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Machine Learning and DFT-based Data

Nathan Boulangeot*†, Florian Brix*‡, Frédéric Sur†, Émilie Gaudry*§

Abstract

Intermetallic compounds are promising materials in numerous fields, especially those involving sur-
face interactions, such as catalysis. A key factor to investigate their surface properties lies in adsorption
energy maps, typically built using first principles approaches. However, exploring the adsorption energy
landscapes of intermetallic compounds can be cumbersome, usually requiring huge computational re-
sources. In this work, we propose an efficient method to predict adsorption energies, based on a machine
learning (ML) scheme fed by a few density functional theory (DFT) estimates performed on n sites se-
lected through the Farthest Point Sampling (FPS) process. We detail its application on the Al13Co4(100)
quasicrystalline approximant surface for several atomic adsorbates (H, O and Pb). On this specific ex-
ample, our approach is shown to outperform both simple interpolation strategies and the recent ML force
field MACE [arXiv.2206.07697], especially when the number n is small, i.e., below 36 sites. The ground-
truth DFT adsorption energies are much more correlated with the predicted FPS-ML estimates (Pearson
R-factors of 0.71, 0.73, and 0.90 for H, O, and Pb, respectively, when n=36) than with interpolation-based
or MACE-ML ones (Pearson R-factors of 0.43, 0.39, and 0.56 for H, O, and Pb, in the former case and
0.22, 0.35, and 0.63 in the latter case). The unbiased root mean square error (ubRMSE) is lower for
FPS-ML than for interpolation-based and MACE-ML predictions (0.15, 0.17, and 0.17 eV, respectively,
for hydrogen and 0.17 eV, 0.25 eV, and 0.22 eV for lead), except for oxygen (0.55, 0.47, and 0.46 eV) due
to large surface relaxations in this case. We believe that these findings and the corresponding methodol-
ogy can be extended to a wide range of systems, which will motivate the discovery of novel functional
materials.
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1 Introduction

Intermetallic compounds, i.e. compounds combining two or more metals or metalloids with a well-defined
composition, are attracting increasing interest both for the scientific challenges they pose and for their vast
potential in various applications, such as coatings and catalysts.1 Their unique surface electronic and geo-
metric structures can lead to enhanced catalytic performance,2, 3 as well as to reduced friction, high durabil-
ity and good corrosion resistance.4–6 The aforementioned properties are strongly influenced by adsorption.
Thus, the prediction of adsorption energies on such complex surfaces is crucial to the designs of optimized
compounds.

Quantitative information about adsorption is challenging to measure experimentally. First-principles
methods are therefore essential to gain insights in this realm, especially to build Adsorption Energy Maps
(AEMs), which establish connections between surface atomic structures and adsorption energies. AEMs of-
fer a means to rationalize adsorbate-surface interactions and provide valuable insights into surface properties,
such as adsorption energies and diffusion barriers when dealing with atomic adsorbates. AEMs are gener-
ated by computing adsorption energies at specific points of regular grids covering the considered surface.7, 8

Despite their utility, generating accurate AEMs, obtained with high-level theoretical methodologies, such
as Density Functional Theory (DFT), remains challenging. This is partially due to the high computational
cost of multiple geometry optimizations.9, 10 Consequently, most AEMs have been limited so far to atoms
or small organic intermediates on dense metal surfaces,11–14 although more complex systems like supported
nanoparticles or nanostructured surfaces are likely to be used in practical applications.

Various methods have been developed to overcome the current limitations associated with the compu-
tational cost of adsorption energies. Methods based on chemically or physically motivated descriptors,
such as the electronegativity of surface atoms,15 the substrate density of states at the Fermi level,16 and sev-
eral d-band17–20 or geometric features,21, 22 have proven to be quite relevant to predict adsorption energies
on surfaces of elemental metals, typically by involving linear scaling.23–26 Nonlinear approaches, such as
those based on neural networks, are currently undergoing rapid and significant developments.27 Since the
first achievements – for instance the one focusing on CO adsorption on nickel28 – many improvements have
been realized,29, 30 related for instance to symmetry considerations,31 and to global optimization protocols
for surface adsorbate geometries.32

Data-driven methods are known to require large data sets, containing more than several hundred of
DFT optimizations, such as for example ≃900, ≃2000, ≃5000, and 42785 adsorption energies on metals
or alloys in Refs.,33–36 respectively. With the smallest data set,33 the authors demonstrated that data-based
schemes can outperform simpler models. The root mean square error (RMSE) calculated for adsorption
energies on metals and binary alloys is found to be 0.15 eV, i.e. much lower than the one given by the
d-band model (0.37 eV) or scaling relations (0.28 eV) on the same data set.33 Similar results have also
been obtained by simpler methods, from only three key predictors calculated with DFT (RMSE = 0.25 eV
for adsorption energies of carbon species on close-packed metal surfaces),34 or from an analytical function
considering electronic factors and bonding numbers (RMSE=0.15 eV).37 With the largest data set (Ref.36),
the CO and atomic hydrogen adsorption energies have been calculated with an RMSE equal to 0.46 eV and
0.41 eV, respectively. More recently, state-of-the-art graph neural network models (CGCNN,38 SchNet,39

DimeNet++,40, 41 and MACE42) have been combined with huge data sets (of size 1,281,040 for OC2043, 44

and 150,000 in Ref.42) to build general models that can be used with any atomistic system of interest, thus
popularizing the use of ML force fields. However, achieving sufficient accuracy to be useful in the field of
catalysis would require a data set nearly 10 orders of magnitude larger than OC20.44 While simple models
can already give useful predictions for qualitative purposes, significant improvements of ML approaches are
necessary to efficiently process large various data sets.44

The previous strategy, a brute-force method requiring huge data sets and aiming for applicability on a
wide range of different compounds, is challenging. When dealing with AEMs, one generally focuses on a

2



single system, for which simple interpolations can give good results, as recently illustrated by Szilvasi et
al.45 Their method fully characterizes the important adsorption sites of pure platinum and pure gold nan-
oclusters, as well as diffusion paths, with accuracies similar to those of current approaches and at comparable
computational costs. More precisely, AEMs are constructed by sampling a finite number of points forming
a regular grid, and performing a spline interpolation between the calculated sites. The greater the number of
points sampled, the smaller the error introduced at points where the energy has not been explicitly calculated.
On binary alloy surfaces, the previous method is in line with the surface mixing rule, a linear interpolation
of adsorption energies based on the local atomic environments around adsorption sites.46, 47 This is founded
on the observation that the d-band center of the considered binary transition metal alloys is the weighted
average of the d-band centers of each pure metal. Thus, using the surface mixing rule may be improper
in the case of compounds whose structures are different from those of their pure metal constituents. This is
unfortunately the case with intermetallic compounds, as illustrated by vinyl and ethylene adsorption energies
at the low-index surfaces of Al5Co2,48 that significantly deviate from a linear behavior.

To sum up, strategies based on machine learning can accelerate the calculation of adsorption energies.
Conventional approaches, such as the d-band model, do not require huge data sets and have proven their
efficiency when compared to machine learning techniques. Nevertheless, they are limited to predictions
across a subset of elements with similar properties, for instance isostructural simple metals.25 Machine
learning force fields are reliable and lead to small energy prediction errors (generally below 50 meV·mol−1

with respect to reference ab initio values). However, they require huge training sets, even when used in
combination with pretrained models, which provides a significant shortcut compared to training models
from scratch.49, 50

In the following, we focus on the (100) surface of the Al13Co4 quasicrystalline approximant. This com-
pound is quite significant for potential applications as it has been identified as a cost-effective catalyst for
hydrogenation,51, 52 with catalytic properties outperforming those of industrial catalysts. The surface of this
compound is also attractive for its nonwetting character.53 Finally, the related Al13Fe4 intermetallic is known
to form at the interface of aluminum coatings on stainless steels (hot dip aluminizing of mild steel), which
has major implications for coatings.54 Three atomic adsorbates have been chosen to illustrate the perfor-
mance of our approach: hydrogen, because its adsorption on catalysts’ surfaces is crucial when dealing with
hydrogenation reactions, oxygen, because oxide formation at catalysts’ surfaces often annihilates catalytic
properties and lead, because this chemical element is used as a probe to investigate the nonwetting properties
of complex Al-based intermetallic substrates.53 Through the choice of these three chemical elements, the
main adsorbate-substrate bond types are considered here.

In this paper, the Al13Co4(100) surface is considered as a prototype of complex intermetallic surfaces
with a large number of distinct adsorption sites (nads = 46 according to the pymatgen’s AdsorbateSiteFinder
tool).11 The relevance of our approach is demonstrated through the ability to build AEMs with a number
of DFT estimates smaller than nads. Computational costs are reduced by (i) carefully selecting a few rele-
vant sites on which DFT calculations are performed and (ii) using a machine learning approach to predict
adsorption energies between these sites. We show that these two ingredients outperform simple linear in-
terpolations. Our approach offers several advantages, being both efficient and effective even with limited
data, and avoiding the need to fit elaborated interaction potentials. We believe it is particularly well-suited
for high-throughput exploration of adsorption sites on complex material surfaces, which paves the way for
accelerating the discovery of complex functional materials such as coatings and catalysts.
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(a) (b)

Figure 1: (a) Bulk structure of Al13Co4 along the [001] and [100] directions, respectively. The two types
of Henley clusters are highlighted in light and dark orange. (b) Surface structure of Al13Co4(100) (top and
side views). Al and Co atoms are shown in light and dark blue, respectively. The crystallographic axes are
shown with red, blue and green colors. The labels P and F identify puckered and flat atomic planes.

2 Details on Materials, Computations and Metrics

2.1 Al13Co4 Bulk and (100) Surface

The orthorhombic Al13Co4 phase, known as an approximant structure to decagonal d-AlNiCo quasicrys-
tals,55 crystallizes in the Pmn21 space group (No. 31, Pearson symbol oP102). This compound is charac-
terized by the presence of defects,56 but here we consider the ideal structure with full atomic occupations.
According to X-ray diffraction,57, 58 the bulk lattice parameters are a = 8.158 Å, b = 12.342 Å, and c = 14.452
Å (102 atoms per cell, Fig. 1). Atoms are arranged within two types of planes, alternating perpendicularly to
the [100] direction, and usually labeled flat- and puckered planes (F- and P-type, respectively, Fig. 1a). The
stacking sequence is F0P0.25F0.5P0.75 and the interlayer distance is approximately 2 Å. On the other hand,
the approximant structure can be understood as a stacking of Henley-type clusters, shown in light and dark
orange in Fig. 1a. The F-type planes intercept the clusters in their meridian plane.

Surface science experiments have shown that the Al13Co4(100) surface consists in large terraces sepa-
rated by a unique step height equal to half the lattice parameter, with no surface reconstruction either seg-
regation. Combining the experimental observations with DFT calculations leads to the conclusion that the
Al13Co4(100) surface is described by P-type terminations, with vacant surface Co sites (Fig. 1b).59–64 Bipen-
tagonal features are resolved by scanning tunneling microscopy at the Al13Co4(100) surface, and attributed
to pentagonal atomic arrangements reminiscent of the ones in the bulk. They are of two types, depending on
whether the centers of the bipentagons are filled with cobalt atoms (orange and green motifs in Fig. 1b).
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2.2 Computational Details

DFT calculations have been performed with the Vienna ab initio simulation package (VASP).65 Self-consistent
Kohn Sham equations have been solved in the framework of the projected-augmented wave (PAW) method.66

Spin polarization has not been taken into account, as it is not requested for such Al-rich compounds.67, 68 The
electron exchange and correlation energies have been described by the generalized gradient approximation
(GGA) approach, using (i) the standard semilocal functional (PBE)69 when dealing with atomic oxygen
and lead adsorbates, and (ii) the DFT-D3 method70 in the case of atomic hydrogen adsorbates. The plane-
wave energy cutoff has been set to 450 eV. Monkhorst-Pack meshes have been used for k-point sampling
(1×7×5).71 Atomic valences have been taken as 3s23p1 (Al), 3d84s1 (Co), 1s1 (H), 2s22p4 (O), and 6s26p2

(Pb). Total energies have been minimized until energy differences between two electronic cycles is less than
10−6 eV. Following our previous works,60, 72, 73 the Al13Co4(100) surfaces have been modeled by asymmetric
7-layer thick slabs separated by a void thickness (≥ 15 Å).

Structural optimizations have been performed, and stopped when the residual Hellmann-Feynman forces
on atoms were lower than 0.01 eV/Å. Two approaches have been employed to compute atomic adsorption
energies (Enr

ads and Er
ads). On the one hand, all atoms of the slab are kept fixed to their positions in the

clean slab. Only the height of the adsorbate above the surface is refined (Enr
ads). On the other hand, both

the adsorbate height and the atomic positions of the substrate top-most four layers are optimized (Er
ads).

Adsorption energies (Enr
ads and Er

ads) are given by:

Eads(A,x,y) = Etot(A,x,y)−Eslab −EA (1)

with A ∈ {H,O,Pb}, Etot(A,x,y) the total energy of the system (slab+adsorbate) at each adsorbate’s in-plane
position (labeled (x,y)) and Eslab the energy of the clean slab. In the previous equation, EA is defined as
half of the energy of the A2 molecule for H and O, i.e., EA = 1

2 EA2 , while EPb is the cohesive energy of
lead. The previous adsorption energies (Enr

ads or Er
ads), computed on regular

√
N ×

√
N grids (N ≃ 400) over

Al13Co4(100), are used to build several DFT AEMs, used as references in the following.
The deep-learning model considered for comparison purposes is MACE,49 a high-order equivariant

message-passing neural network. Training is fine-tuned from the large MACE-MP-0 model, using a spe-
cific set of hyperparameters. The same hyperparameters have been chosen here, i.e. two message-passing
layers, 256 channels, with a spherical expansion of up to ℓmax = 3, and 4-body messages in each layer (cor-
relation order 3). A self-connection for both layers has been used, as well as a 128-channel dimension for
tensor decomposition and a radial cutoff of 6 Å. The interatomic distances have been expanded into 8 Bessel
functions multiplied by a smooth polynomial cutoff function to construct radial features, which in turn fed
into a fully connected feed-forward neural network with three hidden layers of 64 hidden units and SiLU
nonlinearities. A maximal message equivariance of L = 1 is applied. The irreducible representations of the
messages have alternating parity (in e3nn notation, 128x0e + 128x1o).

2.3 Metrics

The performances of our ML model are evaluated through the root mean square error (RMSE), the unbiased
root mean square error (ubRMSE), the normalized residuals (nRES), the Mean Absolute Error (MAE) and
the Pearson correlation coefficient (R). Details are given in the supporting information. These metrics are
defined as:

RMSE =

√√√√√Ntest

∑
i=1

(Ê i
ads −E i

ads)
2

Ntest
, (2)
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ubRMSE =

√√√√√Ntest

∑
i=1

((
Ê i

ads −⟨Êads⟩
)
−
(
E i

ads −⟨Eads⟩
))2

Ntest
, (3)

nRES(Ê i
ads) =

|Ê i
ads −E i

ads|
σ(Êads)

(4)

MAE =
∑

Ntest
i=1 |Ê i

ads −E i
ads|

Ntest
(5)

R =
∑

Ntest
i=1 (E

i
ads −⟨Eads⟩)(Ê i

ads −⟨Êads⟩)√
∑

Ntest
i=1 (E

i
ads −⟨Eads⟩)2

√
∑

Ntest
i=1 (Ê

i
ads −⟨Êads⟩)2

(6)

In the previous equations, Ê i
ads and E i

ads are the predicted and DFT adsorption energies on sites i of the
test set, whose cardinal is Ntest . The corresponding averaged values of Ê i

ads and E i
ads are ⟨Êads⟩ and ⟨Eads⟩,

respectively. Energies can be relaxed or nonrelaxed quantities (Enr
ads or Er

ads) depending on whether the DFT
calculations are performed by fixing or relaxing surface atoms, as mentioned in Sec. 2.2. The standard
deviation σ is computed for predicted values (Ê i

ads). Note that the lower RMSE, ubRMSE, MAE or nRES,
and the larger R, the better the accuracy.

Finally, box-and-whisker plots are used to display the distribution and variability of our predictions. The
box represents the interquartile range of the data set, which contains the middle 50% of the data. A plain
line at the median divides the data set into two equal halves. The whiskers extend from the box to show the
range of the data, excluding the outlier data points. Beyond the whiskers, the data are considered as outliers
and are plotted as individual points.

3 Method

Fig. 2 summarizes our machine learning (ML) workflow to predict adsorption energies. Additional details
are given in the supporting information. We first define a set of pairs made of a smooth overlap of atomic po-
sitions (SOAP)74, 75 descriptor centered at the position of the adsorbate and the associated adsorption energy
(Enr

ads or Er
ads). Parameters related to the descriptors are detailed in the supporting information (section S1).

To limit the number of costly DFT steps required to obtain both the adsorbate energies and their optimized
z-coordinate at each (x,y) position, only a few (x,y) sites, carefully selected (Sec. 3.1), are considered for
the DFT optimizations. Moreover, all data produced during the DFT relaxation process are included in the
training set (Sec. 3.2), i.e. between 5 and 40 energies for each (x,y) position, depending, among others, on
the number of atoms allowed to relax. Our predictions are assessed by computing metrics on test sets made
of the adsorbate’s optimized positions and the associated DFT energies (Er

ads or Enr
ads, Sec. 3.2).

3.1 Site Selection

Our ML approach aims to drastically decrease the computation costs, by learning the adsorption energies of
a few number of sites. To ensure good generalization performances from a limited data set, sites selected
for the training step should provide a large variety of different configurations. Sampling based on standard
molecular dynamic trajectories leads to impractically long computational times attributed to the presence of
large free energy barriers.76 Random sampling is not an option here, as it is not possible to guide the selection
process in such a high-dimensional feature space. Therefore, it is necessary to design efficient algorithms
that are able to accelerate phase space exploration. It is worth to mention that this selection should be made
on nonrelaxed (initial) systems, prior to any DFT computation, to reduce computational costs.
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Machine learning workflow (a) Typical shape of Enr
ads for atomic hydrogen

as a function oh the height’s adsorbate (b)

Figure 2: (a) Machine learning workflow. From N positions distributed on a regular
√

N ×
√

N grid over
the surface, n positions are selected, either on a regular subgrid, or through the so-called Farthest Point
Sampling (Sec. 3.1). DFT calculations are achieved to get adsorption energies , through the optimization
of the adsorbate height (z-coordinate) for a given (x,y) position. The training set is made of all pairs of
descriptors centered at the nonrelaxed adsorbate position together with adsorption energies (Sec. 3.2). The
test set is made of the DFT optimized positions from all of the N initial positions together with the associated
adsorption energies. Two possibilities are explored: the surface is either relaxed or not (Sec. 3.2). Color code
of structural models : Al (light blue), Co (dark blue), and O (red). (b) Adsorption energies, as a function
of the adsorbate height, plotted here for atomic hydrogen located at one favorable site, i.e., (x,y) = (3.68
Å, 12.14 Å). Predicted (Ênr

ads) and DFT (Enr
ads) values are shown in blue and green, respectively. Spline

interpolation between predicted values is plotted in blue (straight line). The standard deviation of the GPR
is also shown (blue area). The dashed vertical black line represents the position of the underlying atoms in
the termination plane. The red dot indicates the height selected by our algorithm.

We propose to make the selection from a set of N regularly spaced sites (xi,yi) (1 ≤ i ≤ N), located in a
two-dimensional plane defined by its z-position (z0) in the simulation box. We choose a regular sampling of√

N ×
√

N sites, with
√

N = 20 (N = 400) in the case of atomic hydrogen and oxygen, and with
√

N = 19
(N = 361) for atomic lead. Let us note that Di is the SOAP descriptor at the position (xi,yi,z0), where z0 = 1
Å for atomic hydrogen and z0 = 2 Å for atomic oxygen and lead, the reference being defined by the position
of the termination plane. The Euclidean distance di j measures the dissimilarity between the descriptors at
positions (xi,yi,z0) and (x j,y j,z0). Let us note Dm the set of the indices of the m first selected sites among
the above-mentioned

√
N ×

√
N sites. The set Dm is built recursively:

• The first selected site minimizes the average distance between the descriptor computed from this site
and all other descriptors, thus: D0 = {i0}, with

i0 = argmin
i∈{1,...,N}

∑
1≤ j≤N

di j (7)

In other words, the descriptor Di0 is the medoid of the set of all descriptors computed from the sites of
the regular grid.
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• For any m ≥ 0, the m+1-th selected site has the descriptor with the largest dissimilarity to the descrip-
tors of the sites already selected in Dm. We measure the dissimilarity between the descriptor Di and
the descriptors from Dm as min j∈Dm di j. That is, Dm+1 = Dm ∪{im+1}, with

im+1 = argmax
i∈{1,...,N}\Dm

min
j∈Dm

di j (8)

where A\B denotes the set of elements that are in a set A but not in a set B.

In other words, we add an m+ 1-th site that is likely to introduce new pieces of information as its
atomistic environment is dissimilar to the ones from the sites in Dm.

Our selection strategy is similar to the Farthest Points Sampling (FPS) method widely used in litera-
ture.32, 77, 78 For comparison purposes, we choose n as a square number (n = 9, 16, 25, 36, 49, 64, 81, 100),
since ML models will be trained using data sampled either using the FPS method or from a Regular two-
dimensional

√
n×

√
n Point Sampling (RPS) of the surface cell. To avoid any dependence of the test metrics

on the position of the substrate relative to that of the grid, we considered standard deviations resulting from
systematic in-plane translations of the grid, leading to confidence intervals rather than a unique value when
calculating the metrics defined in Sec. 2.3.

The distribution of sites selected by the FPS method is shown in Fig. 3 for n = 49 (yellow triangles
displayed in the right-hand panels). Selected points, distinct for the three considered systems due to tiny
differences between grids, are nonequivalent from a crystallographic point of view. They do not span the
surface cell in a uniform way, and do not systematically mirror the most stable adsorption sites. By com-
paring the sites selected for various n values – those for n ∈ {9,25,49} are shown in Fig. 4, and all data are
gathered in the supporting information, section S2 – one can also notice that singular sites are systematically
selected at the beginning of the selection process, such as the position on top of the protruding Co atom, the
center of the Al bipentagonal motifs or the center of the 4-fold sites between to bipentagons.

3.2 Training and Prediction

DFT computations are performed for adsorbates located at the n relevant sites identified previously by the
FPS and RPS methods. As already mentioned, all data produced during the DFT relaxation process are in-
cluded in the training set. Training is performed through the Gaussian Process Regression (GPR)79, 80 and a
Gaussian kernel. Parameters are detailed in the supporting information (section S1). The probabilistic nature
of the GPR automatically leads to confidence intervals for predicted values, while other regression meth-
ods, such as the kernel ridge or the support vector regression, require time-consuming additional bootstrap
approximations to estimate confidence bounds.

Once training is completed, adsorption energies are predicted at each site i of a regular two-dimensional
2
√

N × 2
√

N grid spanning the Al13Co4(100) surface for several different heights in the range [zmin(xi,yi);
zmax(xi,yi)]. We take zmin(xi,yi) = dS(xi,yi)− a where a =0.30 Å and dS(xi,yi) is the sum of the covalent
radii of species involved at the considered site (in Å). We choose zmax(xi,yi) = zmax =2.23 Å. Typically,
for each site i, the predicted adsorption energy varies as shown in Fig. 2b, i.e. it shows a minimum value.
The z-coordinate zopt(xi,yi) that minimizes the predicted energies is identified (red dot in Fig. 2), and the
corresponding adsorption energy is calculated. It can happen that no minimum can be found. In that case,
zopt(xi,yi) is set to the value corresponding to the lowest predicted energy, i.e. [dS(xi,yi)−a] or zmax. Finally,
the performance of our machine learning setup is quantified through the metrics defined in Sec. 2.3, using
the equation Ntest = N.
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Figure 3: DFT (Er
ads) and predicted (Êr

ads) AEMs for H (first row), O (second row) and Pb (third row)
adsorbates when n = 49. Green and white squares indicate the most favorable adsorption sites according
to DFT. Small black dots show the sites on which DFT calculations have been performed. The surface
atomic structures are superimposed on the AEMs. Light and dark blue circles represent Al and Co atoms,
respectively, at the termination plane (solid lines) or at the subsurface plane (dotted lines).

4 Results and Discussions

Adsorption energy maps are conventionally plotted by interpolations between dense point grids. Based on
the

√
N ×

√
N regular grids mentioned before (Sec. 3.1), two DFT maps for each adsorbate (Enr

ads and Er
ads)

have been plotted (Figs. 3, S3, S14, S25). The most favorable adsorption sites for each element have
been highlighted with green and white squares. They are gathered by pairs, due to the presence of a 2-fold
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Figure 4: Adsorption energy maps (Er
ads) for atomic hydrogen. Predictions based on different methods

(interpolations, RPS and FPS ML, MACE ML) and different sizes of the training sets (n = 9, 25, 49) are
considered. Yellow triangles indicate the sites on which DFT calculations are performed. Green and white
squares show the most stable sites for H adsorption, according to DFT. The surface atomic structures are
superimposed on the AEMs. Light and dark blue circles represent Al and Co atoms, respectively, at the
surface (full lines) or the subsurface (dotted lines).
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axis perpendicular to the surface plane whose trace is located in the center of the 4-fold site between two
pentagonal motifs. Favorable sites for atomic hydrogen are found among bridge Al-Al sites, stabilized by a
subsurface Co atom, in agreement with a previous work.81 Atomic oxygen adsorbs preferentially at 3-fold
hollow sites of Al13Co4(100), which is consistent with the O chemisorption sites on Al(111) in the 3-fold
coordinated fcc positions.82 Favorable sites for atomic lead are found in large hollow sites, in agreement
with previous works.73, 83

4.1 Exploring Adsorption Energy Maps

Whatever the data selection used for training, the general appearance of the DFT AEMs (Figs. 3,4, S4,
S15, and S26) is nicely reproduced by our ML approaches. In particular, 5-fold symmetries around the
protruding Co atoms, are well rendered, even with a very small number of training data (n = 9). In contrast,
interpolation methods, based either on nearest neighbor approaches, which estimate the adsorption energies
by assigning to a position the value of the nearest known point in the AEM, or on cubic interpolations, which
involve third-order polynoms, fail to correctly reproduce the 5-fold symmetry around the protruding Co top-
most atoms, even with n = 49. In addition, we can notice that equivalent sites, connected through the 2-fold
symmetry mentioned above, can be interpolated with different values when n is small, while this pitfall is
avoided with ML methods. We also discuss our approach in relation to the MACE force field built by fine-
tuning MACE-MP-0, i.e. by using the primary parameters of MACE-MP models and by retraining them
with the new structures. The MACE energy landscape appears to be much flatter than the one calculated by
DFT. This is attributed to the small size of the training set used for the fine tuning, which is probably too
small to manage the huge number of degrees of freedom related to the relaxation of both the adsorbate and
surface atoms. As a consequence, the 5-fold symmetry features are much less visible using the MACE ML
than with FPS and RPS MLs.

A detailed analysis shows that energies are better predicted when a similar environment is included in
the training set. For instance, adsorption at surface Co vacancy sites is correctly predicted by FPS even
when n = 9, since one of these sites – (x,y) = (7.44 Å, 1.44 Å) – is among the first position selected, i.e.
it is included in the training set when n = 9. Thus, for hydrogen, the relevance of our ML approach can
be understood by the fact that the first sites selected for training (FPS method) are top Co, top Al, bridge
Al-Al, bridge Co-Al, hollow Al sites, i.e. the typical adsorption sites on metal surfaces. In contrast, training
based on regular grids fails to give the correct value when n = 9 because no learning is done at this site
when n < 49. For oxygen, the noncorrect predictions by RPS ML on top Co atoms when n is small can be
explained by not including top Co sites in the training set when n = 9 and n = 16. A similar explanation is
valid for vacancy sites in the case of lead.

The qualitative comparison between DFT-based and ML-predicted AEMs shows that FPS and RPS ML
outperform interpolation strategies, especially when n ≤ 36. These observations are clearly measured by the
R-factor (Figs. 5).Overall, for all adsorbates, the R-factor increases with n, and is higher when predictions
are made using our ML method than simple interpolations (Figs. S12, S23, and S34). For n = 9, the Pearson-
R is ≃ 0.4 (ML) versus ≃ 0.1 (interpolation), ≃ 0.6 (ML) versus ≃ 0.1 (interpolation) and ≃ 0.6 (ML) versus
≃ 0.2 (interpolation) for H, O and Pb, respectively. The consideration of other metrics are also in favor of
the ML approach (Figs. S12, S23, and S34), especially when n ≤ 36, which is the range of interest when
aiming to identify favorable adsorption sites with a number of DFT calculations lower than that suggested
by the pymatgen triangulation method (nads = 46).11 These other metrics are discussed below (Sec. 4.2) .

4.2 Benchmark of Metrics

Within our ML scheme, only the z-position of the atomic adsorbate is optimized, with all surface atoms
being frozen at their positions in the clean surface. However, surface relaxations, occurring upon adsorption,
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stabilize the whole system and thus strengthen energies (Figs. S13, S24, S35). Overall, the difference
between Enr

ads and Er
ads results in an energy shift, equal to 180, 900, and 200 meV, on average, for H, O, and

Pb, respectively, with variations depending on the adsorption site and the adsorbate. Differences between
Enr

ads and Er
ads are the largest in the vicinity of protruding Co atoms for H, while they are on top of one surface

Al atom between protruding Co for Pb. For oxygen, the surface relaxation exhibits a much greater intensity
and cannot be described by a simple energy shift. It affects most sites, especially Al top sites belonging to the
pentagonal motifs centered with Co (in orange in Fig. 1). Thus, in this work, training is performed on either
relaxed or nonrelaxed energies, while metrics are calculated with reference to relaxed or nonrelaxed DFT
values. In all cases, systematic comparisons are summarized in the supporting information (Figs. S4-S12 for
H, Figs. S15-S23 for O, Figs. S25-S34 for Pb).

Metrics measured on nonrelaxed systems show clearly that ML outperforms interpolation strategies,
especially for small n values. When n = 49, the RMSE related to the prediction of H adsorption (Enr

ads) is
0.07 eV, 0.15 eV, and 0.16 eV for ML, cubic and nearest interpolation methods, respectively, Figs S8, S12,
S20, S23, S31, and S34). The RMSE decreases quickly with n, especially between n = 9 and n = 36. The
metrics are degraded when moving from Enr

ads to Er
ads (Figs. 5, S8, S20, and S31). For hydrogen, this is

clearly illustrated by the ubRMSE, which is larger than 0.1 for any n ≤ 100. Similar trends are also observed
for lead (Fig. 5a). More precisely, the ubRMSE measured for FPS-ML, interpolation-based and MACE-ML
predictions are 0.15, 0.17, and 0.17 eV, respectively, for hydrogen and 0.17, 0.25, and 0.22 eV for lead when
n = 36. In the case of oxygen, all methods lead to values roughly equal to 0.5 eV (0.55, 0.47, and 0.46 eV,
respectively) due to large surface relaxations in this case. Despite the high RMSE values, we observe a good
correlation between predicted (FPS-ML) and ground-truth DFT values in terms of the Pearson coefficient
(0.73, Fig. 5b). Finally, histograms of normalized residuals, plotted for the atomic H, O and Pb adsorbates
(Fig. 5c), show a Gaussian shape for the three elements. This suggests that no specific statistical feature
influences the results, especially for oxygen.

The worse metrics are obtained for the predictions of oxygen adsorption. It is not so surprising, as sim-
ilar observations have already been reported.84 On transition metal surfaces, the MAE for O adsorption has
been calculated to be 0.16 eV,84 i.e. it is twice the MAE for H adsorption (0.08 eV). On bimetallic alloy
surfaces, according to Ref.,9 the MAE for H adsorption is measured to be 0.07 eV, while it is 0.15 eV for
O adsorption. A possible explanation for such a behavior may be the specific bond between the surface and
oxygen, involving strong charge transfers and surface relaxations. Our model is based on a local geomet-
ric descriptor, that neither considers surface relaxation nor takes global changes in the electronic structure
into account. Methods developed recently, such as those using a fourth-generation high-dimensional neural
network potential that combines a charge equilibration scheme employing environment-dependent atomic
electronegativities with accurate atomic energies, may help to go beyond the current limitations.85

The metrics measured in this work are of the same order of magnitude as those provided by other ap-
proaches. For atomic hydrogen the literature has reported MAEs ranging from 0.07 eV9 to 0.24 eV36 with
many studies falling in between those values.35, 77, 84, 86–90 In the present study, similar values have been
obtained, but with a data set that is (much) smaller. For instance, the RMSE for atomic hydrogen adsorption
is measured to be 0.075 eV, based on a training data set containing around 10000 DFT single-point calcu-
lations, spanning adsorption sites on the surface of 91 MoS2 clusters.77 A RMSE decreasing from 0.1 eV,
down to 0.052 eV when focusing on a specific set of sites, are obtained using various ML algorithms trained
over approximately 5000 configurations of Ag alloys,35 and over 6477 configurations of nitrogen-doped car-
bon nanotubes.89 This is slightly larger than the value of 0.03 eV obtained with 100 positions in our training
set (RMSE, Enr

ads, n = 100) and of the same order of magnitude than the value obtained with n = 64 (RMSE,
Enr

ads). The relevance of the FPS combined with SOAP descriptors is shown to be relevant to treat small data
sets, as shown by the results based on 1400 DFT single-point calculations to predict hydrogen adsorption on
metallic nanoclusters.90 In their work, the MAE of the predictions is around 0.1 eV, i.e. comparable to that
obtained with n = 25 in this work.
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Figure 5: (a,b) Metrics related to the prediction of adsorption energies (Er
ads). The RMSE (a) and Pearson

coefficient (b) are plotted as functions of n for both RPS (dashed line) and FPS (solid line). (c) Histograms
of errors by FPS. Color code : H (blue), O (red) and Pb (green).

4.3 Farthest versus Regular Point Samplings

Roughly, the FPS and RPS ML methods give similar qualitative results. Nevertheless, we can notice few
differences between the two ML AEMs, especially when n is small. For instance, noncorrect predictions,
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identified by dark red regions in Figs. S4, S15 and S26, more frequently occur with RPS than FPS. This is
better illustrated by Λ(n) (Fig. 6), the number of predictions with a stronger binding energy than those cor-
responding to the most stable site identified by DFT, within a spatial resolution of 1.04 Å × 1.44 Å. Indeed,
since our approach aims to predict the most stable adsorption sites on a complex surface, a high-performance
and relevant algorithm would predict correctly the sites with the stronger adsorption energy. Thus, the Λ(n)
number evaluates the reliability of the prediction of most stable adsorption sites. For hydrogen, ΛFPS

H (n) is
null for n > 16, while ΛRPS

H (n) < 1 only when n ≥ 64. For oxygen, noncorrect predictions using RPS ML
occur on the top Co atoms when n = 9 and n = 16 (Fig. S15). FPS leads to more reliable predictions than
RPS, with ΛFPS

O (9) = 10 and ΛFPS
O (i) = 0 for i ≥ 16, while ΛRPS

O (i) ≤ 1 for i ≥ 36. For lead, noncorrect
predictions using RPS ML occur at surface vacancies when n = 9 and n = 16 (Fig. S26). Here, FPS also
shows noncorrect predictions, especially in the vicinity of protruding Co atoms, but without impacting the
identification of most stable sites, since ΛFPS

Pb (n) = 0 for any n. In contrast, ΛRPS
Pb (i)> 1 for i < 25.

We also compared the regular and farthest point samplings using other metrics. Fig. 6 shows normalized
residuals for H/Al13Co4(100) (Enr

ads, n = 9, 25, 49). Additional results are gathered in the supporting infor-
mation, in Figs. S5-S8 for H, S16-S19 for O and S27-S30 for Pb. Focusing on atomic hydrogen (Enr

ads), the
largest errors by FPS are found in the regions of low Co content. This can be attributed to the fact that, when
n is small, FPS overrepresents environments with Co top-most atoms in the training set. Thus, it induces
a systematic bias, slightly overestimating adsorption energies for most positions, that is mostly overcome
when n = 49 by including more Al environments. In contrast, errors are more homogeneously distributed
when using RPS. However, in that case, histograms show that the adsorption energies of a small number of
sites are predicted with large errors. Fig. 6 shows large (negative) pitfalls, that lead to a considerable underes-
timation of adsorption energies for small n values. These outliers arise during the energy minimization, by a
failure in finding the optimal adsorbate’s height (zopt(xi,yi)). Quantitatively, the deviation computed by FPS
(0.190 eV when n =9) is a bit larger than the one obtained by RPS (0.174 eV). The RPS interquartile range
is also smaller than the FPS one, both decreasing when n increases: 0.313 and 0.172 eV with n = 9; 0.027
and 0.029 eV with n = 100. This can be understood by the fact that for small n values, the RPS selection
method is almost as efficient as a random selection. Most common sites, i.e. Al rich sites, are chosen for
training, in this case, and singular sites are discarded. Conversely, first sites selected through FPS are unique
sites, aiming to account for the large diversity of surface adsorption sites. As a consequence, overall, for
very small n values, AEMs are barely better predicted by RPS (Fig. 6a), and they lead to a bit more regular
histograms (Fig. 6b) and narrower interquartile ranges (Fig. 6c)). However incorrectly favorable sites are
identified. The situation is clearly inverted in the range 25 ≤ n ≤ 64, because the FPS training set is large
enough to more comprehensively address the AEM complexity while the RPS selects more equivalent sites.
For n ≥ 81, the results are similar for both RPS and FPS methods. In summary, while metrics are slightly
better for RPS than for FPS for very small n values, large (negative) pitfalls arise by RPS, which results in
a sizable underestimation of adsorption energies, which makes it prohibitive to identify the most favorable
adsorption sites.

5 Conclusions

In this work, machine learning was performed to explore adsorption energy landscapes of Al13Co4(100).
The proposed approach efficiently identifies most favorable adsorption sites, with a few DFT estimates. The
Farthest Point Sampling method, which selects sites on which DFT calculations are performed, avoids redun-
dancy in small training sets, as well as large errors on predictions. In contrast to RPS, it does not depend on
the relative position of the sampling grid with respect to the surface, and thus avoids the variability observed
in RPS-based predictions, this phenomenon being critical with small data sets (typically n≤ 49). Most favor-
able adsorption sites are correctly identified, and energies are predicted with an acceptable RMSE for H, O,
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and Pb adsorbates : 0.27, 1.16, and 0.25 eV for Er
ads and 0.14, 0.37 and 0.15 eV for Enr

ads, respectively, with
n = 16. Enriching the training set greatly improves the metrics, since the RMSE decreases to 0.03 and 0.02
eV for H and Pb adsorption (Enr

ads) when n= 100. The computational cost to train the proposed ML algorithm
is very low, of the order of one hour for n = 100. This is negligible compared to the computational cost of
DFT (between 150 000 and 600 000 CPU hours for the AEM built from DFT calculations performed on 400
sites for hydrogen, using Enr

ads and Er
ads, respectively). The chemistry and physics of the system are shown

to influence the performance of our model. Indeed, the strong Al-O bond induces large surface relaxations,
which are highly dependent on the adsorption site, and that are difficult to capture with a model relying on
local geometric features and that only optimizes the adsorbate’s height with respect to the surface.

The proposed ML method outperforms not only simple interpolation schemes for small n values, but
also one force field neural network (MACE). It does not aim to train a universal model from a huge database,
but focuses on specific systems, like the one developed in this paper, where the effort required to adapt a
machine learning potential would be too great. This targeted approach ensures accurate and reliable results,
even with minimal data, making it highly effective for specific complex systems.

Our approach offers notable advantages, being both efficient and effective even with limited data, making
it particularly well-suited for high-throughput exploration of adsorption sites on complex material surfaces.
Further developments will aim to better entangle relaxations, possibly with the consideration of electronic
features. The transferability of our model should also be investigated, by simultaneously predicting adsorp-
tion on multiple surface orientations.
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7 Associated Content

Data Availability Statement and Code Availability DFT data and software codes are available at the fol-
lowing URL:
https://gitlab.univ-lorraine.fr/gaudry6/machinelearning_ijl.git

We added a working example that calculates the AEM for atomic hydrogen on Ag(111). Density func-
tional calculations have been performed on only three sites, identified by FPS (yellow triangles), and lead
to 19 single point calculations. All atoms in the three-layer thick slab are kept fixed to their bulk positions.
Our results for the top, fcc, hcp, and TS sites are consistent with those of Ref.91 Results are provided as
well, through the adsorption energy map, as well as through the energy profile of the diffusion path atop →
fcc → bridge → hcp → atop. The latter diffusion profile is found in good agreement with the literature,
errors on the four barriers mentioned above being less than 12% and 8% (with a training set containing DFT
relaxations performed using 3 and 7 surface sites, respectively).91

Supporting Information The Supporting Information is available free of charge at https://pubs.
acs.org/doi/XX
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S1 Machine learning details : SOAP descriptor, Gaussian Kernel, Metrics, MACE setup. S2 Results :
Adsorption energy maps, Error maps and histograms, Metrics, including Λ(n) for H, O and Pb on Al13Co4.
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