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A B S T R A C T

Aedes albopictus mosquitoes face numerous anthropic stressors in urban areas. These xenobiotics not only impact 
mosquito physiology but also shape the composition of their microbiota, which play important roles in host 
physiological traits. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants known to 
alter mosquito metabolism, but no studies have yet investigated their impact on microbiota. Using a bespoke 
indoor mesocosm tailored for Ae. albopictus mosquitoes, we investigated the dynamics of bacterial communities 
in both mosquitoes and their larval breeding sites following chronic exposure to a cocktail of PAHs consisting of 
benzo[a]pyrene, benz[a]anthracene, chrysene and benzo[b]fluoranthene. Our findings showed that PAHs have a 
stage-specific effect on mosquito microbiota, with a higher impact in larvae than in adults, contributing to 12.5 % 
and 4.5 % of the PAHs-induced variations, respectively. The presence of PAHs in the treated mesocosm led to the 
enrichment of bacterial families and genera known for their ability to catabolize PAHs, such as Comamonadaceae 
and Raoultella (increasing from 19 % to 30 % and from 1.2 % to 5.6 %, respectively). Conversely, prevalent taxa 
found in mosquito microbiota like Wolbachia and Cedecea exhibited a reduction (decreasing from 4 % to 0.8 % 
and from 12.8 % to 6.4 %, respectively). This reduction could be attributed to the competitive advantage gained 
by PAH-degrading taxa, or it could reflect a direct sensitivity to PAH exposure. Overall, this indicates a shift in 
microbiota composition favoring bacteria that can thrive in a PAH-contaminated environment. PAHs persisted in 
the water of breeding sites only the first 45 days of the experiment. Benzo[a]pyrene and benzo[b]fluoranthene 
were more susceptible to bioaccumulation in larval tissues over time. Overall, this study enhances our under-
standing of the impact of pollution on mosquitoes and could facilitate future research on the importance of 
symbiosis in urban-dwelling insect disease vectors. Given the recent advancements in the generation of axenic 
(microbe-free) and gnotobiotic (mosquitoes with a defined or specific microbiota) mosquitoes, further studies are 
needed to explore how changes in microbiota composition could influence mosquito responses to pollution, 
particularly in relation to host fitness, immunity, and vector competence.

1. Introduction

Aedes mosquitoes, such as Aedes albopictus and Aedes aegypti, are 

listed among the world’s worst invasive alien species (Global Invasive 
Species Database, IUCN) (Lowe et al., 2004). These species are of critical 
public health importance as competent vectors for several infectious 
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diseases, including dengue fever, Zika virus, chikungunya, and yellow 
fever (Kraemer et al., 2019; Roiz et al., 2024). These diseases pose a 
significant threat to global health, particularly in tropical and subtrop-
ical regions, where Aedes mosquitoes are widespread (Guzman et al., 
2010; Leta et al., 2018). The recent global expansion and redistribution 
of these mosquito species has increased the risk of arbovirus emergence 
in non-endemic areas (Medlock et al., 2015; Ryan et al., 2019). In 
particular, the Asian tiger mosquito, Ae. albopictus, has exhibited strong 
ecological plasticity, that allowed for its successful establishment in 
urban environments through adaption to various human-made habitats 
(Paupy et al., 2009; Bonizzoni et al., 2013; Dickens et al., 2018; Koli-
menakis et al., 2021; Duval et al., 2023).

Meanwhile, urban environments are facing high levels of pollution 
due to rapid industrialization, population growth, and expanding 
infrastructure (Liang and Gong, 2020). The concentration of pollutants 
in these areas poses significant challenges for both environmental and 
public health (Manisalidis et al., 2020; Bikis, 2023). Among the most 
prevalent pollutants in urban settings are chemical contaminants such as 
heavy metals, polycyclic aromatic hydrocarbons (PAHs), and particulate 
matter, which are primarily generated by vehicle emissions, industrial 
activities, and waste management processes (Rhodes et al., 1983; Liu 
et al., 2019; Sun et al., 2021; Garagnon et al., 2023). These pollutants are 
persistent in the environment and can accumulate in air, water, and soil, 
leading to complex interactions that affect urban ecosystems. Therefore, 
aquatic and terrestrial organisms in these ecosystems are exposed to a 
constant influx of these substances, which can result in bioaccumulation 
and disrupt their physiology, behavior, and reproduction (Ali et al., 
2019; Honda and Suzuki, 2020; Aziz et al., 2023). Most research papers 
have focused on PAH levels in air, soil, plants, or food matrices due to 
their carcinogenic properties and implications for food safety (Sampaio 
et al., 2021; Cui et al., 2022; Jesus et al., 2022). However, there remains 
a significant gap in our understanding of the specific mechanisms by 
which PAHs affect living organisms.

The study of insect exposure to environmental contaminants across 
various life stages has gained increasing attention due to critical roles of 
insects in pollination, decomposition, and food webs as well as their 
utility as sentinels for monitoring environmental pollution (Lambert 
et al., 2012). Insects with aquatic larval stages can accumulate con-
taminants like heavy metals and organic pollutants in their tissues 
(Hierlmeier et al., 2022). These contaminants are often retained through 
metamorphosis, affecting adult stages and potentially influencing insect 
survival, behavior, and reproduction (Bartrons et al., 2007; Kraus et al., 
2014; Liu et al., 2018, 2020; Wesner et al., 2020). Moreover, exposure to 
pollutants also affects insect development, metabolism, and immune 
function, leading to altered growth rates, delayed development, and 
reduced reproductive success (Pölkki et al., 2012; Huang et al., 2020). 
Behavioral changes, such as impaired mating or flight, have also been 
observed, affecting population dynamics (Kozlov, 2022). However, 
some studies have shown little to no impact of environmental pollutants 
on some insect species (Straw et al., 2023; Ryalls et al., 2024). This 
means that some insects exhibit natural tolerance or have developed 
resistance mechanisms that allow them to survive and thrive in polluted 
environments. These adaptations may include efficient detoxification 
systems or changes in behavior that reduce exposure. Therefore, the 
impact of pollutants can vary widely between insect species from highly 
sensitive to highly tolerant species. Beyond impacting the host, pollut-
ants can also influence their associated microbiota, as exemplified in 
many insect models (Antonelli et al., 2022). Changes in microbiota 
could then indirectly impact host physiology in either a beneficial (se-
lection of taxa that might contribute to host tolerance) or deleterious 
way (pollutant-induced dysbiosis can enhance host susceptibility to 
pathogens) (Daisley et al., 2017).

Following previous observations, the ability of Ae. albopictus to 
thrive in polluted environments raise questions about their potential to 
bioaccumulate pollutants at various life stages and the subsequent 
impact on host physiology. Previous studies have shown contrasting 

effects of pollutants depending on the mosquito species, with some 
research showing negative impacts on development and survival, while 
other studies indicating minimal or no significant effects. In Ae. aegypti, 
PAHs induced cell mortality, detoxification process and oxidative stress, 
with effects varying depending on the PAH family member tested 
(Tetreau et al., 2014). In addition, PAHs modified the mosquito meta-
bolism in a way that triggers its tolerance to insecticides (Poupardin 
et al., 2008). However, these results might not be generalizable, as the 
combined impact of UVs and Nitro-PAH (highly toxic derivatives of 
PAHs) induced susceptibility of Cx quinquefasciatus larvae to chemical 
insecticides (Ramkumar et al., 2022). In Ae. albopictus, heavy metals and 
microplastics were shown to alter their survival, reproduction and 
development (Ga’al et al., 2018; Yu et al., 2020; Zhou et al., 2020; 
Griffin et al., 2023). Apart from these studies focusing on the mosquito 
itself, no studies had yet investigated the impact of pollutants on 
mosquito-associated microbiota. However, the extent to which the 
microbiota is modified after exposure to pollutants throughout the 
mosquito life cycle, and the resulting effects on mosquito physiology- 
whether beneficial or deleterious- have not yet fully investigated. More 
research is needed on mosquito-specific responses to contaminants and 
the long-term effects of chronic exposure.

In addition to environmental pollutants in urban areas, the biological 
challenges posed by the Asian tiger mosquito are becoming an 
increasing concern. What remains unclear is the ability of this mosquito 
species to adapt to and withstand these pollutants, enabling its persis-
tence in polluted environments. In this context, the aim of the present 
study was to investigate the level and extent of PAHs accumulation in 
both mosquito larvae and adults, as well as how PAHs exposure could 
affect mosquito-associated microbiota throughout their life cycle. We 
specifically address this question by focusing on PAHs due to their 
ubiquity in urban settings and their ecological impact on both living 
organisms and environmental microbial communities. More specifically, 
we investigated the following questions: (i) Does chronic exposure of Ae. 
albopictus to PAHs at realistic environmental concentrations affect the 
dynamics of mosquito-associated bacterial microbiota? (ii) what is the 
persistence and fate of these PAHs in water, particularly regarding their 
potential bioaccumulation in insect tissues?

2. Materials and methods

2.1. Establishment of indoor-mesocosms and sampling

Indoor-mesocosm experiments took place at Rovaltain Research 
Company (Valence, France). Two large (4 ×2 m2) mesocosm chambers 
were built to mimic the natural habitats of Ae. albopictus mosquitoes 
(Fig. 1). Each mesocosm chamber contained identical features with a 
large stainless-steel basin (square of 120 cm side, depth 20 cm), vege-
tation with bamboo hedge and flowers as well as beakers filled with aged 
tap water and hay. Both pots and basins served as larval habitats, while 
bamboo hedge acted as mosquito resting sites. Mosquitoes had access to 
various potted plants (Lobelia cardinalis, Iris versicolor, Veronica spicata, 
Ochagavia carnea, Cyperus alternifolius) for nectar feeding and mosquito 
resting. Mice were made available to mosquitoes for blood feeding twice 
a week, for 2 hours each time, within each chamber. Mice were main-
tained in the animal house of Rovaltain Research Company agreed by 
direction départementale de la protection des populations, service Santé 
et Protection Animales (Departmental Directorate for the Protection of 
Populations, Health and Animal Protection Service, (agreement n◦

2016336–0013) and used in accordance to European Union laws 
(directive 2010/63/UE). Throughout the experiment, mesocosms were 
maintained at a temperature ranging from 25 to 28◦C, humidity level 
between 60 % and 80 %, a light intensity of approximately 800–1000 lux 
with a photoperiod cycle of 14/10 light/dark. Ae. albopictus mosquitoes 
used for experiments were insectary-reared (Pérols laboratory popula-
tion from MIVEGEC laboratory, Montpellier, France) and maintained on 
a diet of rabbit hay, as previously described (Lacour et al., 2015). Each 
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mesocosm was conditioned two weeks before the introduction of 
mosquitoes. At the beginning of the experiment, 100 Ae. albopictus L3-L4 
larvae from the same colony batch were introduced in aquatic habitats 
to establish and synchronize Ae. albopictus populations in the two 
identical mesocosm chambers. Both mesocosms were placed inside a 
rectangular shaped mosquito trap net. One mesocosm was used as the 
control mesocosm while the second one was used as the treated meso-
cosm. The contaminated mesocosm was chronically treated with PAHs 
from the beginning of the experiment (day 0) and subsequently once a 
week by adding a cocktail of four PAHs at 2.5 µg/L each (Merck, 
Schnelldorf, Germany). PAHs generally occur in complex mixtures that 
can contain hundreds of compounds. We specifically focused on benzo 
[a]pyrene, benz[a]anthracene, chrysene and benzo[b]fluoranthene due 
to their environmental relevance, diversity of chemical structure and 
ecological impact (Lambert et al., 2012; Petrović et al., 2019). Samples 
were collected approximately 1, 2 and 3 months after the start of 
exposure in the treated mesocosm. For microbiota analysis, a random 
sampling of 20 males, 20 females and 20 larvae of three and 
fourth-instar larvae (L3/L4) was performed at 28, 63, 91 days from both 
mesocosms, along with triplicate 50 mL water samples from different 
larval habitats. Adult mosquitoes and larvae were collected using a 
mechanical aspirator and pipettes, respectively. Adult mosquitoes were 
sorted by sex and whole individuals (adults and larvae) were 
cold-anesthetized on ice, then surface-sterilized with absolute ethanol, 
as described by Zouache (Zouache et al., 2022). Afterwards, mosquitoes 
were dissected in sterile PBS using a stereomicroscope (10×) in a 
laminar flow hood to collect the gut. All samples were stored at − 20◦C 
until further use. For PAH bioaccumulation measurements, a random 
pool of 10 adults of each sex and 10 larvae (L3/L4) were collected in 
each mesocosm at 28, 56, 91 days post-exposure and stored at − 20◦C. 
Due to the limited number of individuals on day 56, it was not possible 

to synchronize sampling for microbiota and PAH bioaccumulation an-
alyses at this time point. Water samples (50 mL) from both mesocosms 
were collected at 8, 22, 36, 45, 52, 62, 66, 80 and 86 days post popu-
lation settlement (dpps) (n=5 per mesocosm*day) for PAH dosage.

2.2. Determination of PAHs concentration

PAH levels in mosquito tissues (larvae and adults) and water samples 
were measured as described by Pfannkoch et al. (Pfannkoch et al., 2015). 
Stir bar sorptive extraction (SBSE) was performed using GERSTEL 
Twister stir bars (PDMS 10 mm, 0.5 mm film thickness). Analysis was 
carried out on an Agilent 5890 Gas Chromatograph coupled with an 
Agilent 7000B Mass Spectrometer with a 70 eV electron impact source. 
For preparation, 10 adults or larvae were pooled and homogenized with 
10 mL purified water using an Ultra Turrax homogenizer. Internal 
standards (BaP 13C4, Chrysene D12, and Naphtalene D8) were added 
directly to the tissue in the tube (0.002–1 mg/L concentration). Before 
QuEChERS extraction, samples were diluted with 10 mL of ACN and 
mixed for 1 minute. Then, 4 g of MgSO4 and 1 g of NaCl were added, 
homogenized for 10 minutes on a GenoGrinder, and centrifuged at 4000 
×g for 5 minutes. For SBSE, 1.0 mL of the upper ACN layer was added to 
a 10 mL headspace vial containing a conditioned stir bar and 9 mL pu-
rified water and mixed for 60 minutes at 850 rpm. The stir bars were 
thermally desorbed into the GC at a flow rate of 100 mL/min, starting at 
50◦C and ramping to 290◦C. Analytes were concentrated at − 39◦C and 
transferred to a column heated to 310◦C with a 20:1 split ratio. Chro-
matographic separation was performed on an Agilent HP-5MS column 
(30 m x 250 μm x 0.25 μm) with helium at 1.2 mL/min. The column was 
held at 60◦C for 0.5 minutes, then heated at 5 ◦C/min to 320◦C and held 
for 3 minutes, totaling 55.5 minutes. Detection was done using multiple 
reaction monitoring (MRM) mode. Detection was simultaneously 

Fig. 1. Design of indoor mesocosms for studying pollution exposure in Ae. albopictus populations. The mesocosms comprise two large chambers (4 ×2 m2) 
with identical features, including a large stainless-steel basin, vegetation with bamboo and flowers for larval habitats, nectar feeding and mosquito resting. Mice were 
made available to mosquitoes for blood feeding twice a week, for 2 hours each time. The mesocosm was maintained at a temperature ranging from 25 to 28◦C, a 
humidity level between 60 % and 80 %, a light intensity of approximately 800–100 lux with a photoperiod cycle of 14/10 light/dark. Mesocosms were placed inside 
a rectangular shaped mosquito trap-net.
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carried out using multiple reaction monitoring (MRM) mode.

2.3. DNA extraction, library preparation and sequencing

Water samples (22 mL aliquot) were centrifuged following the 
method described by Zouache et al. (2022). Gut samples were individ-
ually crushed with 1-mm diameter beads in ATL lysis buffer (Qiagen, 
Hilden, Germany) containing 20 mg/mL lysozyme (Euromedex, Stras-
bourg, France) using a Mini-BeadBeaterTP apparatus (BioSpec Products, 
Bartlesville, USA). DNA from both water and gut samples was subse-
quently extracted in 18 batches using the Qiagen DNeasy Blood and 
Tissue kit (Qiagen, Roermond, Germany), as previously described 
(Minard et al., 2015). A negative control (no biological matrix) was 
included in each batch. Amplicon sequencing of bacterial communities 
was performed as previously described in Zouache et al. (2022). PCR 
products were purified using the Agencourt AMPure XP PCR Purification 
kit (Beckman Coulter, Paris, France) and quantified using the Quant-iT 
Picogreen dsDNA Assay Kit (Life Technologies, Carlsbad, USA) 
(Table S1). Sequencing of the PCR libraries was conducted on Illumina 
MiSeq platforms with a v3 cycle kit at Biofidal (Vaulx-en-Velin, France). 
All FastQ files have been deposited in the EMBL European Nucleotide 
Archive (https://www.ebi.ac.uk/ena) under the project accession 
number PRJEB77294.

2.4. Bioinformatics analysis

A total of 17,593,725 reads were generated from 16S rRNA high- 
throughput sequencing. Pair reads were merged using PEAR (ver. 
0.9.8) with default parameters. Quality control and clustering into 
amplicon sequences variants (ASVs) were performed using the FROGS 
pipeline (Escudié et al., 2018). Briefly, denoising was carried out by 
discarding reads out of the expected targeted sequence range 
(250–350 bp range). Then, clustering was performed using the SWARM 
algorithm based on an aggregation distance of 1 in order to generate the 
ASVs (Bernard et al., 2021). Chimera were discarded using VSEARCH 
(Rognes et al., 2016) and low frequency ASVs (<0.005 %) were also 
filtered out (Bokulich et al., 2013). Taxonomic annotation of ASVs was 
conducted following their alignment using the Mothur pipeline and 
identification based on the Silva v138.1 database, with an alignment 
cutoff settled to 80 % (Quast et al., 2013). From this step, data were 
separated into three tables corresponding to (i) the whole dataset 
(Water, Larvae, Adults), (ii) the water dataset and (iii) the insect dataset 
(Larvae, Adults). Such split allowed normalization with a higher number 
of reads and a better comparison within the sample type (Water, Larvae 
and Adults). ASVs within samples were corrected using negative con-
trols (blank extraction and PCR) to remove ASVs if their relative abun-
dance was not at least 10 times higher than that observed in the negative 
controls (Minard et al., 2015). Normalization for sample comparison 
and analysis was performed by randomly resampling down to 152, 676 
and 396 sequences (i.e. lower number of reads in sample for each 
dataset) in the whole dataset, the water dataset and the insect dataset, 
respectively. Correlations between the 50 most abundant ASVs were 
calculated using the Spearman correlation coefficient for the insect 
dataset and used to create an ASV network for each mesocosm. Only 
positive correlations, greater than 0.3, were kept and highlighted be-
tween ASVs in a network created using GEPHI software and 
Fruchterman-Reingold algorithm (Fruchterman and Reingold, 1991; 
Bastian et al., 2009). ASV sizes were proportional to the abundance of 
each ASV.

2.5. Diversity and statistical analysis

Data analysis and statistical tests were carried out using R Statistical 
Software (v4.2.2, R Core Team, 2022) using the vegan package for di-
versity analysis (Oksanen et al., 2015) as well as the ggplot2 (Wickham, 
2016) and ComplexHeatmap packages (Gu, 2022) for graphical 

representations. The ASVs that represent at least 12 % of total abun-
dance in at least one sample were selected to generate a heatmap 
showing the ASV abundance variations across insect stage and collection 
time point. Graphical diagrams of average bacterial composition within 
each condition (treatment, sample type) at different taxonomic levels 
(family, order) were obtained using phyloseq package (McMurdie and 
Holmes, 2013). Within-sample diversity (i.e. α-diversity) was estimated 
through the Shannon-Weaver index. Then, linear models were per-
formed with square transformed Shannon diversity index as the 
response variable and, time and sample (water, larvae, adult) as 
explanatory variables. For adults, a second model was carried out by 
using square transformed Shannon diversity index as the response var-
iable and, time and sex as explanatory variables. Contribution of those 
explanatory variables on variability of the Shannon index were tested 
with an analysis of variance (ANOVA) and a Tukey post-hoc test using the 
car (Fox and Weisberg, 2019) and emmeans (Lenth, 2023) R packages. 
The residuals of the model were verified for normality and homosce-
dasticity using the DHarma package (Hartig, 2022). Bacterial commu-
nities’ dissimilarities among samples (i.e. ß-diversity) were represented 
using the Bray-Curtis index in a non-metric multidimensional scaling 
(NMDS). Subsequent analyses of the ß-diversity were performed using 
permutational multivariate analysis (vegan package). Distance-based 
redundancy analyses (dbRDA) were used to constrain separation be-
tween samples according to sample categories, treatment, time and sex 
to determine the most discriminant ASVs responsible for the observed 
differences between bacterial communities. Homogeneity of the com-
munities (i.e. ß dispersion) within the sample type (waters, larvae and 
adults) for both mesocosm over time was tested through permutational 
analysis. PAHs concentrations in mesocosms overtime were compared 
with a linear model with PAHs concentrations used as a response vari-
able and treatment and time used as explanatory variables. Model pa-
rameters were tested with an ANOVA followed by a Tukey post-hoc test.

3. Results

3.1. Indoor-mesocosm experiments are relevant facilities for studying the 
dynamics of mosquito bacterial assemblages across developmental stages

Two independent populations of Ae. albopictus were established 
within indoor-mesocosms reflecting environmental parameters. 
Following the initial introduction of mosquitoes, Ae. albopictus pop-
ulations successfully thrived and reproduced, as evidenced by the 
continuous production of eggs, larvae and adults throughout the 
observation period (3 months). From the 409 total samples collected in 
both control and treated mesocosms, analysis of bacterial communities 
associated with mosquitoes and their breeding waters enabled the 
identification of 1504 bacterial ASVs, distributed among 5 phyla and 52 
genera (including one unclassified). In the control mesocosm, the α-di-
versity (species richness) significantly differed over time (ANOVA: 
F=9.45, df = 2, p-value=0.0001), between sample types (water, larvae, 
adults) (ANOVA: F=42.25, df=2, p-value= 6.8x10− 16) and their inter-
action (ANOVA, F=3.21, df=4, p-value=0.013) (Fig. 2A). Overall, adults 
harbored a more diverse bacterial microbiota compared to larvae and 
their water habitat at 28 dpps (Tukey-HSD, p-values < 0.0002), as well as 
compared to water habitats but only at 91 dpps (Tukey-HSD, p-value =
0.0087). This trend was not statistically significant at 63 dpps (Tukey- 
HSD, p-value > 0.05). There were no significant differences in α-diversity 
according to the sex of mosquitoes at any time point and overall 
(ANOVA, F=0.45, df=1, p-value = 0.50) (Figure S1). On average, 22.50, 
40.04, and 65.64 ASVs were found throughout the entire experimental 
period in water, larvae, and adult samples, respectively. Almost two 
thirds (61.3 %) of ASVs detected in water samples were also found in 
larvae and 32.3 % of those observed in larvae were also detected in 
adults (Fig. 2B). ß-diversity analyses revealed that different sample types 
harbor divergent bacterial communities (PERMANOVA, R2=0.148, p- 
value<0.001) (Fig. 2C). This community also differed over time, albeit to 
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a lesser extent (PERMANOVA, R2=0.028, p-value<0.001) while this 
longitudinal deviation was heterogeneous according to each sample 
type (PERMANOVA: R2=0.054, p-value<0.001) (Fig. 2D). In contrast, 
the composition of the microbiota seemed to be similar between sexes 
(PERMANOVA, R2=0.005, p-value=0.929) (Fig. 2E). The homogeneity 
of bacterial communities was then assessed over time for each sample 
type. Bacterial communities associated with larvae were significantly 
more homogeneous over time (permutation test, p-value =0.003) 
(Figure S2A). Notably, bacterial communities were more uniform at 91 
dpps compared to 63 dpps (permutation test, p-value=0.001). Adults 
(permutation test, p-value=0.883) and water samples (permutation test, 
p-value=0.407) did not show any significant differences in the homo-
geneity of their microbiota over time (Figure S2B and S2C). Proteo-
bacteria was the major phylum in each sample type (Figure S3A). 
Analysis between the microbiota of adults and larvae highlighted that 
ASVs identified as members of the Comamonadaceae family were more 
abundant in larvae, while ASVs identified as belonging to Anaplasma-
taceae, Acetobacteraceae and Enterobacteriaceae family were mostly 
associated with the adult microbiota (Figure S3B; Table S2). The 
microbiota shift between adults and larvae highlighted that ASVs 
identified as belonging to Comamonadaceae and Enterobacterales were 
mostly associated with larvae, while Wolbachia, Asaia and Klebsiella 
were rather associated with adult mosquitoes, with Klebsiella being 
specifically associated to adults (Fig. 3). Network analysis based on co- 
occurrences of the 50 most abundant ASVs highlighted that the bacterial 
community was structured according to the insect stage, with two 
distinct clusters: one corresponding to ASVs associated with larvae and 
the other with adults (Figure S4A). Larvae microbiota was structured 
with ASVs belonging to Comamonadaceae family while adult microbiota 
was structured around two major ASVs identified as Wolbachia and 
Asaia, which respectively dominated the two subsgroups within the 
adult cluster (Figure S4A). Over the course of the experiment, the pro-
portion of Enterobacterales spp and Lacihabitans in larvae decreased in 
favor of Comamondaceae spp (Table S2). In adults Wolbachia progres-
sively replaced Cedecea, Asaia and Ralstonia (Table S2). For water 
samples, ASVs identified as Chitinophagaceae spp, Arenimonas, and 
Aurantimicrobium were mostly associated with the water breeding sites 

(Table S2).

3.2. Fate of PAHs in mesocosms colonized by mosquitoes and their impact 
on the dynamics of bacterial assemblages

To evaluate how environmental exposure to PAHs impacts on bac-
terial communities in mosquitoes and their breeding sites, aquatic 
habitats of the treated mesocosm were contaminated with a cocktail of 
four PAHs (chrysene, benz[a]anthracene, benzo[a]pyrene and benzo[b] 
fluoranthene). At 8 dpps, the treated mesocosm exhibited 7.2 times 
higher PAHs concentrations than the control mesocosm (ANOVA, 
F=10.62, df=1, p-value=0.001). These higher concentrations persisted 
during the first 45 days (Tukey-HSD, before day 45, p-values<0.005) 
(Fig. 4A). From day 52, PAH concentrations in the treated mesocosm 
lowered to basal concentrations of the control mesocosm (Tukey-HSD, 
after day 45, p-values>0.005). The four PAHs were detected in all 
samples except in adults at 28 dpps, with total PAHs concentrations 
ranging from 7.340 to 29.490 ng/10 mosquitoes (Fig. 4B). Exposed 
larvae exhibited PAHs concentrations twice as high as their untreated 
counterparts at each collection time point, with a linear increase in total 
PAHs bioaccumulation overtime ranging from 1.549 ng/larvae at 28 
dpps to 2.949 ng /larvae at 91 dpps. Meanwhile, adults from the treated 
mesocosm accumulated only 19 % more PAHs than their untreated 
counterparts (Fig. 4B). More specifically, benzo[b]fluoranthene and 
benzo[a]pyrene were the most bioaccumulated PAHs in larvae, reaching 
respectively concentrations 3.28 and 2.52 times higher than the basal 
concentrations detected in larvae of the control mesocosm (Fig. 4C). In 
the treated mesocosm, a total of 1089 ASVs were detected. Alpha- 
diversity in this mesocosm was mainly influenced by the sample type 
(ANOVA, F=24.31, df = 2, p-value=5x10− 10) and collection time point 
(ANOVA, F=3.56, df = 2, p-value=0.03), but not their interaction 
(ANOVA, F=1.5446, df=4, p-value=0.19) (Fig. 5A). Post-hoc analyses 
revealed that adults had more diverse bacterial communities than water 
samples (Tukey-HSD, p-value = 0.0011) and larvae (Tukey-HSD, p-value 
= 0.0011) at 28 dpps, and compared to larvae at 91 dpps (Tukey-HSD, p- 
value < 0.0001) (Fig. 5A). Collection time point also impacted the 
α-diversity of adults, as it decreased after the first sampling at 28 dpps 

Fig. 2. Comparison of diversity metrics of bacterial communities in mosquitoes and their breeding sites. (A) Boxplots of alpha diversity values distribution for 
Shannon diversity index based on variance in species evenness, are represented for each sample type (water, blue; larvae, orange; adults, dark red) over time. 
Significance between sample types and time was determined using analysis of variance (ANOVA) based on a linear model. Boxplots with different letters indicate 
significant differences based on post-hoc tests used to compare sample types at each collection time point. (B) Venn diagram showing ASVs shared across sample 
types. (C - E) Beta-diversity based on Bray-Curtis distances visualized in an NMDS plot. NMDS plots show the differences in the bacterial community composition of 
the DNA samples. Data were grouped and plotted according to sample type (C), time (D), and adult sex (E). Ellipses are drawn to represent the 95 % confidence 
regions for group clusters.
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(28–63 comparison, Tukey-HSD, p-value = 0.0059; 28–91 comparison, 
Tukey-HSD, p-value = 0.0272) (Fig. 5A). Moreover at 28 dpps, males 
exhibited higher α-diversity than females (Tukey-HSD, p-value =

0.0413) (Figure S1). On average, 22.00, 31.13, and 66.86 ASVs were 
identified throughout the entire experiment in water, larvae and adult 
samples, respectively. Only 34.4 % of the ASVs detected in water were 
detected in larvae, and 42.6 % of those observed in larvae were also 
detected in adults (Fig. 5B). ß-diversity analyses indicated that bacterial 
communities in this mesocosm were largely shaped by the sample type 
(PERMANOVA, R2=0.15, p-value<0.001), the day post population set-
tlement (PERMANOVA, R2=0.03, p-value<0.001), and to a lesser extent 
by their interaction (PERMANOVA, R2=0.06, p-value<0.001) (Figs. 5C 
and 5D). Contrary to what was observed in the control mesocosm, the 
sex of mosquitoes had a small but significant effect on bacterial com-
munities, accounting for 2 % of the observed differences (PERMANOVA, 
R2=0.02, p-value = 0.021) (Fig. 5E). Similarly to observations made in 
the control mesocosm, the bacterial communities associated with larvae 
tended to become more homogenous overtime (permutation-test, p- 
value =0.06), particularly in the latest sampling periods collected 
(28–91 comparison, permutation-test, p-value=0.04) (Figure S2D). On 
the contrary, water bacterial community compositions were more 
divergent over time (permutation-test, p-value = 0.028) while that of 
adults did not change (permutation-test, p-value = 0.875) (Figure S2E 
and S2F). At the taxonomic level, ASVs identified as Comamonadaceae, 

Rhizobiaceae and Gammaproteobacteria were mostly associated with 
larvae (Table S3). Notably ASVs identified as members of the Coma-
monadaceae family were the most abundant throughout the course of 
the experiment, while ASVs identified as members of the Rhizobiaceae 
family decreased over time (Table S3). ASVs assigned as Wolbachia, 
Asaia and Raoultella were mainly associated with adults, with some 
specificities according to the sex of mosquitoes (Table S3). For instance, 
some microbiota members such as Enterobacterales and Cedecea were 
enriched in females, while Wolbachia and Raoultella were rather 
enriched in males (Table S3). Over the course of the experiment, ASVs 
associated to Enterobacterales spp, Ralstonia and Cedecea decreased 
while Asaia, Wolbachia, Raoultella and Aeromonas increased (Table S3). 
Over the course of the experiment, ASVs associated to Enterobacterales 
spp, Ralstonia and Cedecea decreased while Asaia, Wolbachia, Raoultella 
and Aeromonas increased (Table S3). Similar to the control mesocosm, 
the bacterial community was structured according to the insect stage, 
forming two distinct clusters: the first associated with larvae, dominated 
by Comamonadaceae spp, and the second associated with adults, which 
was divided into two subgroups, each dominated by Wolbachia and 
Asaia, respectively (Figure S4B). Interestingly, another cluster linked to 
the adult cluster, composed of Klebsiella, Aeromonas and Cedecea was 
also identified (Figure S4B). Finally, Sporichthyaceae and bacteria 
belonging to Variovorax and Limnobacter genera were mainly associated 
with water samples (Table S3).

Fig. 3. Heatmap showing the relative abondance of the mosquito-associated bacterial composition in larvae and adult samples. Bacterial ASVs that 
represent at least 10 % of the total bacterial abundance in at least one sample are represented in columns. ASVs are grouped according to the result of hierarchical 
clustering based on the Euclidean dissimilarity distance. Each sample is shown on the Y-axis and is representing with a color code (larvae, orange; adults, dark red) 
for each collection time point (28, pink; 63, blue; 91, purple). Heatmap colors (from white to dark red) indicate increasing abundance of each bacterial micro-
biota component.
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3.3. The presence of PAHs led to the modification of major taxa in 
mosquito microbiota

The impact of PAHs on bacterial communities associated with 
mosquitoes and their water breeding sites was also assessed through 
inter-mesocosm analysis. PAHs did not significantly impact the α-di-
versity of bacterial communities associated with water samples 

(Kruskal, p-value = 0.29) or adults (ANOVA, F=0.63, df=1, p-value =
0.42) (Figure S1). However, they modified the α-diversity of larvae 
(ANOVA, F=8.07, df=1, p-value=0.005), especially at 91 dpps (Tukey- 
HSD, p-value = 0.0001) (Figure S1). In addition, PAHs influenced the 
composition of water bacterial communities over time (PERMANOVA, 
R2 = 0.286, p-values<0.001). Arenimonas, Chitinophagaceae, and Aur-
antimicrobium were mainly associated with water samples from the 

Fig. 4. Fate of PAHs in mesocosms and bioaccumulation within mosquito tissues. (A) Mean concentrations of PAHs in water samples (n=5, for each collection 
time point) and standard deviations are represented (blue, control mesocosm; red, treated mesocosm). Significant differences in PAHs concentration between 
mesocosms were determined using analysis of the variance (ANOVA) based on a linear model and post-hoc complementary analysis for each day comparison (*: p- 
value<0.05; ns: p-value>0.05). (B) Barplots showing PAHs concentrations within pools of 10 larvae or adults over time in the control and treated mesocosms for each 
collection time point (28, pink; 63, blue; 91, purple). (C) Barplots showing the bioaccumulation of each PAH within larval tissues over time (blue, control mesocosm; 
red, treated mesocosm).

Fig. 5. Comparison of diversity metrics of bacterial communities in mosquitoes and their breeding sites in a HAPs polluted context. (A) Boxplots of alpha 
diversity values for Shannon diversity index based on variance in species evenness, are represented for each sample type (water, blue; larvae, orange; adults, dark 
red) over time. Significance between sample types and time was determined using analysis of variance (ANOVA) based on a linear model. Boxplots with different 
letters indicate significant differences based on post-hoc tests used to compare sample types at each collection time point. (B) Venn diagram showing ASVs shared 
across sample types. (C - E) Beta-diversity based on Bray-Curtis distances visualized in an NMDS plot. NMDS plots show the differences in the bacterial community 
composition of the DNA samples. Data were grouped and plotted according to sample type (C), time (D) and adult sex (E). Ellipses are drawn to represent the 95 % 
confidence regions for group clusters.
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control mesocosm while Sporichthyaceae and Variovorax were rather 
associated with the treated one (Table S4). The bacterial composition of 
larvae differed over time between treated and control mesocosms 
(PERMANOVA, R2=0.12, p-values<0.001) (Figs. 6A and 6C). Separate 
analyses indicated that PAHs-induced changes were of similar magni-
tude overtime for each day, showing a shift of 12.6 %, 12.3 % and 
12.6 % of the bacterial community at 28, 63 and 91 dpps, respectively 
(Figure S5). Overall, unclassified Enterobacterales and two unclassified 
Gammaproteobacteria were specific to larvae from the control meso-
cosm while two Comamonadaceae spp, Rhizobiaceae and a Gammap-
roteobacteria were rather associated to larvae from the treated 
mesocosm (Table S4). Over the course of the experiment, ASVs that 
increased or decreased in one mesocosm had the same trend in the 
second mesocosm (Table S4). Finally, bacterial communities associated 
with adults were also influenced by PAHs and varied over time, albeit to 
a lesser extent than those associated with larvae (PERMANOVA, 
R2=0.065, p-values<0.001) (Figs. 6B and 6D). At 28, 63 and 91 dpps, 
PAHs exposure induced a shift in the bacterial community composition 
(Figure S5). PAHs were responsible for 4 %, 8 % and 1.6 % of the 
observed differences, respectively, with shifts being significant at 28 and 
63 dpps (PERMANOVA, p-values<0.001) (Figure S5). Wolbachia, Kleb-
siella, and Cedecea were rather associated to adults from the control 
mesocosm while Asaia, Raoultella, an unclassified Enterobacterales and 
Aeromonas were enriched in adults from the treated mescosm 
(Figure S4A and S4B; Table S4). In both mesocosms, Wolbachia and 
Raoultella proportions increased over time while that of Ralstonia and 
Cedecea decreased (Table S4). Interestingly, Asaia proportion decreased 
in the control mesocosm while its proportion increased in the PAHs- 
treated mesocosm (Table S4).

4. Discussion

Mesocosm-based experiments constitute a valuable approach to 
explore the impacts of environmental stressors on species at population 

level and over several generations (Lawton, 1996). However, the use of 
mesocosms mimicking the natural habitat of mosquitoes is still scarce 
(Ng’habi et al., 2018; Choo et al., 2021; Olkeba et al., 2021; Dellar et al., 
2022). In the present study, Ae. albopictus populations were maintained 
in indoor mesocosms, with one remaining untreated, and the other 
polluted with PAHs. This approach allowed for the characterization of 
the dynamics of mosquito-associated bacterial microbiota over 3 months 
in the presence or absence of a cocktail of PAHs, as well as monitoring 
the detection of PAHs within the mesocosms.

One of the most striking results was the observed drop in PAHs 
concentrations in the treated mesocosm after 45 days reaching basal 
levels of the control mesocosm. Such a decrease could be explained 
either by the presence of PAH-degrading bacteria (Peng et al., 2008; 
Baldantoni et al., 2017;Patel et al., 2020), or the accumulation of PAHs 
within the sediments due to their hydrophobic nature, rendering them 
less accessible for biological uptake or detection (Hussain et al., 2018; 
Jesus et al., 2022), or by the bioaccumulation in animal tissues as 
already observed for bees, urchins or in dragonfly nymphs (Perugini 
et al., 2009; Girardin et al., 2020; Albarano et al., 2021). Without 
excluding the first two hypotheses, we demonstrated that PAHs bio-
accumulate within tissues of larvae originating from the breeding sites 
of the treated mesocosm. Interestingly, only benzo[a]pyrene and benzo 
[b]fluoranthene out of the four PAHs were detected at higher concen-
trations in larval tissues compare to larvae from the control mesocosm. 
Benzo[b]fluoranthene has already been identified as a PAH capable of 
bioaccumulating in bees, whereas benzo[a]pyrene was never detected 
(Perugini et al., 2009). Additionally, bees were found to bioaccumulate 
benz[a]anthracene, though in our study, this compound was not bio-
accumulated in larval tissues (Perugini et al., 2009). These findings 
support that PAHs bioaccumulation may vary depending on the 
contamination source and the insect species involved. Contrary to 
larvae, PAHs were not bioaccumulated in adult mosquito tissues sug-
gesting their potential elimination during metamorphosis. The detection 
of PAHs and metals only in the immature stages of insects has already 

Fig. 6. Dynamics of PAHs impact on bacterial communities in larvae and adult mosquitoes. Beta-diversity based on Bray-Curtis distances visualized in an 
NMDS plot. NMDS plots show the differences in the bacterial community composition of the DNA samples. For larvae, data were grouped and plotted according to 
PAH presence (A) and collection time point (C). Similarly, for adults, data were also grouped and plotted according to PAH presence (B) and time (D). Ellipses are 
drawn to represent the 95 % confidence regions for group clusters.
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been reported (Kraus et al., 2014). This could be explained by variations 
in exposure throughout the insect’s life cycle. While mosquito larvae are 
continuously exposed throughout their development in water and can 
acquire PAHs through ingestion or contact, adults might only be exposed 
to polluted waters during egg-laying, emergence or drinking. It is also 
possible that PAHs could be excreted and/or metabolized during 
immature life stages as previously observed for metals in living organ-
isms (Aoki and Suzuki, 1984; Hare, 1992; Luoma and Rainbow, 2005). 
However, this phenomenon might depend on the pollutant and/or the 
insect species, as microplastics, polychlorinated biphenyl or certain 
pesticides have been reported throughout the insect lifecycle (Kraus 
et al., 2014; Al-Jaibachi et al., 2019). Finally, the absence of PAHs 
detection in adults could be due to survivor bias. In addition to storing 
lipids needed for overcoming metamorphosis, fat body is also used as a 
storage site for pollutants (Jackson et al., 2017). Fat body shrinking 
resulting from energy consumption over metamorphosis could lead to an 
acute release of pollutants lethally intoxicating individuals.

Our results showed that PAHs induce variations in the composition 
and diversity of bacterial communities associated with adults and 
larvae, as previously described in mouse or fish models (Ribière et al., 
2016; Xie et al., 2020). The observed decrease in α-diversity is associated 
with an increase in PAHs bioaccumulation within larvae, suggesting a 
potential relationship. Previous studies in other biological models have 
already demonstrated that elevated levels of PAHs can disrupt microbial 
community structure, leading to reduced diversity (Zhao et al., 2019; 
Xie et al., 2020; Zhang et al., 2021). According to our study, the 
developmental stage appeared to play a significant role in the restruc-
turing of bacterial communities in the presence of PAHs, particularly in 
larvae. The differential impact of PAHs between larvae and adults may 
result from lower bioaccumulation in adults or differences in biological 
life stages. ASVs belonging to the Comamonadaceae family that struc-
tured the larvae microbiota, showed significant enrichment (19.4 % vs 
30.4 % of the whole sequences) in larvae reared in the PAH-treated 
mesocosm. Members of this family are commonly found in the gut and 
cuticular microbiota of mosquito species (David et al., 2016; Dada et al., 
2021; Caragata et al., 2022; Trzebny et al., 2023). This enrichment could 
be due to positive selection resulting from their potential ability to 
degrade PAHs via dioxygenases activities (Moser and Stahl, 2001) 
and/or negative selection of the remaining microbiota. Furthermore, the 
genus Comamonas has been demonstrated to contribute to the devel-
opment and fecundity of Aedes atropalpus (Coon et al., 2016). This as-
sociation could be favored if certain members of Comamonadaceae can 
degrade PAHs within larvae. Thus, the bacterium is potentially 
contributing to host detoxication activities while benefiting as carbon 
nutrition for themselves. Larvae not exposed to PAHs were also associ-
ated with unclassified Enterobacterales (11 % vs 0 %) and other taxa 
such as Lacihabitans (1.3 % vs 0 %) and Gammaproteobacteria spp 
(2.1 % vs 0 %) which are commonly associated with aquatic organisms 
(Xie et al., 2021; van der Loos et al., 2023). This suggests that Coma-
monadaceae, which are predominantly present in larval microbiota in 
the absence of PAHs exposure, appear to be favored by the presence of 
PAHs. Previously, amplification of taxa with large genomes, such as 
Comamonadaceae (Biessy et al., 2022; Hem et al., 2022) had been 
observed in the presence of PAHs (Dong et al., 2022). These authors 
showed that PAH selection pressure resulted in the selection of organ-
isms with larger genomes, enhancing their adaptability and the micro-
bial community’s ability to communicate, notably through horizontal 
gene transfer.

For bacterial communities associated with adults, the overall impact 
of PAH varied over time and was less pronounced than in larvae. Since it 
was not possible to ensure age consistency for the adult collection in 
both mesocosms, we cannot exclude that differences observed in 
microbiota composition may be also attributed to age-related variations 
in mosquitoes, as they can live for up to one month in an indoor facility 
(Cui et al., 2021). However, to our knowledge, no studies have yet 
investigated the dynamics of mosquito-associated microbiota 

throughout their adult life span. Under PAHs exposure, specific ASVs 
such as Asaia (3.8 % vs 12.4 %), Raoultella (1.2 % vs 5.6 %) and Aero-
monas (0 % vs 1.9 %) were found to be enriched, while others ASVs like 
Wolbachia (12.8 % vs 6.5 %), Klebsiella (5.6 % vs 0.6 %) and Cedecea 
(3.7 % vs 0.8 %) were depleted. Furthermore, these differences were not 
influenced by the sex of mosquitoes. Raoultella and Aeromonas are 
known to degrade PAHs in soil and aquatic ecosystems, but their ability 
to perform these activities in insects has not yet been demonstrated 
(Alegbeleye et al., 2017; Ping et al., 2017; Agrawal et al., 2019). Aero-
monas dominates the microbiota of mosquito populations exhibiting 
high resistance to the temephos insecticide (Soltani et al., 2017), indi-
cating that this bacterium likely possesses detoxication capabilities. 
Moreover, in the mosquito species Culex pipiens, Aeromonas may act as 
an attractant for oviposition habitat selection and contribute to larval 
molting (Díaz-Nieto, 2016). However, these bacteria have also been 
reported to opportunistically infect fish and crustaceans (Noonin et al., 
2010; Chaix et al., 2017; Dubey et al., 2022). In the rainbow trout 
Oncorhynchus mykiss, long-term exposure to PAHs increased suscepti-
bility to Aeromonas (Bravo et al., 2011) by altering its immune system 
(Curtis et al., 2017). Therefore, we could hypothesize that the enrich-
ment of Aeromonas in the treated mesocosm could be a result of indirect 
alteration of the mosquito immune system. However, the presence of 
Aeromonas could also be due to its selection within the host if the bac-
terium is tolerant and capable of metabolizing PAHs in insecta. Asaia (the 
third enriched ASV in adults) is not known to degrade PAHs but has been 
found to degrade other compounds, such as the pyrethroid insecticide, 
as revealed by comparative genomic studies in mosquitoes 
(Comandatore et al., 2021). Conversely, an overabundance of Asaia has 
also been observed in Anopheles coluzzii populations susceptible to del-
tamethrin, a pyrethroid insecticide (Pelloquin et al., 2021). Similarly, 
Asaia was found in higher abundance in Anopheles gambiae mosquitoes 
exposed to glyphosate herbicide, which increased their permissiveness 
to Plasmodium, the human malaria parasite (Smith et al., 2021). This 
phenotype might be the result of a more complex system than just the 
presence of Asaia, as Asaia has also been shown to elicit an 
anti-plasmodium response in Anopheles stephensi (Cappelli et al., 2019). 
Taken together, these observations suggest that Asaia could serve as a 
microbial marker for mosquitoes exposed to various environmental 
stressors. The three ASVs that were less abundant in the midguts of adult 
mosquitoes exposed to PAHs (Wolbachia, Klebsiella and Cedeceae) belong 
to genera commonly found in insects. These genera were shown to be 
involved in various insect functions such as reproduction, development, 
detoxification or immunity (Kyritsis et al., 2017; Mariño et al., 2017; Yin 
et al., 2023). Their absence could indicate a dysbiosis that significantly 
disrupt host functions. Indeed, Wolbachia and Cedecea are known to 
influence the structure of the insect microbiota, particularly by 
excluding specific taxa such as the opportunistic entomopathogen Ser-
ratia marcescens (Kozlova et al., 2021). Moreover, Cedecea is involved in 
biofilm formation, thereby favoring in the gut colonization by microbial 
symbionts (Hegde et al., 2019). Therefore, we could hypothesize that 
PAHs disrupt the ability of Cedecea to modulate microbiota and exclude 
pathogens. Additionally, Wolbachia not only modulates bacterial 
microbiota but also exhibits antiviral effects across different kingdoms 
(Johnson, 2015). Wolbachia exploits mosquito innate immunity, thereby 
influencing vector competence. Moreover, Cedecea and Wolbachia may 
have been depleted despite their detoxication capabilities against 
anthropogenic stressors such as antibiotics, insecticides and herbicides 
(Brennan et al., 2008; Thompson and Sharkady, 2020; Algamdi et al., 
2023; Ma et al., 2023), possibly in favor of specific PAH-degrading taxa 
like Raoultella and Aeromonas. Similarly, the increased prevalence of 
Klebsiella (a potential entomopathogen) in the control mesocosm may 
result from counterselection in adults harboring this bacterium under 
PAH exposure (Devi et al., 2022). The increased prevalence of Aero-
monas, known as an entomopathogen, in the treated mesocosm may 
indicate dysbiosis favoring opportunistic entomopathogens, particularly 
in the absence of mediating microbiota taxa such as Cedecea or 
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Wolbachia. These hypotheses, supporting the pathogen’s presence in 
PAH-environments, are notably reinforced by the fact that the enriched 
or depleted taxa (Klebsiella, Aeromonas and Cedecea) belong to the same 
cluster in our network analysis of mosquito-associated bacterial com-
munities, a cluster that was absent in the control mesocosm. Previous 
examples suggest that exposure to PAHs could weaken the fitness of 
adult mosquitoes as mutualistic taxa involved in critical functions are 
affected. As microbial changes occur within the microbiota, further 
studies are needed to determine whether PAHs could increase the sus-
ceptibility of Ae. albopictus mosquitoes to virus infection and affect their 
sensitivity to insecticides.

Consistent with previous studies, we found that bacterial commu-
nities associated with larvae and their breeding sites were highly similar, 
while adults harbored a divergent microbiota (Coon et al., 2014; Scolari 
et al., 2021; Zouache et al., 2022). The Comamonadaceae family was the 
most prevalent bacterial family shared between larvae and water sam-
ples. Although they were still detected in adults, their abundance was 
lower. Members of this family have previously been identified in the 
larvae and aquatic habitats of field-collected Ae. albopictus (Scolari et al., 
2021), as well as in other mosquito species like Ae. aegypti and An. 
gambiae, along with their rearing environments (Coon et al., 2014; 
MacLeod et al., 2021). In Culex nigripalpus, this family belongs to the 
core bacterial microbiota that colonizes every life stage (Duguma et al., 
2017). Adults showing higher diversity contrast with previous obser-
vations in holometabolous insects or even in Ae. albopictus (Yun et al., 
2014; Scolari et al., 2021; Fu et al., 2023). They may exhibit greater 
susceptibility to colonization by environmental bacteria, and differences 
in bacterial composition could be due to the diverse ecological niches 
they encounter (water, plants, prey) in contrast to larvae, which pre-
dominantly inhabit small aquatic habitats. Furthermore, we observed a 
distinct pattern in larvae over time in both mesocosms. The bacterial 
communities associated with larvae became more homogeneous over 
time among individuals, a trend not observed in the water breeding 
habitats. The reduced variability among larvae could be explained by 
the selective processes operating within the host microbiota. Indeed, in 
our context study, larvae are living in a buffered ecosystem with mini-
mal disturbances, suggesting that the primary pressure on larvae arises 
from intraspecific competition. Consequently, larvae that establish 
partnerships with selected microbiota over time may be favored, thereby 
reducing inter-individual microbiota divergence. This phenomenon 
implies that microbiota could be a significant selective factor under 
these conditions. However, the homogeneity observed within larval 
bacterial communities could also be attributed to community drift, 
where a specific microbiota becomes fixed due to the indoor environ-
ment and the limited population size (Gilbert and Levine, 2017).

5. Conclusion

This study used indoor mesocosm facilities to investigate how 
chronic exposure to PAHs affects bacterial dynamics, community shifts 
and the fate of PAHs within a semi-natural ecosystem. Larvae bio-
accumulate PAHs, whereas adults did not, suggesting that no transfer 
occurred during metamorphosis. A shift in microbiota composition was 
observed between control and treated mesocosms with an enrichment of 
bacteria that can thrive in a PAH-contaminated environment. Differen-
tial impacts of PAH exposure were also observed according to the 
development stage of mosquitoes. The inter-individual divergence in 
bacterial communities decreased over time in larvae but remained un-
changed in the aquatic environment and adults. Future studies should 
investigate how changes in bacterial structure and composition influ-
ence mosquito adaptation to PAHs, as previous studies have suggested 
that microbial communities can modulate host detoxification pathways 
(Collins and Patterson, 2020; Peterson, 2024). Understanding these 
dynamics is crucial, given that shifts in microbiota could alter the 
metabolic capacities of mosquitoes, potentially impacting their survival 
and reproduction in PAH-contaminated environments. Furthermore, it 

would be also important to investigate how PAHs impact the host and its 
microbiota to modify key host functions such as fitness, vector compe-
tence, and immunity. Evidence from other studies has demonstrated that 
microbial diversity can influence immune responses and disease sus-
ceptibility in various species (Dennison et al., 2014; Gabrieli et al., 2021; 
Cai and Christophides, 2024; Destoumieux-Garzón et al., 2024). 
Therefore, changes in microbiota due to PAH exposure could similarly 
affect mosquito immunity and vector competence, making this a critical 
area for future research.
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polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their 
toxicity to benthic fauna. Sci. Total Environ. 820, 153282.

Johnson, K.N., 2015. The Impact of Wolbachia on virus infection in mosquitoes. Viruses 
7, 5705–5717.

Kolimenakis, A., Heinz, S., Wilson, M.L., Winkler, V., Yakob, L., Michaelakis, A., et al., 
2021. The role of urbanisation in the spread of Aedes mosquitoes and the diseases 
they transmit—A systematic review. PLoS Negl. Trop. Dis. 15, e0009631.

Kozlov, M.V., 2022. Population dynamics of herbivorous insects in polluted landscapes. 
Curr. Opin. Insect Sci. 54, 100987.

Kozlova, E.V., Hegde, S., Roundy, C.M., Golovko, G., Saldaña, M.A., Hart, C.E., et al., 
2021. Microbial interactions in the mosquito gut determine Serratia colonization and 
blood-feeding propensity. ISME J. 15, 93–108.

Kraemer, M.U.G., Reiner, R.C., Brady, O.J., Messina, J.P., Gilbert, M., Pigott, D.M., et al., 
2019. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes 
albopictus. Nat. Microbiol 4, 854–863.

Kraus, J.M., Walters, D.M., Wesner, J.S., Stricker, C.A., Schmidt, T.S., Zuellig, R.E., 2014. 
Metamorphosis alters contaminants and chemical tracers in insects: implications for 
food webs. Environ. Sci. Technol. 48, 10957–10965.
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