin. The stiffness matrix is temperature dependent as the Young modulus is approximated with a
second order polynomial function of T using data from [34]. Similarly, Ka,,.,,(T) is assumed to be a linear function
of T ([33]). In the considered range of temperature, their mean values are respectively 160 GPa and 17 - 1076 K~1.
In the present work, a modal damping approach has been chosen with a modal damping of £ = 3%. To better
account for aerodynamic loads, mass damping approach seems to be more suited as mentioned in [2, 3].
If the gap is closed the pin undergoes a contact force fy. The coupled dynamics of the pin behavior is described

by
Mpin 0f .. Cpin 0 . Kpin Kah fCont
b | gy = 32
{ 0 O] q2+{ 0 Cth(T)] q2+{ 0 K(T) © 7 |ageon (32)
where g2 = [qpinT, TT]".

4.3 Equation of motion and thermal conduction in the free rotor

4.3.1 Mechanical equations of the free rotor

A disk is attached to the shaft at the point noted G, distant by a length [ from the shaft extremity, see Fig. 1.
In the following, Ry = (0,X,Y,Z) denotes the global fixed reference frame where the shaft is defined, and
R = (G, Xgisk> Ydisk Zdisk) describes the moving reference frame attached to the disk center. In order to express
the motion from Ry to R, Euler angles are employed: a precession ¢ around Z , followed by a nutation 8 around
¥1, and finally a rotation ¢ around X ;4. Therefore two intermediate frames are defined (R; = (G,%1,¥;,71) and

Ry = (G,X2,¥5,72)) to shift from Ry to R. The angles ¢ and 6 are assumed to be small whereas (b corresponds to
the rotating speed of the system. In the following, 1) and 6 are noted 0, and 6,. The vector of rotation of the disk
(expressed in the frame R) is then given by

Wy ) ¢ - 9y.9-z
w= |wy| = |f.sinp+0,cosp| . (33)
Wz 0. cos¢ — 0y sin¢

Fig. 2 summarizes the motion of the disk. The rotor has a rigid motion around X ;¢ parameterized by the angle ¢.
The disk, of mass m and of moments of inertia (Jx, J, J) along the main axis of R, is assumed to be a rigid body
and is thus only characterized by its kinetic energy:

1 ) . ) )
Ecae = 5m (i + 6% +8) + i (67 = 20,,06:.60) +J (626 +02) (34)
The scalars ug, va, wa, 0y, and 6. ¢ denote the translations and rotations of the point G (where the disk

is attached to). The rotor shaft (of length L and section S) is modeled using Timoshenko beam theory. The
computation of its kinetic energy is performed similarly as the disk and is given by [30]

1 L
Ecahats = §ps / (W 4+ 0% + i + Igw] + I (w; +w?)) dz, (35)
0
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Figure 2. Frame systems used in the present paper.

where u, v, w, wy, wy, and w, are the translation and rotation of an arbitrary point of the neutral axis. The moments
of inertia of the shaft along the main axis of R are noted (Ig,I,I). The potential energy is given [36] by

1 [k 90, \> 90,\ > ows \ > g\ 2 ou\?
E,=—- EI|(-2 - k - ES|—) |d 36
P 2/0< (8l'> +<8x) (8x "\ + Ox © (36)
where Krip, is the shear coefficient whose value is provided in [37], which here is equal to 0.85. In Eq. (36) the
subscript ¢ stands for the shear component of the total displacement. The finite element method is next applied, the
shape functions used in this paper are modified Hermitian polynomials [36]. A node (G) is created where the disk is
attached to. The mechanical degrees of freedom of the rotor are written qyot- This vector of unknowns also contains

the unknown ¢ which governs the rotation evolution of the system along X. The final equation of motion of the
rotor reads

+ KTimGS

Mrotdrot + Crotdrot + Krotqrot = frot + fcont~ (37)

The terms M,ot, Crot, and K,o; denote the mass, damping (with a 3% modal damping), and stiffness matrices
respectively. Notice that the stiffness and damping values of the bearings (ki, and ¢,) are included in K, and Ciot.
The gyroscopic matrix, arising from term Igw? in Eq. (35), is included in the damping matrix. Similarly, the angular
acceleration matrix coming from the same term in Eq. (35) is included within the mass matrix as ¢ is unknown.

4.3.2 Analytic solution for thermal conduction in the rotor disk

In order to assess the temperature in the rotating rigid disk, an analytic solution of Eq. (1) is used. Arizmendi et
al. [38] extended the solution of [39] to transient regime by employing successively a Fourier transform, a Hankel
transform and a modal projection for which the temperature is noted Ty;. They considered several disk configurations
with constant €2 submitted to a constant heat source. In the present paper, the interaction is assumed to be very
short, thus heat does not have enough time to diffuse out of the contact area and temperature at the edges is
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assumed to remain constant. The configuration retained for the present paper is described by

T (raisk, ¢, x,t) =0,

T(r’ w’ 0’ t) = 07
t 38
_OT(r, ¢, eqisk) _ —% in the contact area, (38)
ox n

haisk T (7, ¢, edisk, t) elsewhere,

with eqisk the disk thickness. The rotation velocity and the heat source are time dependent, the second line of Eq. (1)
is transformed using Fourier, Hankel and modal transform. The resulting equation is then time discretized with use
of the #—method leading to

TM,n-l—l (fnm ja npv t) =

1 Atk sin npeqisk
OAtkCy1 + 1 A

QH,n—&-l(fma jv t) - [(1 - G)AtK<n+1 - 1] TM,n(gma jv Mps t)) (39)

Q
with ¢ = €2, +ij— + 7712) and &, np the positive roots of
K
In(Emraisk) = 07
(Emraisk) (40)
Np cot(Mpedisk) = —Ndisk-
The temperature T'(r, , x,t) is obtained with

oo 0 X

Ru(&m,r) Ym(np, ) ij
T(r,p,2,tni1) = Z Z Z N (e NM(P ) Tarny1€7% | . (41)
j=0 m=0 p=0 m "Ip

Transformation functions were obtained in [40] and gy is the transformed heat flux as defined in [41]. In the
particular case of j > 0 and m = 0, qu(&o,J,t) = 0.

As mentioned in Section 3.2, the temperatures of both contacting solids change the heat partition factor. Thus,
evaluating Eq. (41) at the coordinate (7pin, — atan(R"‘“) edisk ), €nables to compute the temperature at the entrance
of the contact area. e

4.4 Overall system of equation and application of the Moreau-Jean algorithm
The entire test case has now been described and the equations governing the dynamics of the pin Eq. (32) and the
rotor Eq. (37) are gathered following the construction of Equation Eq. (3) to apply Moreau-Jean algorithm. As a
reminder, the system of equations reads S R

Mg+ Cq+Kq=f. (42)
The vector q gathers the mechanical degrees of freedom of the pin and the rotor but also the temperature degrees of
freedom of the pin and is thus equal to

q = [qrotT qpinT TT] T . (43)

The others terms, i.e., 1\7[, C, K, and f are similarly constructed. Recall that the temperature of the disk is
considered analytically through Eq. (41).

To apply the Moreau-Jean algorithm, it then remains to define the projection vectors cx and cya (Eq. (9)). The
vector cy is obtained through the derivation of the gap, i.e. the normal distance between the rotor surface and the
pin surface, which is detailed hereafter. The contacting point belonging to the disk surface (Sgisk) is noted B (see
Fig. 2) and is assumed to be, for all time ¢, the normal projection of the pin extremity on Ggjsk. Point B is defined
in the frame of reference Ro

by=[0 ys z5]". (44)
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Using the projection matrix Poy between the frames of reference Ry and Ry

1 —927(; Qy,(;
Py = | b.c 1 01, (45)
—0,c 0 1

point B is expressed in the reference frame through

—0..cys + 0,625 + (I +ug)
bref = Ypin (46)

Zpin

with ypin = yB + v@ and zpin = 2B + Wa-
The pin extremity is denoted by point C and is defined in the reference frame through

Cref = [l + 9o + Upin  Ypin Zpin] T . (47)
Therefore the gap is equal to the projection of (cyer — brer)T along the X axis,

g = go+ygh.c—zBlyc —ug+ Upin (48)
= go+cNTq.

cy is a vector of a length equal to the total number of degrees of freedom of the system, it is filled with zeros except
for the node where the disk is attached and for the node of the pin where the contact occurs. For point G and point
C, cy is equal to

CN|G = [—1 0 0 —ZB yB]T

exe=[1 0 0 0 0]T. (49)

The vector cny is obtained through the derivation of the reaction forces. The relative velocity between the rotor
disk and the pin is obtained in the reference frame through

Viel = Vg — Vo + PZOchl; (QPZng) ) (50)

with
1 0 0
Pog=|0 cos¢p sing|,
0 —sing cos¢

and Q corresponds to the rotation matrix associated to the rotation vector w, see Eq. (33). Thus relative velocity
components along 7 and 7 are expressed by

{Urel,y = 9(;,2(9'(;.,3,23 - éG.,zyB) — Qzp, (51)
Urel,z = —0a.y(0c,y2B — 0a,:yB) + QyB.
The vector cnp refers to reaction forces, it is obtained considering efforts acting on G in the reference frame
feontjc = {*fN fry fr.- ! ,
ypfr. — zBfTy (52)

Ceont|G = | —fnzB — fr,2 (Bcy2B — 0G,2yB)
vy + fry (Ocyz — 0a,2yB)
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feontjq corresponds to forces acting on the translations degrees of freedom of the rotor disk and ccontjq denotes the
torques acting on the rotations. cyp is structured in the same way than cy thus

_ . }
—n Urel,Y
Vyel
el
CNA|G = Vrel.z Hvrelll I
—zp + p—= (0G y25 — 0G,.YB) (53)
|V1r;e/1||
yg — pi—= (0c.y2B — bG,-yB)
L Vel J
CNA|C = 1 00 0 0

and cxajg = yYBfr,2 — 2B [Ty Moreover, the line corresponding to the pin’s temperature at point C is equal to
CNA|Te = M||Vre1||-

Algorithm 1 summarizes the Moreau-Jean algorithm steps applied to the pin-disk test case to obtain its transient
response with friction, impacts, adhesive wear, and non-linear thermal conduction. It can be noticed that wear
depth is computed after solving the contact [24], the removed length is added to go.

5 Validation of the methodology

The proposed methodology models various complex phenomena. Therefore a full validation of the method is very
challenging. Nevertheless, this section proposes partial validation of the approach and the studied configuration.
First the model is validated through the comparison of the evolution of the first four bending frequencies of the
rotor with respect to the rotational speed. The rotor has been discretized with the finite elements method using 10
elements. Results have been compared with those from an Ansys model composed of an 1D dimensional beam with
a concentrated mass and bearings supports. Material properties given in [34] were used. Frequencies obtained with
both models are displayed in Fig.3. Results match very well confirming the validity of the rotor modeling.

Q (RPM) 104

Figure 3. First bending frequencies of the supported rotor, Ansys (e)(m), Developed method (—) (- - ), Forward Whirl (—)(m),
Backward Whirl (- - )(e), f1 (HE), f> (HH), f5 (EE),fs (HEN).

The pin has been discretized with 29 elements non regularly spaced. Close to the contact interface where the
temperature gradient is steep, a denser mesh is used up to the distance d defined as

d = 3.21111/Fmaxteont.- (54)
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Algorithm 1 Algorithm used to solve rotor disk-pin interaction, single point interaction.

while t,, < tax do
Update Y, | Eq. (10)
Initialization of the array for handling contact
I’ < [True, False], i + 1
while Eq. (19) not satisfied or I' # I~ do
Update £/1}
Compute tangent matrices at n + 6 < Eq. (20)
Compute I\A/[f:firl@ + Eq. (13)
v, < Eq. (14)
if I' = True then
Solve contact -
ALY Bq. (17), Qi1 + Eq. (12)
if A%tY =0 then £.%} < Eq. (18)
else if A’"Y > 0 then s}t + g/t =0
end if
(1?_‘,_11 +— Eq. (11)
end if
Check error Eq. (19)
Check gap vaduegf;l1 + Eq. (16)
if g/t <0 then I'*! « True
else "1 « False
end if
=141
end while
Update values

Qtot,n+15 Atot,n+1 ¢ fléj&n.{.p (Lliztl,n+1
i+1

Rcont,n+1 <~ ZJZI

Compute wear depth

if Rcont,n+1 7£ 0 then lwear,n—i—l «— Eq. (22)

end if

Compute the temperature of the disk

Tdisk,nt1 < Eq. (41)

Update heat partition coefficient

Qnq1 < Eq. (26)

Update M, 41, f,+1 Eq. (7)

Update cny,o1 and enang Eq.Eq. (49), Eq.Eq. (53)
end while

This value corresponds to the pin abscissa where the temperature reaches 1% of the surface temperature [12] in
the case of linear transient heat equation with semi-infinite solid. Figure 4 shows the evolution of the element size
for the mesh used. Its thermal behaviour has been validated with a transient non linear heat conduction problem.
The pin is assumed to be initially at 298 K and submitted to a constant heat power of 23 - 103> W during 10 ms.
It allows to cover the whole interpolation range of temperature. Material properties are those from [33], with
Cp € [425, 634] Jkg 1K1 and Apin € [9.94, 25.32] W-m~1.K~!. Figure 5 shows well correlation between results
from the developed model and Ansys with less than 2% error. Also, the three first traction-compression eigenvalues
of the pin have been compared with the ones provided in [43]. With the chosen mesh, the theoretical frequencies are
estimated with less than 2% error.
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Figure 4. Elements size of the pin’s mesh.
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Figure 5. Temperature field in the pin near the contacting surface at ¢ = 10ms, Ansys (—), Developed method (e), Distance
d (Eq. (54)) at which the mesh becomes uniform (- -).

6 Results

Different analyses are now conducted for the pin-disk configurations. Firstly, the complete dynamics of the test case
is evaluated. The contact behavior and the motion of the system are thoroughly analyzed. Simulations were carried
out with a time step dt = 21077 s so that the first ten modes of the pin are well described. The §—method is here
employed with 6 = 0.5 so that the scheme is implicit without additional numerical damping. The parameters m,
Jj, p for the computation of the disk temperature are respectively set to 25, 25, 250 (see Eq. (41)). Secondly, the
influence of the thermal modeling on the system response is investigated.

6.1 Global dynamic response

The computed transient response accounts for time changing rotating speed and adhesive wear. Also, the non
linear heat behavior of the pin and its thermal expansion are included. Finally, heat loss by convection and a heat
partitioning dependent on the material properties are also considered.

Results are displayed on Fig.6 . Two distinct phases can be observed from Fig.6a. The first part of the interaction
consists of impacts while the second is characterized by permanent contact. During phase 1, the amplitude of the
impacts rapidly decay from 350 pm to less than 10 pm. Furthermore as a consequence of impacts, the load seen by
the pin is far larger than the external load applied at the rotor disk level. With the chosen configuration, the pin
undergoes a load almost sixty times greater than F,... Thus, the heat flux generated at the interface is higher than
during permanent contact (Fig.6c, Fig.10b). From Fig.6¢ it can be seen that the heat penetration is lower during
the first part of the interaction than during the second one, which is due to the short contacting time caused by
impacts.

Accounting for the full dynamics of the rotor has been shown to have an important influence on the transient
response. Indeed, the impact dynamics induces the fusion of the pin interface with an external load for which the
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Figure 6. Gap, reaction force and temperature in the pin.

fusion does not occur when permanent contact is assumed. Moreover, in case of a larger gap or a greater F ., the
pin is likely to locally plastify which may not happen with permanent contact hypothesis.

The temperature on the surface of the disk at a radius r = 7y, is displayed on Fig.7. The center of the pin is
assumed to be located at 64isx = 0 and the dotted lines delimit the contact area. From Fig.7, it can be seen that the
temperature of the disk starts increasing as soon as entering the contact area. The maximum temperature at the
disk surface is obtained at the exit of the contact area. As the time between two contact phases decreases, the disk’s
surface accumulates heat and enters the contact area at a higher temperature. As a consequence, the part of heat
that goes to the pin slowly decreases as the disk is heated.

Rotor’s dynamic is displayed on Fig.8. Its rotations and translations at point G along 7, ? are displayed in
Figures 8a, 8b. The first two suspension modes of the system are found within the rotor displacements in the plan
(?g ). During phase 2, the rotor rotates with a frequency that corresponds to its first suspension mode.

The braking effect of the pin on the rotor disk is visible in Fig.8c. It shows that the rotation speed of the rotor is
slowed down and the time needed to reach (i, is here delayed by v = 11.7ms.

The pin shortening due to adhesive wear is provided on Fig.9 . According to Eq. (22), the wear depth strongly
increases while permanent contact is reached. However, in case of short event, adhesive wear does not have a
significant influence. Indeed, compared to the thermal expansion of the pin which is in the range of micrometers
(Fig.11) the wear depth is in the range of the nanometer.

)

Soufiane Pontonnier et al.
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Figure 7. Temperature (K) at the disk surface at r = rpin, the heat source is located at 0°, limits of the contact area (----
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Figure 8. Rotor dynamics at point G

6.2 Impact of thermal modeling

In order to investigate the influence of the thermal phenomenon considered in the present methodology, five
configurations have been studied. Configurations 1 corresponds to the full system presented in Sec.4.1. The other
configurations are different from the reference case through a single modification. The second configuration does
not account for temperature dependent material properties. The third configuration assumes that the heat flow is

10-5 10-3
10 6 10
B Phase 1 Phase 2 4l
g 2F
£
= 0
L 2L
! ! I ! —4 L | ! I !
0 1 2 3 4 ) 0 1 2 3 4
Time (s) 1072 Time (s) 1072
(a) Translations, (Y axis (=), Z axis (—)). (b) Rotations, (Y axis (=), Z axis (—)).
-10*
. 2.06 - Qi
g ool T =V .
= 2.04 ‘ |
S 202] —
2 | | | |
0 1 2 3 4 5
Time (s) 102

).

equally shared during the whole interaction. The thermal expansion is not considered in the fourth configuration.
The fifth and last configuration ignores the temperature and just solves the mechanics part of the system.
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Figure 9. Wear depth

Firstly, the temperature evolution at the pin surface is compared between the first three configurations. The
results are provided in Fig.10. The red line represents the melting temperature (Tyers) which is 1400 K for the
selected material. With Configuration 2, Ti,er is exceeded even during permanent contact whereas it is kept below
1400 K for configuration 1 and 3. As shown on Fig.10a, non linear heat modeling allows a better diffusion of
heat within the body avoiding heat accumulation at the surface leading to a lower surface temperature. Also,
comparing Configuration 3 with Configuration 1 shows that the pin tends to absorb more heat during the contact
process. Compared to Configuration 1, the maximum absolute difference is 670 K for Configuration 2 and 213 K
for Configuration 3. Thus, non linear heat modelling has a first order impact on the thermal response of the pin
which is consistent with the result from [4] . Also material dependent heat partition ratio significantly influences
the temperature at the pin surface. Thus, they are both key parameters in order to accurately model the present
interaction. It should be noted that the rate of temperature increase obtained in the present paper is somehow
overestimated as the friction coefficient p is considered constant.

In order to assess the influence of the pin’s temperature on the system dynamic response, the gap and the pin’s

2 2 ’

L o 15[ [ . -
o 15 %) L] o
: Ly & I . \!\J\'\'.'m‘\w' vvvvvvvvv

0.5 ‘ ‘ ‘ ‘ 051 \ \ \ \
0 1 2 3 4 5 6 0 1 2 3 4 5
Position in the pin (m)  .10-5 Time (s) 1072
(a) Heat penetration at first impact (b) Temperature at pin’s surface

Figure 10. Temperature in the pin, Configuration 1 (—), Configuration 2 (—), Configuration 3 (—).

displacement obtained with Configuration 2, 4 and 5 were compared, results are presented in Fig.11. Doing so
allows to decouple the influence of thermal expansion and thermal softening. The change in Young’s modulus of
the material near the pin surface has a damping effect on the transient response of the system. Indeed, the gap
closes = 5ms earlier with Configuration 4 than with Configuration 5 (see Fig.11a). Also, the amplitude of the pin
oscillations decreases faster with Configuration 4 so much that only the first normal mode of the rotor remains at
50 ms with a small amplitude (see Fig.11b).

Thermal expansion (Configuration 2) also affects the dynamic response of the system and has a destabilizing role by
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Figure 11. Gap and axial translation of the extremity of the pin, Configuration 2 (—), Configuration 4 (- - ), Configuration

5 (—).

increasing the number of impacts. Indeed, with Configuration 2 the permanent contact stage is delayed of 8 ms
compared with Configuration 5 (see Fig.11a) and the system oscillates faster and with a larger amplitude (see
Fig.11b).

7 Conclusion

In this paper, a novel methodology to model braking interaction at high speeds has been proposed. This method
relies on the Moreau-Jean algorithm to handle non-smooth and non linear dynamics. This algorithm is improved to
account for thermal expansion, material dependence on the temperature, and adhesive wear. As an application, a
pin-disk test case has been studied. First, it has been shown that the presence of impacts has an important influence
on the response of the system. Indeed, it leads to an increase of the stress in the pin, and thus has a major influence
on the heat flux generated at the interface. It has been shown that for a gap of 1 mm, the load seen by the pin is far
greater than the one applied at the disk level and that interface melting is very likely to occur before permanent
contact arises.

Another major phenomena influencing the dynamics of the test case is the thermal behavior with the non linear
heat equation. Indeed accounting for this behavior allow to better predict the time to reach melting by allowing a
better diffusion of the heat through the pin. Also, accounting for change in Young’s modulus has shown to damp
the dynamics and allows to reach permanent contact earlier.

The novelty of the present methodology relies on its capacity to model the transient non linear interaction
between a rotor and stator with semi-analytical modelling. Compared to previous studies [2, 3, 4], computational cost
is reduced and new physics can easily be added in the modelling. Also, in a future work the proposed methodology
will aim to handle impacts, permanent contact with dry friction and permanent contact with melted interface.

From an academic point of view, this methodology is relevant to better understand the phenomenology of braking
under severe conditions. Furthermore, this method can be applied in an industrial context at a preliminary stage to
evaluate initial designs within a short amount of time. It is also very interesting to assess which physical phenomena
are predominant.

As shown in this paper, for some set of parameters (initial load, initial rotating speed and so on), the melting of
the pin interface can occur at early stages of contact interaction. This behaviour is not handled yet by the proposed
methodology. Moreover, results showed that because of impacts, the loading acting on the pin can reach high
values. Therefore, the pin is likely to undergo plasticity. Thus, future works will aim to model plasticity and melting
behaviours. Also, implementing multiple pins in contact with the disk would make the studied configuration more
realistic.
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A Convective coefficient h

Figure S1. Rotor disk boundary layer interaction with the pin.

The air surrounding the system is assumed to be displaced only by the rotation of the disk. Therefore, out of the
boundary layer the fluid is at rest. The turbulent boundary layer is expressed [44] (Eq.4.187) through

1
U=
6 = 0.5261r ()5 . 55
"\2q (55)
7 is the radial position of the pin (Fig.S1) and v the kinematic viscosity (m?-s~!) computed using Sutherland law.
Air velocity in the boundary layer is mainly tangential and expressed [44] (Eq.4.97) by
1

vo = 1) [1 - (g)] 7, (56)

x is the axial distance from the disk. Churchill and Bernstein [45] obtained an empirical formula to compute the
Nusselt number (Nu) in case of a cylinder perpendicular to an air flow

i 1 4
62RZ P? 5
Nu:0.3+[ 062k [1+< fe )] ]
o 2 282000 )| |, (57)
1 -
(%)
it is valid for R, < 107 and P,R, > 0.2. In the previous expression R, is the Reynold number ( Ugd%) and P, the

Prandt] number (= 0.7). For the disk, the mean Nusselt number Nu is used and it is defined in case of an isothermal
disk [46, 47]

=

Nu = 0.015R, ", (58)
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with R, =

2
Qrgisk

. The convective heat transfer coefficient of the disk and the pin is thus computed

Nu(z, r, Q) Xair (T)

)

hpin (2, 7,2) =
2rpin (59)

[ Nu(Q) Ao (T
haisk () = %7

Aair i the thermal conductivity of air obtained from [48].
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