
HAL Id: hal-04759818
https://hal.science/hal-04759818v1

Submitted on 30 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Graph Databases with Out-of-order Updates
(extended version)

Angelos Christos Anadiotis, Muhammad Ghufran Khan, Ioana Manolescu

To cite this version:
Angelos Christos Anadiotis, Muhammad Ghufran Khan, Ioana Manolescu. Dynamic Graph Databases
with Out-of-order Updates (extended version). Institut Polytechnique de Paris; INRIA. 2024. �hal-
04759818�

https://hal.science/hal-04759818v1
https://hal.archives-ouvertes.fr

Dynamic Graph Databases with Out-of-order Updates (extended
version)

Angelos Christos Anadiotis
Oracle

Zurich, Switzerland
angelos.anadiotis@oracle.com

Muhammad Ghufran Khan
Inria & Institut Polytechnique de Paris

Palaiseau, France
muhammad.khan@inria.fr

Ioana Manolescu
Inria & Institut Polytechnique de Paris

Palaiseau, France
ioana.manolescu@inria.fr

ABSTRACT
Several real-time applications rely on dynamic graphs to model
and store data arriving from multiple streams. Providing both high
ingestion rate and efficient analytics with transactional guarantees
is challenging, even more so when updates may be received out-
of-order at the database. In this work, we propose HAL, a novel
in-memory dynamic graph database design, addressing these chal-
lenges. HAL outperforms comparable systems by a factor of up to
73× in terms of update processing throughput and up to 357× for
analytics, while being the first to support out-of-order updates.

1 INTRODUCTION
Dynamic graphs are omnipresent in real-time applications that gen-
erate massive amounts of data [45]. In particular, timely analysis
of high-velocity graph data streams [12] is critical for applications
such as monitoring of cyber attacks in system security applica-
tions [53], fraud detection in financial institutions [53], anomaly
detection in IOT networks [30, 52] and many more.

We consider dynamic graphs, where edges are continuously added
and deleted to a single graph, from multiple update streams. The
dynamic graphs are stored in a transactional graph database. Each
edge update or deletion carries a source (stream) time 𝑆𝑇 , assigned
at the moment when it was emitted, and an arrival (or transaction)
time 𝑊𝑇 , assignedwhen the graph database receives it.We assume
that all the stream timelines are reconcilable, that is: a global order
can be established over any set of updates coming from multiple
streams1. Furthermore, updates may be received at the database
out-of-order [17] (ooo, in short): due to different latencies on
the propagation paths between the data source and the database,
there may be two edge operations (insertion and/or deletion) 𝑢1, 𝑢2,
issued at stream times 𝑆1

𝑇
< 𝑆2

𝑇
, concerning the same or different

edges, such that 𝑢2 is received at the database at a time𝑊 2
𝑇
when

𝑢1 has not yet been received. Therefore, ooo updates are ordered
differently based on source time (𝑆𝑇) and on database time (𝑊𝑇).

Such scenarii are frequent in IoT applications [10, 29], where
changes in the network topology cause edges to appear and disap-
pear rapidly. In IoT networks [20], issues such as multi-path rout-
ing [35, 51], route fluctuations [4], link-layer retransmission [13, 26],
and router forwarding [37] may lead to ooo updates. For instance,
in Intelligent Transportation Systems, there are two main varia-
tions: (𝑖) Nodes (sensors) are fixed, e.g., intersections, while edges
reflect route segments whose status may vary in real-time due to
anomalies such as traffic jams, accidents, road closures, etc. [8, 16,
30, 34, 46, 52]. If a sensor sends an update indicating the opening
of a route, followed by another update for its closure, receiving
1This can be achieved via well-known distributed systems techniques, e.g., [25].

Figure 1: Sample dynamic graph with out-of-order updates.

these ooo may lead to misrepresent the current traffic situation.
(𝑖𝑖) Nodes move, e.g., Unmanned Aerial Vehicle (UAVs); edges de-
note communication links between them [43]. As UAVs move, these
links appear and disappear rapidly. This dynamic behavior is crucial
for security surveillance and monitoring, agricultural field inspec-
tion, [5, 21, 39, 50]. If an edge denoting the connection between
two UAVs is created then removed, and the updates are received
ooo, again path planning may be impacted.

Figure 1 illustrates dynamic graphs with ooo update propaga-
tion on a graph (at the top) where for each edge, the database
receives an insertion, and for most, it also receives a deletion. On
each edge, we show the one or two possible operations, insertions
(+) and/or deletions (-) in the order of their arrival at the database, to-
gether with their stream time 𝑆𝑇 . For instance, for the edge between
A and B, +1, -2 states that the insertion with 𝑆𝑇=1 arrives before the
deletion with 𝑆𝑇=2. On the contrary, for the edge between B and C,
the deletion emitted at 6 is received before the insertion emitted at
5. In existing dynamic graph systems, e.g., [11, 14, 23, 28, 38, 53],
unaware of possible ooo updates, updates are processed in the or-
der in which they are received on the database site; these systems
assume that no deletion arrives in the database before its associ-
ated insertion. Such a deletion is ignored; the (delayed) edge
insertion is applied, leaving the edge in the system. Instead, the
deletion should be recorded even before the matching insertion is
received; when the insertion arrives, the respective edge should be
understood as having been inserted then deleted. In our example,
after the updates arriving as shown at the top of Figure 1, the graph
stored by a system that does not handle ooo insertions is the one
depicted at the bottom left. However, the correct final graph (at
the bottom right) accurately depicts the sequence of events based
on the order of their generation; the two differ in the edges shown
in red at the top, and which were transmitted ooo.

Dynamic graph databases with ooo updates raise two challenges:
maintaining consistent snapshot views of the dynamic graph, to be
able to answer analytical queries over it; and, balancing high trans-
actional write throughput and accurate analytical scans queries.

Existing solutions for these challenges can be grouped in five cat-
egories: (𝑖) Buffer-based approaches [15, 22, 33, 40, 48] temporarily

A. Anadiotis, G. Khan, I. Manolescu

store updates in a buffer, and sort them before insertion in the data-
base; query accuracy cannot be guaranteed on updates at the buffer
boundaries. Buffering also increases latency, which conflicts with
real-time analytics. (𝑖𝑖) In punctuation-based methods [2, 31, 32] a
special markers (or “punctuation”) in a stream indicates that no ooo
update follows. This also incurs delays as the system waits for the
marker. (𝑖𝑖𝑖) Speculation-based approaches [6, 7, 41] optimistically
assume all updates are in order, and processes queries and analytics
on the resulting graph. However, when ooo updates are detected,
rollbacks are needed. This invalidates previous query results, and
complicates processing. (𝑖𝑣) Approximation-based systems [1, 9, 49]
provide bounded-error estimates of numerical queries. Instead, we
focus on precise graph operations, e.g., shortest paths, which need
an accurate snapshot. (𝑣) A naïve approach for handling ooo updates
in dynamic graphs would keep all edges in a stream-time ordered list.
However, this conflicts with many graph operations’ data access
patterns. For instance, graph traversals need random vertex access
by their ID, then sequential scan over node neighborhoods; this
incurs re-sorting nodes. Also, maintaining stream time order after
ooo updates would significantly impact the throughput.

To address the above challenges, we introduce HAL, a novel
in-memory dynamic graph store with multi-version concurrency
control protocol (MVCC).

We make the following contributions:
• HAL is based on a novel data structure called Stream-time Sorted
Adjacency List (STAL, in short), in which we efficiently store
in-order and ooo updates, while also providing fast data access
for graph analytics.

• We propose a novel data structure which we use to identify
the most likely insertion-deletion operation pairs over the same
edge, and integrate it fully within our store, even after garbage
collection.

• Our experiments show that HAL strikes a good balance be-
tween high transactional write throughput and efficient ana-
lytical queries. Compared to prior systems (which do not handle
ooo updates), HAL’s throughput is up to 73× higher, while its
advantage on analytics goes up to 357×.
Below, we outline related work, then clarify our assumptions in

Section 3, before describing our proposed in-memory graph store,
named HAL (Section 4), together with its associated algorithms
(Section 5 to Section 8). We present an experimental evaluation
showing that our system’s specific optimizations allow it to cut
a good compromise between memory and speed and outperform
comparable systems in Section 9, before concluding.

2 RELATEDWORK
Dynamic graph database systems [11, 14, 23, 28, 53] that enable
efficient edge scans for analytics, and facilitate single-edge in-
sertions, can be seen as two groups: those that provide transac-
tional guarantees, such as LiveGraph [53], Teseo [28], Sortled-
ton [14], Spruce [47], and those that do not, such as GraphOne [23],
Stinger [11] and Llama [38].

Our work belongs to the former group, in which we further
identify two main designs. LiveGraph stores graph edge entries
(insertions and deletions) in adjacency lists, one for each source ver-
tex, stored in the order in which they are received; it supports random

System Edge insertion Edge deletion Edge look-up
Llama, Stinger 𝑂 (|𝐸 |) 𝑂 (|𝐸 |) 𝑂 (|𝐸 |)
GraphOne 𝑂 (1) 𝑂 (|𝐸 |) 𝑂 (|𝐸 |)
LiveGraph 𝑂 (1) 𝑂 (|𝐸 |) 𝑂 (1)
Teseo, Sortledton, HAL out-of-order 𝑂 (𝑙𝑜𝑔(|𝐸 |)) 𝑂 (𝑙𝑜𝑔(|𝐸 |)) 𝑂 (𝑙𝑜𝑔(|𝐸 |))
Spruce 𝑂 (|𝐸 |) 𝑂 (𝑙𝑜𝑔(|𝐸 |)) 𝑂 (𝑙𝑜𝑔(|𝐸 |))
HAL in-order 𝑂 (1) 𝑂 (1) 𝑂 (1)

Table 1: Complexity comparison across systems

vertex access. The edges in each adjacency list are stored contigu-
ously, thus reading them does not cause random accesses. For each
edge update, LiveGraph stores the transaction timestamp and also
possibly the invalidation timestamp. In contrast, Sortledton and
Teseo store edge updates in fixed-sized blocks; Teseo stores the
blocks in a B+ tree, and Sortledton in a skiplist. Within each block,
and across the B+ tree, respectively, skip list for each source vertex,
edge updates are sorted by destination IDs. Versions are maintained
using the Hyper [42] protocol: both systems store the latest version
of each edge in a sequential block, while older versions are stored in
overflow linked lists; scanning these leads to more random accesses,
thus cache misses. Spruce maintains two blocks per source vertex:
a buffer block and sorted block. The buffer block contains a fixed
number of unsorted edges (64 edges); when it fills, all the edges
it stored are merged into a single block sorted by destination IDs.
Hence, fewer cache misses occur when reading the sorted adjacency
list block for analytics. However, frequent merges needed to main-
tain one adjacency list per source vertex is costly. The Sortledton,
Teseo, and Spruce stores do not preserve the update arrival order;
extending them to support out-of-order updates would require a
complete redesign.

In non-transactional stores, GraphOne inserts edges in a write
store, which is a circular buffer; when full, edge updates are sent to
a separate read store, where they are sorted by vertex ID and stored
together with multiple snapshots of the graph. Stinger uses an
adjacency list design; edges are added to small blocks in the order
of their arrival. Single writes and reads are thread-safe, but graph
scans are not, if concurrent with updates [11].

Llama batches updates into a write store and periodically moves
them to the read store, a multi-version compact CSR, supporting
sequential access to vertices and their neighborhood [44]. Each
version of CSR calls it a snapshot; the authors [38] suggest creating
one every 10s. Table 1 shows the time complexity of the main oper-
ations (edge insertion, edge deletion, and edge look-up) on related
systems. In practice, edge insertion requires two steps: (𝑖) check if
the edge exists already, (𝑖𝑖) insert it if not already there.

Sortledton and Teseo perform (𝑖 ,𝑖𝑖) in 𝑂 (𝑙𝑜𝑔(|𝐸 |)). LiveGraph
simply appends the edges in the neighborhood list; it uses Bloom
filters to check the edge’s existence, which takes 𝑂 (1). However,
if false positives occur, the verification raises the cost to 𝑂 (|𝐸 |).
Spruce takes 𝑂 (𝑙𝑜𝑔(|𝐸 |)) for existence checks and deletions; how-
ever, for insertion, it takes 𝑂 (|𝐸 |) due to the merging cost from
buffer block to sorted block. GraphOne inserts an edge in 𝑂 (1)
without checking for existence; deletion and lookup incur a lin-
ear search. Stinger and Llama incur 𝑂 (|𝐸 |) for all three operations
because of searches in the adjacency list.

Dynamic Graph Databases with Out-of-order Updates (extended version)

Figure 2: Sample dynamic graph.

Our system, HAL, performs in-order insertions in 𝑂 (1), better
than the state-of-the-art; ooo insertions take 𝑂 (𝑙𝑜𝑔 |𝐸 |). For dele-
tions and edge search: on in-order updates, HAL has better com-
plexity than the existing systems; on ooo updates, its complexity
matches that of Sortledton and Teseo, and avoids LiveGraph’s worst
case (false positives). Existing systems do not support ooo updates,
which HAL is built to support, all the while improving performance
on the operations also supported by other stores (Section 9).

3 PRELIMINARIES
Data modelWe consider a directed graph 𝐺 , which at any point
in time consists of a set of nodes 𝑁 and edges 𝐸. Each edge has a
source and destination vertex from 𝑁 . Each edge, and each node,
may have attributes (or properties). Similar to other systems [14, 28,
53], we store the graph topology separately from node and/or
edge properties, and, in this work, we focus on efficiently handling
updates and queries on the graph topology. For all such systems,
data access paths based on node/edge properties can be added and
optimized in a complementary way.
Out-of-order update An update can be judged in-order or out-of
order (ooo) only at the database site. Specifically, update 𝑢 with
stream time 𝑆𝑇 , received at the database at time𝑊𝑇 , is ooo if (𝑖) 𝑢
is a deletion and no insertion of the same edge has been received,
and/or (𝑖𝑖) the database has already received at a time𝑊 ′

𝑇
<𝑊𝑇 an

update with stream time 𝑆 ′
𝑇
>𝑆𝑇 .

Best-guess associated update At the database, insertions and
deletions emitted from multiple streams are possibly received ooo.
To build our current view of the graph, at any time, our system
tries to guesses the associations between insertions and deletions
of the same edge. Specifically, leveraging update stream times, to
each insertion (respectively, deletion), we either:

• associate the most likely deletion (respectively, insertion); or
• consider that none of the deletions (respectively, insertions)

received so far is associated to this insertion (respectively,
deletion). In this case, the “missing” operation is either de-
layed (we will receive it later), or may never be emitted,
e.g., some insertions are never followed by deletions.

When, for a given edge, more than one ooo update is received, our
best-guess associations between insertions and deletions may change.
We say then, that an ooo update may steal its associated update,
from another. Sections 5 and 6 detail this.

4 STORAGE SYSTEM OVERVIEW
In this section, we present a high-level overview of our novel His-
tory Adjacency List (HAL, in short) data store. We opted for
an adjacency list design for our graph storage because it offers a
good balance between data access locality, which is important for
queries, and high ingestion throughput, which is important for high
transactional throughput [14].

The HAL design layout resembles the one of LiveGraph [53],
which preserves the arrival order of updates (as detailed in Sec. 2).
The HAL layout innovates on two areas:

Five layout optimizations: (𝑖) the arrival order of the adja-
cency list is maintained based on the stream time; (𝑖𝑖) multiple
fixed-size adjacency list blocks are proposed rather than a single
adjacency list, thereby reducing costly resize requests; (𝑖𝑖𝑖) edge
entry metadata is stored separately from the destination IDs; this
allows faster access to destination ID scans, which are predominant
in analytical queries, thus improving analytical scan performance
(details of (𝑖),(𝑖𝑖),(𝑖𝑖𝑖)) are in Sec. 4.2); (𝑖𝑣) we propose a novel strat-
egy inspired by cracking [18] to minimize the data access needed to
perform a per-edge deletion check during analytical scans concur-
rent with updates (we detail this in Sec. 7); (𝑣) garbage collection
is performed using writer threads instead of background threads.
This approach reduces contention between the background threads
and reader/writer threads, leading to better memory management
(as we detail in Sec. 6.1).

Most likely insertion and deletion association strategy: We
use a secondary index (hash table) that efficiently and accurately
associates the most likely insertion and deletion entries in the
adjacency list, leveraging their stream time. It can dynamically
adjust these associations if multiple ooo updates are received for
the same edge, thereby ensuring correct ordering of the adjacency
list by stream time. We detail this in Sec. 4.1.

Throughout our discussion, an edge of the form 𝑠→𝑑 connects
a source node with a destination node, called simply source and
destination below. An update (or entry) is an insertion or deletion
of an edge. To avoid confusions, we call stream an individual source
of graph updates; stream time refers to the time local to that stream.

HAL stores and processes updates in an adjacency list, sorted by
the source of the inserted/deleted edges; the list is the entry point
for any read and write. HAL is append-only: insertions and deletions
only add data to the store. To keep its size under control, however,
HAL content can be garbage collected (as we will discuss in Sec. 6.1).
HAL aims to maximize efficiency for in-order updates, which we
expect to be more frequent than ooo ones; if and when needed,
dedicated fields are created within HAL to store and exploit ooo
updates efficiently. Finally, HAL aims to support graph analytics
concurrently with updates from multiple streams.

HAL has two main structures: a vertex array (VA, in short), and
a stream time-sorted adjacency list (STAL, in short), each holding
an entry for each graph vertex, denoted, respectively, VA[𝑠] and
STAL𝑠 . Figure 2 illustrates successive states, labeled a) to h), of a
sample graph. Each edge depicts an update; if it is crossed, it is a
deletion, otherwise, an insertion. On each edge we show its stream
time, and an edge property, e.g., its weight 𝑤 . On ooo edges, the
stream time is shown in red; the cross is also red for ooo deletions.
We describe the VA, respectively, STAL in Sec. 4.1 and 4.2.

4.1 The vertex array (VA)
Each vertex array (VA) entry VA[𝑠] consists of several fields. Fig-
ure 3 illustrates it for the source vertex 𝑠 having the ID 0. In the
figure, a dash (−) designates an empty field (no known value),
whereas “. . .” values or fields whose details we omit, for simplicity.

A. Anadiotis, G. Khan, I. Manolescu

Figure 3: Sample vertex entry VA[0].

Finally, shaded areas denote metadata (of constant size), which we
will introduce as needed, to explain our algorithms.

(1) A reference to the STAL entry corresponding to this vertex;
(2) The latest stream time (LST, in short) of an in-order up-

date received so far for the source vertex 𝑠 . For instance, in
Figure 2, the latest in-order insertion with source 0 is 0→9
at 10:12 in h); hence, in Figure 3, VA[0] has 10:12 as LST.

(3) degree: the number of edges inserted but not deleted, cur-
rently in STAL𝑠 ;

(4) invalBlocks references STALBs (see below) with edges
whose source is 𝑠 , and which should be garbage-collected
(cf. Sec. 6.1).

(5) Ahash table (HT𝑠 , in short) whose keys are the destination
vertices 𝑑 for which we have received some 𝑠→𝑑 updates,
and whose values we detail below;

Figure 4 illustrates the evolution of HT0. Each yellow area en-
closes the data structures created as a consequence of the respective
entry in Figure 2; dashed arrows trace the evolutions data struc-
tures go through with each step, while solid arrows show references
among data structures. For a given destination 𝑑 , HT𝑠 stores, as the
graph evolves, one among the following three data structures.
Update position and indicator (UPI, in short): The UPI of 𝑠→𝑑 ,

denoted UPI[𝑠, 𝑑] encodes the position of the latest (in-order
or ooo) 𝑠→𝑑 insertion in STAL𝑠 . In Figure 2, the first inser-
tion for the edge 0→2, at c), is in-order, with stream time
10:05. Thus, we create an in-order UPI for destination 2 in
HT0 with this stream time, as shown in Figure 4. The dark
grey UPI fields in this figure denote the information encod-
ing the position of the insertion within STAL𝑠 ; this encoding
is not immediate, because the block holding an insertion
may grow or move, as the graph changes, yet the UPI al-
ways provides constant-time access to the insertion. UPIs
and their decoding are detailed in Sec. 8.

Staging area (AR, in short): The AR for an edge 𝑠→𝑑 stores inser-
tions (deletions) of this edge, waiting for their corresponding
deletions (insertions). For instance, in Figure 4, when we
receive a deletion of 0→1 at a), HT0 does not hold a cor-
responding insertion; we create the staging area for 0→1,
with an update deletion block UD𝑎 , storing the stream time
10:02 of this deletion. Then, we store the AR at position 1 in
HT0. When the deletion f) of 0→9 arrives at 10:08, we find
the corresponding insertion in HT0 at index 3, and replace

Figure 4: HT0 through insertions and deletions.

the ooo UPI of 0→9 with a corresponding AR. Details of
AR processing are delegated to Sec. 5 and 6.

Last garbage collected deletion (LGCD, in short) for vertex 𝑠 is
the stream time of the most recent deletion of 𝑠→𝑑 that has
been garbage-collected (Sec. 6.1).

HT𝑠 (𝑑) through the lifecycle of the edge The roles of these differ-
ent data structures can be understood by examining the lifecycle of
an edge 𝑠→𝑑 in our system.
• Only when the first update ever to be received by the database for

𝑠→𝑑 is an insertion, we create a UPI, as we did above for the
insertion 0→2 in Figure 2 c).

• An AR exists as long as we have one or more insertion(s) (respec-
tively, deletion(s)) for which we did not yet receive corresponding
deletion(s) (respectively, insertion(s)). The operation we received
waits for the one not yet received, in the AR. This concerns: in-
or ooo insertions, for which we have not received a deletion; in
the future, we may receive such a deletion, or not; and, every
deletion for which the current STAL does not contain a possible
associated insertion. This happens when all the insertions prior
to our deletion, have already been marked as deleted (by other
deletion entries).

• An LGCD is created when updates 𝑠→𝑑 have been garbage col-
lected (Sec. 6.1).
VA ensures constant-time access to edges by their source vertex

𝑠 , for one or multiple parallel threads.

4.2 The stream-time ordered adjacency list
(STAL)

For each source vertex 𝑠 , STAL𝑠 is an append-only list of blocks, stor-
ing updates going from 𝑠 to various destination vertices. STAL𝑠 has
somemetadata (shaded area in Figure 3), notably: a hasDeletes
flag which is true if deletions have been received for source ver-
tex 𝑠 , and delNo the number of slots freed by successive dele-
tions. STAL𝑠 also stores the stream-time ordered adjacency list
(STAL, in short), which references one or more STAL blocks. Each
STAL block (STALB) comprises:

(1) metadata (shaded in Figure 3), notably the boolean flags has-
Deletes and hasOOO, indicating whether the STALB con-
tains, respectively, deletions, or ooo updates, and the number
of deleted entries in the STALB;

Dynamic Graph Databases with Out-of-order Updates (extended version)

(2) destNodes holds 𝑠→𝑑 entries for the given 𝑠 and various des-
tinations 𝑑 , sorted in descending stream time order.

(3) IEMs stores references to in-order edge entry metadata
(IEM in short, see below) entries, one for each edge update in
destNodes;

(4) propRef references a vector of the same size as destNodes and
IEMs, storing, for each of the above edge updates, the properties
that the edge may have, e.g., edge weight, etc. Note that the
edge properties vectors are not part of STAL𝑠 , and actually not
even part of our HAL structure; we shown them in the figure to
provide the reader with a global picture.
For instance, in Figure 2, we receive insertions of edges 0→1,

0→2, and 0→9 in steps b), c), d), g), h); in Figure 3, the destination
ids of these updates are stored in destNodes, and the associated
metadata in IEMs. For instance, Figure 3 illustrates the STALB
labeled S0, over 128 bytes: 8 bytes for metadata (at the left in gray
color), 8 bytes for edge properties (at the right), 56 bytes (7 entries)
for destNodes and 56 bytes (7 entries) for IEMs.

Importantly, STALBs within STAL𝑠 are sorted by stream
time in descending order: let 𝑆0, 𝑆1 be two STALBs such that 𝑆0
appears in STAL𝑠 before 𝑆1. Then, any entry in 𝑆0 is more recent
(has a higher stream time) than any entry in 𝑆1.

Each IEM (in-order entry metadata) contains:
(1) The write (transaction) time (WT), that is, the time when

the entry is received at the database site;
(2) The stream time (ST) when the entry is emitted by its stream;
(3) The invalidation time metadata (ITM) of an insertion entry

stores information about the edge deletion most likely associated
to this insertion (recall Sec. 3), if one exists:
• The stream time 𝑆𝑇 of the deletion entry;
• The transaction time𝑊𝑇 of the deletion entry;

(4) The ooo updates (OOO) field, initially empty, references a data
structure storing ooo insertions with the same source vertex, and
the same or different destination as the one for of the IEM, whose
stream time is less than the IEM’s ST, but higher than the STs
of the previous IEM (if any). The data structure will be detailed
in Sec. 5.1. We store ooo insertions in the same ST order as
the in-order ones, but not at the same level. The reason is that
in-order insertions are simply appended in the block holding
the most recent insertions (thus, in constant time). To store
an ooo insertion’s destination and metadata in STAL𝑠 in the
order dictated by its ST, some previously received in-order
information may need being recopied, a cost we avoid.

For each arriving in-order insertion, we create an IEM; for each
ooo insertion, we create an ooo entrymetadata (OEM), resembling
an IEM, but without the OOO field. For each deletion, we create
an ITM, and reference it from the IEM or OEM of the insertion so
far received, that is most likely associated to this deletion. Recall
from Figure 2, the insertions and deletions of edges 0→1, 0→2, and
0→9; Figure 3 shows the corresponding data structures created in
STAL0. The ITM with ST 10:10 referenced by the IEM with ST 10:09
shows that we pair the deletion of 0→1 at 10:10 in Figure 2 e) with
the insertion at 10:09 in g). The ITM with ST 10:08 referenced by
the OEM with ST 10:03 means that for the deletion of 0→9 at 10:08
in f), the most likely insertion is at 10:03 in Figure 2 d).

Remark. In STAL, a deletion is only stored as an invalidation (ITM)
of its most likely insertion. If, upon receiving the deletion, we cannot
find such an insertion, the deletion enters the staging area AR, but
is not visible in STAL.

The STAL structure ensures the update entries for a given source
vertex 𝑠 are stored in the descending order of their stream time. As
we will discuss, this ensures 𝑂 (1) complexity for the operations
we expect to be most common: in-order insertions and deletions.
Data structures within STAL, in particular the AR, IEMs, OEMs, and
ITMs, enable us to provide efficient graph querying with snapshot
isolation guarantees even in the presence of ooo updates.

In Sec. 5 and 6, we provide details of the HAL’s internal opera-
tions (insertion and deletion), while Sec. 7 discusses the concurrent
execution of analytical queries and updates.

5 INSERTION
A new edge (insertion) entry 𝑠→𝑑 , called in this section the new
entry, arrives at the database site at transaction time 𝑊𝑇 , having

the originating stream time 𝑆𝑇 . We process it as follows:
(1) Locate in the VA the position corresponding to 𝑠 , e.g., if the

0 → 1 arrives at 10:00 am (𝑊𝑇), this is the VA[0].
(2) Lock this VA entry to prevent conflicts between several write-

transactions having the source vertex 𝑠 .
(3) Compare the new entry’s 𝑆𝑇 to the LST value in VA[𝑠].

(a) If LST<𝑆𝑇 , then 𝑠→𝑑 is an in-order update. Section 5.1
explains how we handle in-order insertions.

(b) Otherwise, it is an out-of-order update; Section 5.2 de-
scribes how to handle these.

(4) Unlock VA[𝑠].
At step (3) above, we consider the new entry in-order or out-of-

order by comparing its stream time 𝑆𝑇 "only" with the last insertion
time in VA[𝑠], while our definition of ooo updates (Section 3), more
broad, would require comparing 𝑆𝑇 with the highest stream time
of any operation (insertion or deletion) received so far at the data-
base, regardless of the vertices involved. The condition we test is
sufficient to ensure that at any point, for each source vertex, we can
return all its outgoing edges, correctly reflecting all updates received
so far, in- or out-of-order. Indeed, given that our store is organized
by the source vertex, our test suffices to place the new insertion
at the right place (dictated by 𝑆𝑇) among all insertions with the
same source. Further, any deletions of edges with source vertex 𝑠
also accumulate in STAL𝑠 and thus will meet our new entry there,
ensuring a correct view on our store at any point.

5.1 In-order insertion
Since STAL𝑠 stores most recent entries first, we add the new entry
to its first STALB. If this STALB is full, its size doubles, up to reach-
ing a system-wide upper bound maxBlockSize. When a STALB
has reached this size, the STAL grows by doubling the number
of blocks, from the initial block to 2, 4 etc. We detail the process
since it is important for efficiently finding insertions in the STAL
(Sec. 8.) In each doubled-up STAL𝑠 , the full STALBs make up the
second half of the list. Thus, if we denote full STALBs by gray-filled
boxes and blocks with free space by white-filled ones, STAL𝑠→ 𝐵0

becomes STAL𝑠→ 𝐵1 → 𝐵0 and then 𝐵3 → 𝐵2 → 𝐵1 → 𝐵0 ;

A. Anadiotis, G. Khan, I. Manolescu

here, we store new entries in 𝐵2, the new STALB closest (in ST
order) to 𝐵1; STAL𝑠 references the block holding the most re-
cent insertion, thus STAL𝑠→ 𝐵2 . When 𝐵2 fills, this becomes

STAL𝑠→ 𝐵3 → 𝐵2 → 𝐵1 → 𝐵0 , etc.

We denote by STALB𝑒 the STALB where the new entry is

stored, by 𝑑𝑒 the new entry’s position within STALB𝑒 ’s entries,

and by IEM𝑒 the in-order edge metadata (IEM) created to reflect
this insertion (recall Figure 3), storing 𝑆𝑇 and𝑊𝑇 .

Next, to ensure constant-time access to the newly inserted entry,
we create the Update and Position Indicator (UPI) for it, call it
UPI𝑒 , and insert it into HT𝑠 . The UPI stores information based on
which 𝑒 can be located in STAL𝑠 in the future, even if STALB𝑒 grows,
is resized, or moved away, potentially many times, from the head of
STAL𝑠 . Specifically, UPI𝑒 stores: the position of the new entry in
STALB𝑒 ; the position of STALB𝑒 in STAL𝑠 ; and the sizes of STALB𝑒 ,
and STAL𝑠 , when the new entry was inserted.

When processing our insertion, four possibilities arise, depend-
ing on the previously received updates for 𝑠→𝑑 :
• HT𝑠 contains no entry for 𝑠→𝑑 (the new entry is the first arrived

for this edge): the above steps suffice.
• HT𝑠 contains an UPI for an older insertion 𝑠→𝑑 , call it UPI𝑜 .

Between the insertions described by UPI𝑜 and UPI𝑒 , a deletion,
not received yet, may or may not have been sent. To prepare the
possible future processing of that ooo deletion, and to enable
correct query answering before and after receiving it, UPI𝑜 must
be marked as a previous version of UPI𝑒 ; Sec. 5.1.1 details this.

• HT𝑠 contains a staging area (AR) (recall Sec. 4) for 𝑠→𝑑 ; inserting
the new entry is discussed in Sec. 5.1.2.

• HT𝑠 contains a latest garbage collected deletion (LGCD); we de-
scribe the associated processing in Sec. 5.1.3.

5.1.1 In-order insertion over existing UPI. Inserting over a UPI
means an out-of-order deletion may arrive. We need to update
UPI𝑜 to indicate it is the previous version of UPI𝑒 , and to mark its
entry as deleted.
(1) From UPI𝑜 , we locate the previous 𝑠→𝑑 insertion entry, call it

𝑒𝑜 : block STALB𝑜 , holding 𝑒𝑜 at position 𝑝 .
(2) At position 𝑝 in STALB𝑜 ’s metadata array IEMs, we find the

entry metadata, call it EM𝑜 , associated to 𝑒𝑜 : EM𝑜 is an IEM if
𝑒𝑜 was in-order, and an OEM otherwise.

(3) To record 𝑒𝑜 as deleted (by the update not yet received), we
create an Invalidation Time Metadata (ITM) initialized with 𝑆𝑇
and𝑊𝑇 , and the ITM to the EM𝑜 metadata of UPI𝑜 .

(4) In STALB𝑜 ’s metadata, we set hasDeletes to true.
Receiving an insertion when the previous operation was also an

insertion, means that both of them need to wait for their possible
deletions, in a staging area. In details:
• We create a new AR, call it AR𝑒 with: the destination id 𝑑 , the

latest deletion time (lDel) set to 0 (such a deletion has not arrived
yet), oldVer set to 0 (no garbage collection has claimed a version
of 𝑠→𝑑 so far).

• We create two update insertion blocks UI𝑜 and UI𝑒 , for the pre-
vious and new entry, with the ST (stream time) from the corre-
sponding metadata: EM𝑜 and IEM𝑒 . We chain the blocks in AR𝑜
in increasing ST order: UI𝑜

next−−−→UI𝑒 .
• AR𝑒 replaces UPI𝑜 as the HT𝑠 value for 𝑑 .

Note that UI𝑜 , UI𝑒 reference UPI𝑜 and UPI𝑒 , which thus remain
accessible. When a deletion arrives, first, we pair it with an insertion
from AR, and then, use the UPI to locate the insertion entry in STAL
to mark its deletion (Sec. 6.2).

5.1.2 In-order insertion over existing AR. Let AR𝑜 be the AR for
𝑠→𝑑 , stored in STAL𝑠 when the new entry arrives. We first check
whether a deletion entry, emitted after 𝑒 , has already been received
at the database. For that, we compare the new entry stream time
𝑆𝑇 with AR𝑜 .lDel, the stream time of the last deleted 𝑠→𝑑 update
(recall Sec. 4). For brevity, we just denote it lDel below.
(1) If 𝑆𝑇 <lDel, a deletion of 𝑠→𝑑 has already been received, fol-

lowing (in stream time order) the new (insertion) entry we are
processing now.

(2) If 𝑆𝑇 ≥lDel, then STAL𝑠 has no record of a deletion following
𝑒 . However, deletion which we cannot pair with insertions when
they arrive, are only recorded in the AR, and not in STAL𝑠 (as
will be detailed in Sec. 6). Thus, the staging area may contain
an update deletion block UD𝑜 whose stream time is above 𝑆𝑇 .
(a) If such an UD𝑜 does not exist, the new entry should be

added to the store.
(b) If UD𝑜 exists, it deletes the new entry 𝑒 .

In cases (1) and (2b), wemark the new entry 𝑒 as deleted in
STAL𝑠 , much like in Sec. 5.1.1, except that the AR is already created;
we also increase lDel to 𝑆𝑇 , reflecting the most recent deletion.
Further, in case (2b), we remove UD𝑜 from the AR.

In case (2a), we create a new update insertion block UI𝑒 , and
insert it in the AR at the right place, based on its 𝑆𝑇 . It may happen
that UI𝑒 is preceded, in the AR, by a prior insertion materialized
by a UIprev block. In that case, the UPI corresponding to UIprev is
marked in STAL𝑠 as a previous version of UPI𝑒 , just like we did for
UPI𝑜 in Sec. 5.1.1.

5.1.3 In-order insertion after GC. Garbage collection (GC) empties
the staging area, replacing it with an LGCD. Thus, the first entry
after GC needs to restart a staging area. We create a new update
insertion block UI𝑒 with 𝑆𝑇 and UPI𝑒 ; we create the staging area
AR𝑒 whose oldVer is copied from the LGCD, and insert UI𝑒 as the
next block after AR𝑒 . Finally, AR𝑒 replaces the LGCD in HT𝑠 for
destination 𝑑 . The complexity of handling an in-order insertion
is 𝑂 (1), since each step takes only constant time.

5.2 Out-of-order insertion
To propagate the out-of-order insertion 𝑒 in STAL𝑠 , we create an
out-of-order edge entry metadata (OEM) block OEM𝑒 with 𝑆𝑇 as
source time,𝑊𝑇 as transaction time. Then, based on 𝑆𝑇 , we search
in STAL𝑠 for the out-of-order STAL block, call it OSTALB𝑒 , where
the new entry 𝑒 fits; our search will first visit one or more STAL
blocks (recall Figure 3). (𝑖) If OSTALB𝑒 does not exist, we create it
with size 1, and connect it to the proper STALB, whose flag hasOOO
is set to true. (𝑖𝑖) If OSTALB𝑒 exists, if it is full, we double it up

Dynamic Graph Databases with Out-of-order Updates (extended version)

STAL AR𝑜 (before) AR𝑜 (after)
1 𝑖1 UD2 No entry

2 𝑖1 𝑖3 𝑖5 UI1
next−−−→UI5 UI1

next−−−→UI3
next−−−→UI5

3 𝑖1 𝑑2 𝑖3 𝑖5 UI5 UI3
next−−−→UI5

4 𝑖1 𝑖3 𝑖5 UI3
next−−−→UI5 UI1

next−−−→UI3
next−−−→UI5

5 𝑖1 𝑖3 𝑑4 UD6 UI1
next−−−→UD6

6 𝑖1 𝑖3 UD2
next−−−→UI3 UI3

7 𝑖1 𝑖3 𝑑4 UD6 UI1
next−−−→UD6

8 𝑖1 𝑖3 𝑑4 No entry UI1
9 𝑖1 𝑑2 𝑖3 𝑖5 𝑑6 No entry UI3
10 𝑖1 𝑖3 𝑖5 𝑑6 UI1 UI1

next−−−→UI3
Table 2: Possible cases of OOO insertion over existing AR.

like we did for STAL blocks, except that upon reaching a maximum
OSTALB size, OSTALB𝑒 splits in two smaller blocks, which become
the two initial leaf nodes in an Adaptive Radix Tree [27] ART ,
ordered according to update stream time. From now on, out-of-
order updates in STAL𝑠 will be stored in the ART. We add 𝑑 in
OSTALB𝑒 ’s destNodes, and OEM𝑒 in its OEMs.

Next, we reflect the insertion inHT𝑠 , through a new out-of-order
UPI, denoted UPI𝑒 , initialized with 𝑆𝑇 and 𝑑 . As in Section 5.1,
there are four possibilities, depending on what HT𝑠 stores for 𝑑
when our insertion arrives:
• No entry (𝑒 is the first 𝑠→𝑑 insertion ever arrived): we add UPI𝑒

to the hash table HT𝑠 and the processing of HT𝑠 is finished.
• An UPI for a previous 𝑠→𝑑 insertion, call it UPI𝑜 . An ooo dele-

tion, not yet received, may or may not have been sent between
the insertions described by UPI𝑜 and UPI𝑒 . We discuss this case
in Section 5.2.1.

• An AR for 𝑠→𝑑 ; this means some insertions and/or deletions
of 𝑠→𝑑 are waiting for their matching deletions (respectively,
insertions). We detail our algorithm in Section 5.2.2.

• An LGDV (latest garbage-collected destination version); we de-
scribe the associated processing in Section 5.2.3.

5.2.1 Out-of-order insertion over existing UPI. If 𝑆𝑇 is above UPI𝑜 ’s
stream time (𝑒 is emitted after the previously received insertion), we
mark UPI𝑜 as the previous version of UPI𝑒 in STAL𝑠 , as we did for
UPI𝑜 in Section 5.1. Otherwise, we mark UPI𝑒 as a previous version
of UPI𝑜 . Then, we create a new staging area AR𝑒 , where UPI𝑜 and
UPI𝑒 wait for their possible, associated deletions. We create two
update insertion blocks UI𝑜 , UI𝑒 and, depending on their stream
times, we chain them as UI𝑜

next−−−→UI𝑒 or UI𝑒
next−−−→UI𝑜 in AR𝑒 . Then,

AR𝑒 replaces UPI𝑒 as the HT𝑠 value for 𝑑 .

5.2.2 Out-of-order insertion over existing AR. Let AR𝑜 be the AR
for 𝑠→𝑑 . Our new, ooo entry 𝑒 may be older than the most recent
garbage-collected 𝑠→𝑑 entry; we test this by comparing 𝑆𝑇 with
AR𝑜 .oldVer. If 𝑆𝑇 is smaller, 𝑒 had already been assumed (even before
it was received), and garbage-collected together with a subsequent
deletion entry. In this case, we ignore 𝑒 .

Our next steps depend on the entries (deletions and/or insertions
of 𝑠→𝑑) in STAL𝑠 and AR𝑜 . We illustrate our analysis with simple
examples in Table 2, showing, for each case, the updates in STAL

for 𝑠→𝑑 , as well as AR𝑜 before and after the insertion. We show
each STAL insertion as 𝑖 and deletion as 𝑑 , with their stream time
as an index, e.g., 𝑖3 is an insertion with 𝑆𝑇=3. Our new (ooo) entry
appears in red. Each AR block is also indexed with its stream time.
We use small, consecutive times for illustration only.

We check whether a deletion entry, that would be most likely
associated to 𝑒 , has already been received.

If 𝑆𝑇 ≥AR𝑜 .lDel, the stream time of the last 𝑠→𝑑 deletion, such
a deletion is not in STAL𝑠 . However, it may be in AR𝑜 (recall the
Remark at the end of Section 4.2), under the form of a deletion
update block, call it UD𝑜 , with an ST above the new entry’s 𝑆𝑇 .
• If UD𝑜 exists, we mark 𝑒 in STAL as deleted by UD𝑜 (through an

ITM referenced from OEM𝑒). We remove UD𝑜 from AR𝑜 (case 1
Table 2).

• Otherwise, it is the new insertion who joins the staging area
AR𝑜 : we create a new update insertion block UI𝑒 , and insert
it in AR𝑜 according to its stream time 𝑆𝑇 . We look in STAL for
two insertion entries whose ST are the closest, before and after
𝑆𝑇 : call them 𝑖prev, respectively, 𝑖next.
– If 𝑖prev exists but has no deletion in STAL, we mark 𝑖prev as

the previous version of 𝑒 (case 2 in Table 2).
– If 𝑖prev exists and it has a deletion in STAL, there is noth-

ing more to do: 𝑒 does not change our current most likely
insertion-deletion pairs. This is case 3 in Table 2.

– If 𝑒next exists, we mark 𝑒 as the previous version of enext.
This is case 4 in Table 2.

If 𝑆𝑇 <AR𝑜 .lDel, the deletion for 𝑒 may be either in STAL or in AR𝑜 .
In STAL, we search for 𝑖prev and 𝑖next as above.
• If a deletion UD𝑜 waits for the new entry in AR𝑜 :

– If 𝑖prev exists, it has a deletion 𝑑prev in STAL with a stream
time above 𝑆𝑇 , we mark 𝑒 as deleted by 𝑑prev, and we mark
𝑖prev as the previous version of 𝑒 . Because 𝑑prev is now as-
sociated to 𝑒 , the previous entry 𝑖prev “has lost its most likely
deletion”, and must wait for the possible future arrival of its
deletion: we create an update insertion block UIprev with
𝑖prev’s stream time, and insert it AR𝑜 . This is illustrated in
case 5 in Table 2.

– If 𝑖next does not exist, or it exists and its stream time is above
that of UD𝑜 , this indicates the waiting deletion UD𝑜 should
be paired with 𝑒 . We remove UD𝑜 from AR𝑜 and mark 𝑒 as
deleted by UD𝑜 . This is case 6 in Table 2.

– If 𝑖next exists and its stream time is below that of UD𝑜 , the
waiting deletion UD𝑜 is closer to 𝑖next than to the new entry.
We mark 𝑒 as a previous version of the enext, and make it
wait by creating a new UI𝑒 with stream time 𝑆𝑇 , and storing
it in AR𝑜 . Case 7 in Table 2 illustrates this.

• If UD𝑜 does not exist (no deletion was waiting for 𝑒 in AR𝑜):
– If 𝑖prev exists, and it has a deletion 𝑑prev in STAL with a

stream time above 𝑆𝑇 , the new entry steals the 𝑑prev, and
we mark 𝑖prev as the previous version of 𝑒 . Now, 𝑖prev must
wait: we create UPIprev and insert it in AR𝑜 at the proper
place. This is illustrated in case 8 in Table 2.

– If 𝑖prev exists, and it has a deletion with stream time below
𝑆𝑇 , then 𝑒 must wait for its possible own (later) deletion,

A. Anadiotis, G. Khan, I. Manolescu

which may or may not have been emitted by some source:
we store a new UI𝑒 in the AR. This is case 9 in Table 2.

– If 𝑖prev exists but it has no deletion in STAL, we mark 𝑖prev
as the previous version of 𝑒 . We store a new UI𝑒 for the new
entry in the AR. Case 10 in Table 2 illustrates this.

– If 𝑖next exists, we mark the new entry as a previous version
of e𝑛𝑒𝑥𝑡 . This is also shown in case 10 in Table 2.

5.2.3 Out-of-order insertion after GC. The process here is as for
in-order insertions (Section 5.1.3): we reopen the staging area for
the new entry to wait there.
The complexity of an ooo insertion is 𝑂 (𝑙𝑜𝑔(|𝐸 |)), in case we
need to search in AR𝑜 (sorted by ST).

6 DELETION
We now consider a deletion entry 𝑒 of the edge 𝑠→𝑑 with the
stream time 𝑆𝑇 and received at transaction time𝑊𝑇 .

We lock VA[𝑠] to prevent conflicts with other updates having
the source vertex 𝑠 . Next, garbage collection (described in Sec. 6.1)
may trigger. Then, depending on what STAL𝑠 holds for 𝑑 :
No entry : Start a staging area AR𝑒 in which the deletion waits,

under the form of an update deletion block UD𝑒 with stream
time 𝑆𝑇 . Store AR𝑒 in HT𝑠 at position 𝑑 .

LGCD : Reopen the staging area AR𝑒 in which we make the new
deletion wait, as above. Copy the LGCD into AR𝑒 .oldVer,
then store AR𝑒 in HT𝑠 .

AR : If 𝑆𝑇 is smaller than AR𝑜 .oldVer, 𝑒 is in the past with respect
to insertions and deletions already garbage-collected (𝑒 had
already been assumed); there is nothing left to do.
If 𝑆𝑇 ≥AR𝑜 .lDel, we search AR𝑜 for an insertion that might
have been waiting for 𝑒 . This insertion block, call it UIprev ,
should have an ST lower than that of 𝑒 , but higher than
AR𝑜 .lDel: an insertion with an ST behind lDel is followed
first, by a deletion at lDel, and only later by 𝑒 (thus, such
an insertion cannot be paired with 𝑒).
• If UIprev exists, 𝑒 deletes its corresponding insertion.

From UIprev, we access its UPI, call it UPIprev, which may
denote an in-order or ooo insertion. We mark UPIprev as
deleted in the STAL, as shown in Sec. 6.2 if UPIprev is in
order, or as in Sec. 6.3 if it is ooo. Having paired UIprev
with a deletion, we remove it from AR𝑜 . We set AR𝑜 .lDel
to 𝑆𝑇 .

• Otherwise, we create an update deletion block UD𝑒 , with
stream time 𝑆𝑇 , and insert it in AR𝑜 .

If 𝑆𝑇 <AR𝑜 .lDel, we search STAL𝑠 for the closest insertion
entry 𝑖prev, whose stream time precedes 𝑆𝑇 .
• If 𝑖prev exists, and it has an associated deletion 𝑑prev:

– If 𝑑prev>𝑆𝑇 , the current deletion 𝑒 is closer to 𝑖prev
than its associated deletion was. Thus, 𝑒 steals 𝑖prev,
and 𝑑prev (re)joins the staging area, to wait for its
insertion. We create an update deletion block UDprev
with the stream time of 𝑑prev, insert it in AR𝑜 , and
mark the 𝑖prev as deleted by the new entry 𝑒 .

– Otherwise, 𝑒 is certainly not the deletion of 𝑖prev, given
that 𝑑prev was emitted before 𝑒 . Thus, 𝑒 needs to wait

for its insertion. We insert in AR𝑜 a new update dele-
tion block for 𝑒 , with stream time 𝑆𝑇 .

• If 𝑖prev exists, but it has no deletion, we associate 𝑒 as
the deletion of 𝑖prev: mark 𝑖prev as deleted by 𝑒 at 𝑆𝑇 , and
remove UIprev from AR𝑜 , since it has met its deletion.

• If 𝑖prev does not exist, 𝑒 needs to wait for its insertion;
we create an update deletion block with stream time 𝑆𝑇 ,
and insert it in AR𝑜 .

UPI Let UPI𝑜 be the previous UPI. To apply the deletion in STAL𝑠 ,
we follow the steps in Sec. 6.2 if UPI𝑜 is in order, respectively,
in Sec. 6.3 if it is ooo. In both cases, we then create a staging
area AR𝑒 , where 𝑒 waits for its insertion, and replace UPI𝑒
with 𝐴𝑅𝑒 in the HT𝑠 entry at position 𝑑 .

After the deletion is completed, we unlock VA[𝑠].

6.1 Garbage collection
For each block 𝐵 referenced in VA[𝑠].invalBlocks, we compare the
block’sWT to a system-wide least recent arrival time among the
currently running queries 𝐿𝑄𝑇 to prevent garbage-collecting
entries on which the query with 𝐿𝑄𝑇 may still be working. 𝐿𝑄𝑇 is
initialized to 0 when creating the store and is set to 𝑄𝑇 , the least
query time among the currently running queries in the database
whenever a query arrives.

If 𝐵.WT<𝐿𝑄𝑇 , we resize 𝐵 down to its useful half:

• Create a new block 𝐵′ (STALB or OSTALB, like 𝐵), whose
size is half that of 𝐵.

• Copy the 𝐵 entries that are not deleted into 𝐵′.
• In the staging area AR𝑠,𝑑 for 𝑠 and𝑑 , set oldVer to be highest

ST among all deletions of 𝑠→𝑑 in 𝐵.
• If AR𝑠,𝑑 is empty, and its oldVer is the stream time of the

most recent entry for 𝑠→𝑑 in the STAL,this means no entry
for 𝑠→𝑑 is still waiting for its corresponding operation,
and our store is in a stable state wrt this edge. In this case,
replace AR𝑠,𝑑 with an LGCD storing oldVer.

• Replace 𝐵 with 𝐵′ in STAL𝑠 .

6.2 Deletion of an in-order insertion
Recall from Section 5.1 that an UPI created for an in-order insertion
𝑜 stores information based on which we can locate the STAL block
𝐵 holding the insertion, and that insertion’s metadata within 𝐵, call
it IEM𝑜 . To handle the deletion of the in-order insertion:
• We create an ITM block, with the stream time 𝑆𝑇 of the deletion,

and the current𝑊𝑇 , and reference it from IEM𝑜 .
• In 𝐵’s metadata (Section 4.2), we set hasDeletes to true, and

increase delNo.
• If delNo reaches 50% of 𝐵’size, we mark 𝐵 for (future) garbage

collection, by adding a reference to it, together with the current
transaction time𝑊𝑇 , in VA[𝑠].invaBlocks.

The complexity of the above steps is 𝑂 (1).

6.3 Deletion of an ooo insertion
Based on UPI𝑜 , we find the OSTALB block 𝐵 in STAL𝑠 hosting the
ooo insertion; 𝐵 may be referenced from a STALB, as shown in

Dynamic Graph Databases with Out-of-order Updates (extended version)

Figure 3, or we may find it by traversing an ART (recall Section 5.2).
UPI𝑜 also stores the position 𝑝 of the ooo insertion within 𝐵.
• We find OEM𝑜 , the metadata for the insertion, in 𝐵.OEMs at

position 𝑝 .
• Create an ITM block ITM𝑒 with 𝑆𝑇 and𝑊𝑇 , and reference it from

OEM𝑒 , to indicate that the insertion has been deleted.
• Update 𝐵’s by setting hasDeletes to true, and increment its delNo

counter.
• If number of deleted entries in 𝐵 reaches 50% of its size, we add a

reference to𝐵, with the transaction time𝑊𝑇 , in VA[𝑠].invalBlocks,
for future garbage collection.

The complexity is 𝑂 (𝑙𝑜𝑔(|𝐸 |)), due to searching in the ART.

7 QUERIES
Dynamic graph systems support a large variety of analytics. Popular
algorithms well-known implementations, such as Breadth-First
Search, PageRank, Community Detection, can be plugged on top
of any in-memory graph store giving access to its edges. In this
section, we show how HAL finds all edges whose source vertex is 𝑠 , at
the current database time, since this is a crucial operations in graph
computations. Other data access methods, e.g., finding nodes or
edges by values of their properties, can be supported orthogonally
to this work, focused on storing and querying the graph structure.

We set 𝐿𝑄𝑇 , the least recent query time among the currently
running queries, at the current database time. Then, for each STALB
in STAL𝑠 , starting with the most recent:
(1) If the hasDeletes field of the STALB is true, deletion checks

are needed: when traversing the metadata entries associated
with this STALB, we will check each IEM entry’s ITM, to ensure
we do not return an edge already deleted. If hasDeletes is false,
we can skip this check for all entries in the STALB, thus read it
sequentially with no need for random memory accesses, which
is more cache-friendly. As our experiments show (Section 9),
competitor systems which check each traversed edge suffer of
their poor cache use.

(2) If the hasOOO field of the STALB is true, out-of-order checks
are needed: when traversing the STALB, we will check each
OOO field, and include any ooo updates there, in the result. If
hasOOO is false, the tests can be skipped for this block’s entries.

(3) Traverse the STALB’s IEMs and in parrallel destNodes (recall
from Section 4 that these are same-size arrays filled in parallel).
For each IEM entry𝑚, at position 𝑝𝑚 in IEMs:
(a) Checkwhether the transaction time𝑚.WT is less than 𝐿𝑄𝑇 .

If this holds: if no deletion or ooo checks are needed, return
destNodes[𝑝𝑚], the destination node corresponding to the
position of𝑚; if deletion checks are needed, only if𝑚 is
not deleted (it has no ITM), return destNodes[𝑝𝑚]. The
check helps ensuring snapshot isolation: we only read the
(non-deleted) edges received and stored before 𝐿𝑄𝑇 .

(b) If ooo checks are needed, and𝑚 has out-of-order updates,
its OOO field references an OSTALB or ART (Section 5.2).
For each OEM entry in that structure, call it 𝑜 , we check
whether the transaction time 𝑜 .WT is less than 𝐿𝑄𝑇 . If
this holds, and no deletion checks are needed, return 𝑜’s
destination node. If deletion checks are needed, check 𝑜’s

ITM field, to see whether 𝑜 is deleted. If it is not, return its
destination.

Reducing edge deletion checks As an optimization, once a query
has identified an edge in HAL as deleted, this is recorded in a bit of the
space devoted to storing 𝑑 in the insertion block’s destNodes (recall
Figure 4). Thus, a future query learns just by reading destNodes
that the edge is deleted, and avoids a random memory access to
read the OEM or IEM of the insertion. This optimization is in the
spirit of database cracking [18]. This can very significantly speed
up analytical queries, as we show in Section 9.6.
The complexity is 𝑂 (|𝑅 |), where 𝑅 is the result set of edges.

8 HT𝑠 AND UPI DETAILS
As shown in Sections 5 and 6, our entry insertion and deletion
algorithms repeatedly rely on finding, in HT𝑠 , the entry (UPI, AR,
or LGCD) for destination vertex 𝑑 . Also, these algorithms need to
find, based on UPI𝑒 , created for a past insertion entry 𝑒 , the location
in STAL𝑠 where information about this insertion is stored, e.g.,
the properties of that edge, whether the edge has been deleted,
etc. In this section, we detail how the HT, and UPIs, support these
operations in constant time.

The HT is created with 2 entries, and doubled up whenever 50%
of its entries are taken. It holds exactly one entry in each bucket,
and uses the open addressing technique [36], as follows.

• When an UPI is created for the in-order insertion of 𝑠→𝑑 ,
the UPI is stored in HT𝑠 in the bucket (𝑑 modulo current
size of HT𝑠). If this position is already taken, the UPI is
stored in the first free position following the initial one.

• An ooo insertion of 𝑠→𝑑 is first stored in STAL𝑠 (Section 5.1).
It is stored in ST order, attached to a previous, in-order
𝑠→𝑥 insertion, as illustrated in Figure 3 (note that 𝑠→𝑥 is
guaranteed to exist: if 𝑠→𝑑 was the first insertion ever with
source 𝑠 , 𝑠→𝑑 would not be out of order). Then, the UPI
created for the 𝑜𝑜𝑜 insertion of 𝑠→𝑑 is inserted in HT𝑠 just
after the position (𝑥 modulo current size of HT𝑠). Again, if
this position is taken, the first free position following it is
used.

• The AR and/or LGCD replacing an UPI keep the UPI’s posi-
tion in HT𝑠 .

Because of the above, when looking for the UPI corresponding
to a given 𝑠→𝑑 , we need to check whether HT𝑠 ’s bucket whose
position corresponds to 𝑑 is actually about 𝑠→𝑑 . We detail this for
in-order UPIs; for ooo ones, the process is similar.

(1) In HT𝑠 , at the position (𝑑 modulo current size of HT𝑠), we
find a candidate UPI, call it UPIcand.

(2) If the 10-bit suffix of UPIcand.d𝑝 equals the last 10 bits of 𝑑 ,
UPIcand may be about 𝑠→𝑑 , but another check is needed;
proceed to (3) below. Otherwise, read the next UPI in HT𝑠 ,
then the next one, etc. and repeat (2) until we find either a
sure match (see below), or an empty position, indicating 𝑑
does not exist in HT𝑠 .

(3) Access, in STAL𝑠 , the insertion entry 𝑒cand indicated by
UPIcand. If the destination node ID in 𝑒cand is 𝑑 , UPIcand is
surely about 𝑠→𝑑 .

A. Anadiotis, G. Khan, I. Manolescu

isUPI 𝑖𝑢 𝑑𝑠 𝑏𝑠 𝑏𝑖 𝑠𝑠 𝑠𝑖

63 62 61..52 51..48 47..37 36..32 31..0

Figure 5: UPI fields and their bit spans.

Last but not least, we detail how UPIs encode address of inser-
tions within STAL. Let UPI𝑒 be the UPI created for an insertion
entry 𝑒 . Let 𝐵 denote the STALB closest to 𝑒 in STAL𝑠 : if 𝑒 is in order,
𝐵 actually stores 𝑒; otherwise, 𝐵 holds an IEM whose OOO field
references a data structure holding ooo insertions, including 𝑒 . The
UPI for an in-order insertion of 𝑠→𝑑 has six fields (Figure 5):

• 𝑠𝑖 stores 𝐵’s position in STAL𝑠 , at the time of the insertion;
• 𝑠𝑠 stores 𝑙𝑜𝑔2(the size of STAL𝑠 at the time of the insertion.

Recall (Section 5.1) that this size is always a power of 2;
• 𝑏𝑖 stores the position of this entry in 𝐵’s destNodes;
• 𝑏𝑠 stores 𝑙𝑜𝑔2(the size of 𝐵) at the time of the insertion.
• 𝑑𝑠 stores an 10-bits suffix of 𝑑 , the destination vertex ID;
• 𝑖𝑢 is 1 in an UPI created for an in-order insertion, and 0 for

an ooo insertion;
• isUPI is 1 in an UPI, and 0 in an AR or LGCD replacing it.

To find 𝐵 and 𝑒 based on UPI𝑒 , e proceed as follows:

(1) From the metadata of STAL𝑠 (dark gray area in Figure 3),
we get its size.

(2) We compute the current position of 𝐵 in STAL𝑠 as:

size of STAL𝑠 − (2𝑠𝑠−𝑠𝑖)
In the above, 2𝑠𝑠 was the size of STAL𝑠 when 𝑒 was inserted.
When STAL𝑠 doubles (Section 5), existing blocks 𝐵 remains
at the same distance from the tail of STAL𝑠 ; this distance
is 2𝑠𝑠−𝑠𝑖 . Substracting this difference from STAL𝑠 leads
exactly to the position of 𝐵 in the current STAL𝑠 .

(3) Compute the position of the insertion in 𝐵.IEMs as: size
of 𝐵 − (2𝑏𝑠−𝑏𝑖). The reasoning behind the calculation is
similar to the one above: 2𝑏𝑠−𝑏𝑖 is the distance between
the entry 𝑒 and the end of 𝐵 at the time of the insertion;
this distance does not change as 𝐵 gets resized.

9 EVALUATION
We evaluate our system on different workloads, also comparing it
with the baselines Stinger [11], GraphOne [23], Llama [38], LiveG-
raph [53], Teseo [28], and Sortledton [14]. Below, we describe our
experimental setup (Sec. 9.1), our benchmark dataset, and the graph
analytics algorithms used (Sec. 9.2). Then, we study the perfor-
mance of insertions (Sec. 9.3), updates (Sec. 9.4), analytic querying
(Sec. 9.5), concurrent workloads (Sec. 9.6), workloads with ooo
insertions (Sec. 9.7), and workloads with ooo updates (Sec. 9.8).

9.1 Hardware and software settings
Our experiments have been executed on a dual-socket Intel Xeon
E5-2640 v4 server, with 40 hardware threads and 256 GB of DRAM.
Our system is implemented in C++ and compiled with GCC v10.2,
with the -O3 optimization flag. We set maximum size occupied by a
STALB at 215 bytes, and 213 for an OSTALB. This allows us to store
512 entries per OSTALB, like Sortledton [14] does in its blocks. We
report median times over five runs.

Dataset Vertices |𝑉 | Edges |𝐸 | Average degree |D|
graph500-22, uni-22 2M 64M 26
graph500-24, uni-24 9M 260M 29
graph500-26 33M 1B 33
dota-league 61K 50M 836
edit-wiki 51M 255M 22
yahoo-songs 1.6M 256M 315

Figure 6: Graph datasets in our evaluation.

Figure 7: Graph500-24 scalability analysis.

Figure 8: Random order insertion throughput.

Figure 9: Ordered insertion throughput.

9.2 Workloads
We use the synthetic graph datasets graph-500 [19] with scale fac-
tors (SF) 22, 24, and 26; the node fan-out in these graphs follows a
power-law degree distribution. To study the impact of the edge dis-
tribution across nodes, we used the driver of Teseo [28] to generate
variants of graph-500 with scale factors 22 and 24, having uniform
node degree distributions; we denote these graphs uni-22 and uni-24.
We also use three real-world graphs, namely dota-league [19], edit-
wiki [24] and yahoo-songs [24]. These datasets, used in previous
comparable works, are undirected. As in prior work, we replace
each undirected edge (𝑠, 𝑑) by two directed edges, 𝑠→𝑑 and 𝑑→𝑠 .
Each edge has just one property, namely weight, that is double
precision real number; we generate these weights at random be-
tween 0 and 1with a uniform distribution. The main dataset metrics
appear in Tab. 6. We use the LDBC graph analytics benchmark [19],
from which we use five graph algorithms: Breadth-First Search
(BFS), PageRank (PR), Single-Source Shortest Path (SSSP), Com-
munity Detection Via Label Propagation (CDLP), and the Weakly
Connected Components (WCC). For fair comparison, we use the
algorithm implementations from the Graph Algorithm Platform [3],
running on the driver implemented by Teseo [28].

Dynamic Graph Databases with Out-of-order Updates (extended version)

Figure 10: Throughput on updates workloads

9.3 Edge insertions
To measure insertion performance, we insert successively all the
edges of graph500-24, in a random order. All insertions are in order,
since no baseline supports ooo updates. Figure 7 reports the inser-
tion throughput, measured in Millions of Edges Per Second (MEPS,
in short), as we increase the number of threads (on the 𝑥 axis) from
1 to 2, 4, etc. until 40. HAL scales up very well, better than the
other systems, as we increase the number of threads.

HAL outperforms Sortledton and Teseo because these systems
pay sorting costs, where the neighborhood blocks are sorted by
destination ids, thus leading to contention between writer threads.
LiveGraph, Stinger, and Llama do not profit at all from parallelism,
because of contention between multiple writer threads, simultane-
ously trying to search linearly in the adjacency list (or multi-version
CSR) for the existence of edges. Up to 16 threads, GraphOne per-
forms best, but it doesn’t check for edge existence; if this check is
added, as shown in [14, 28], the throughput decreases to 5 edges
per second. Above 16 threads, contention between threads in the
archiving phase strongly degrades its performance. From now on,
unless otherwise specified, we experiment with 40 threads.

Figure 8 shows insertion throughput, again in MEPS, on different
systems for our eight datasets in random order. HAL performs
better in all cases. Sortledton and Teseo performance are close,
due to their similar design. LiveGraph is slow, because it has to
repeatedly resize the vectors storing edges, in order to provide fully
sequential access to its adjacency lists. GraphOne throughput is
generally low; on dota-league and yahoo-song, it performs better,
because these datasets have comparatively fewer vertices. This low-
ers vertex ID translation costs, and reduces write buffer contention.
On uni-22 and uni-24, Stinger ranks second in terms of throughput.
This is because linear search for checking edge existence is quite
fast when there are few edges per source.

Next, we repeat the experiment but with the edges in the original
order. All the datasets but yahoo-song and wiki are ordered on the
source vertex ID, while yahoo-song and wiki are also mostly sorted
by source ID. This amounts to burstyworkloads where concentrated
updates arrive for successive source vertices. Figure 9 shows that
all systems are affected by bursty insertions (lower throughputs
than in Figure 8). This is due to higher writer contention, when
all threads insert edges into the same source vertex. GraphOne
outperformed HAL on two datasets (dota-league, g500-26) because
of its unchecked, lock-free edge insertion, particularly effective on
datasets with fewer vertices, such as dota-league. In contrast, HAL
incurs a secondary index maintenance cost (HT[𝑠]), and Teseo and
Sortledton need sorting, leading to more writer contention.

On the wiki dataset, with a maximum of 5M edges adjacent to a
node, Sortledton slightly outperforms HAL. This dataset translates
into high bursts of edges adjacent to the same node.

Figure 11: Memory usage on Graph500-24 update workload.

Lesson learned: Storing each source vertex’s neighborhood list
sorted by destination IDs enables more efficient edge-existence
checks, than the linear search cost of the append-only store. How-
ever, the sorting cost for an insertion is higher. To make edge ex-
istence checks efficient, HAL trades the space of the secondary
index HT, for speed. On a uniform graph, linear search is cheaper
than maintaining a sorted list. Bursty updates on the same source
vertex significantly impact the transactional systems because of the
per-source vertex locking.

9.4 Updates (insertions and deletions)
We generated update (insertion, deletion) workloads on g500-22 and
g500-24, with power-degree edge distributions over nodes, and the
uniform uni-24. The update workloads are generated as introduced
by Teseo [28]: the first 10% of the workload operations load the
graph, after which the remaining 90% (insertions and deletions)
keep the (already large) graph at approximately the same size. The
size of the update workload is 10 × |𝐸 |.
Throughput: Figure 10 shows the systems’ throughput. HAL out-
perfom other systems by 2× to 73× in power-law graphs, and by
1.45× to 8.82× on uni-24 workloads because of HAL’s insertion and
deletion which run in constant time, vs. 𝑂 (𝑙𝑜𝑔(|𝐸 |)) for Sortledton
and Teseo, 𝑂 (|𝐸 |) for GraphOne, Stinger, LiveGraph, and Llama.
The linear search on the adjacency list penalizes less on a uniformly
distributed graph (uni-24). We could not run LiveGraph and Llama
on g500-24 and uni-24 workloads because of memory limits.
Memory consumption:We study the memory consumption of
various systems in Figure 11. The 𝑥-axis is the update progress,
while the 𝑦-axis shows the store memory size in GBs. In contrast
with other systems, HAL’s memory occupancy increases: HAL’s
support for ooo updates requires maintaining records for each edge
in the hash table without deleting them. Also, support for ooo updates
requires storing various metadata fields, notably IEMs (holding a
stream time, transaction time, and the OOO data structures), which
occupied roughly 15 GB by the end of the experiment.
Lesson learned: Compared with set-based systems, HAL uses
more memory, in exchange for (𝑖) support for out-of-order updates,
(𝑖𝑖) more than 2× speed-up, and (𝑖𝑖𝑖) the possibility of supporting
historical queries based on the stream time (in our future work).

9.5 Analytics
We ran the LDBC graph analytics benchmark [19] on all the sys-
tems. As in [14, 28], Fig. 12 shows the analytics results on the
g500 datasets, and on dota-league. BFS and SSSP require random
vertex access and sequential neighborhood access: on these, HAL
is comparable to the baseline and outperforms LiveGraph, Teseo,
GraphOne, Stinger. On PageRank, WCC, and CDLP, which need

A. Anadiotis, G. Khan, I. Manolescu

Figure 12: Performance evaluation on graph analytics.

sequential vertex access and sequential neighborhood access, HAL
outperforms all others, with Sortledton coming closest.

LiveGraph is slower thanHAL due to storing edge entry meta-
data (transaction timestamp, invalidation timestamp, property size)
with destination ids, which causes more cache misses. In contrast,
HAL stores destination ids separately from the edge entry metadata,
hence, fewer cache misses. Also, LiveGraph checks each entry’s
invalidation time to see if it was deleted. In contrast, HAL stores
a boolean hasDeletes in each STAL block (Sec. 4.2), avoiding the
check when the flag is false. Teseo is slower than HAL because:
(𝑖) Teseo needs a per-edge entry mapping (hash table) from sparse
to dense vertex ids in the analytics algorithms, which is costly; (𝑖𝑖) a
sorted neighborhood block in Teseo contains up to 512 edges, while
a STALB holds 2047 edges, resulting in fewer random accesses.Gra-
phOne is slower than HAL since it runs analytics on an ad-hoc
merge of the write-store and the read-store; as noted in [14], it has
a high overhead for accessing few edges, hence more cache misses.
Stinger is slower than HAL because of more cache misses as it
stores adjacent edges in a linked list of 14-edges blocks, incurring
more random accesses to read the list. Llama is slower than HAL
because it accesses multiple snapshots, hence more pointer chasing
and cache misses, slowing traversals such as SSSP and BFS.

Sortledton is marginally slower than HAL on whole-graph
algorithms, such as PageRank, WCC, and CDLP, due to the smaller
blocks (512 edges for Sortledton, 2047 for HAL), leading to more
cache misses in Sortledton. On algorithms accessing a subset of the
graph, such as BFS and SSSP, on smaller datasets (graph500-22 and
dota-league),HAL is slightly slower. This is because random ver-
tex access are more frequent than sequential neighborhood scans,
leading to slightly more cache misses for HAL; also, Sortledton
reads 24 bytes to access a source vertex, and HAL reads 48.
Lessons learned Set-based systems (Sortledton and Teseo), which
only read the latest version of the destination ids, outperform Live-
Graph, which must traverse all their versions in the adjacency list,
together with per-edge information. LiveGraph is also hampered
by the need to check edge invalidation timestamps. HAL’s sepa-
ration of destination from edge entry metadata speeds up vertex
ID accesses. HAL also avoids some edge validity checks (via the
hasDeletes flag), and is faster by avoiding (like Sortledton) Teseo’s
runtime sparse-to-dense vertex ID mapping. GraphOne is slowed
down by its merging of the read and write store, and high overhead
when accessing few edges, as noted also in [14, 28].

Figure 13: Throughput and query performance analysis using
varying updates workloads on read/write workloads.
9.6 Concurrent read-write workload
We run the analytics algorithms (BFS, PR) from Sec. 9.5 concurrently
with the updates from Sec. 9.4. In Figure 13, the 𝑥-axis shows the
combinations of Writer (W) and Reader (R) threads, e.g., 5-5 denotes
5 writer and 5 reader threads, and the 𝑦-axis shows the throughput
(MEPS) and the analytical algorithms (BFS, PR) running time. We
pick these values since in our setting, a total of 40 threads has
previously shown best performance; of course, each application
may have its own best read-write balance.

HAL outperforms the other systems, because of: (𝑖) inser-
tions and deletions in 𝑂 (1); (𝑖𝑖) optimized garbage collection (see
Sec. 6.1) and database cracking strategy (see Sec. 7). GraphOne is
penalized by its the expensive merging of read and write stores. On
the uniform workload (uni-24), the insertions and deletions cost is
less penalizing for Sortledton and GraphOne compared to HAL, due
to the uniform nature of the workload. We could not run LiveGraph
because of memory limits, and Teseo because of a runtime error.

We also measured the impact of reducing edge deletion
checks (Sec. 7) by having each querymark the edges it finds deleted,
so that future queries can avoid random accesses to learn the same
thing from an IEM (OEM). In the above experiment, when using
15 writers and 15 reader threads, PageRank takes 11.90s with this
optimization, and 50s without, the 4× speed-up.
Lesson learned: On a concurrent read-write workload, HAL out-
performs other state-of-the-art systems owing to: (𝑖) append-only
storage, which often allows the writer to append data without af-
fecting the reader; (𝑖𝑖) constant-time edge deletions; (𝑖𝑖𝑖) avoid some
deletion checks in database cracking style, which improves cache
locality and optimizes garbage collection. We also observe that
GraphOne’s edge copying concurrently with the updates is costly.

9.7 Out-of-order insertions
We now study the performance of our system when faced with a
mixture of in-order and out-of-order insertions. Since prior systems
do not support OOO updates, we built a benchmark based on
graph500-22 and graph500-24, as follows. (𝑖) Sort the (insertion)
workload by the source vertex. (𝑖𝑖) Remove the edges whose source

Dynamic Graph Databases with Out-of-order Updates (extended version)

Figure 14: Performance on in- and out-of-order insertions.

Figure 15: Performance on in- and out-of-order insertions.

vertex has less than 10 edges in the dataset (to facilitate our next
steps, see below). We thus obtain an OOO insertion list called OIL
(243M edges between 1.5M vertices in graph500-24, and 59M edges
between 0.5M vertices in graph500-22). OIL edges are given con-
secutive STs: 1, 2, 3 etc. (𝑖𝑖𝑖) For a given out-of-order percentage
𝑜𝑜𝑜𝑝 , we swap some edges in OIL, to ensure that exactly 𝑜𝑜𝑜𝑝

among them are ooo. For instance, if 𝑜𝑜𝑜𝑝 is 40%, among each 10
successive edges with the same source, we swap the 1st with the 5th,
making the (now) first four updates ooo. Lacking control of how
multiple threads intersperse their work, we only use one thread.

Recall that HAL stores out-of-order updates first in OSTALBs,
and only lazily creates ART (Sec. 5.2). We investigate how this com-
pares to creating an ART at the first out-of-order update received.
Specifically, we design a HAL variant, called HAL-V, which does
exactly this, and compare it with HAL.

Figure 14 and Figure 15 (left) show how the throughput of HAL
and HAL-V is impacted by 𝑜𝑜𝑜𝑝 , compared to 𝑜𝑜𝑜𝑝=0 (in-order
insertions only). HAL is impacted by 20%, whereas HAL-V shows a
40% decline in throughput when 90% of the updates are ooo. This is
due to no ART cost in HAL (as long as the OSTALB is not full). In
contrast, HAL-V pays an ART insertion cost for each ooo update.

We observed that at 50% ooo updates, the throughput decreased
by 22%, with no further decrease observed thereafter. This is be-
cause, at the 50% ooo threshold, the costs incurred for binary
searches to locate ooo updates in the STAL[𝑠], and the costs for
maintaining ooo STALBs (including resizing and ordering by times-
tamp), are balanced. Beyond this point, there is no further decrease
in throughput; the system incurs relatively lower binary search
costs but higher maintenance costs for ooo STALBs, as the majority
of operations are concentrated within ooo STALBs.

At right in Figure 14 and Figure 15, we study the impact of ooo
insertions on analytics running time (specifically, PageRank). For
each 𝑜𝑜𝑜𝑝 value, we run the respective insertion workload, then run
PageRank on the graph, and show its running time divided by the
time on a graph without ooo updates. HAL-V is strongly impacted
(PageRank takes 15× more for oop=90% than oop=0), while HAL
is impacted by 1.3×. Both HAL and HAL-V incur a cost for cache
misses after every ten entries when accessing the IEM.OOO field
to scan the out-of-order insertions, likely the reason for HAL’s
performance decrease. HAL-V also incurs additional cache misses

Datasets 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
graph500-22 1.00 1.11 1.10 1.09 1.08 1.10 1.11 1.12 1.14 1.16 1.2
graph500-24 1.00 1.04 1.04 1.04 1.04 1.05 1.06 1.07 1.08 1.1 1.11

Table 3: Throughput variations when varying the swap per-
centage 𝑠𝑤 , on graph500-24 and graph500-22 workloads.

for each edge entry read from the ART, whereas HAL incurs only
one for every eight entries (in an OSTALB, each ooo destination ID
occupies 8 bytes, thus a cache miss after every eight entries.)
Lesson learned: HAL performance is very robust as the propor-
tion of ooo insertions increases. The extra algorithmic complexity
incurred by “lazily” creating ARTs for out-of-order insertions pays
off by keeping insertion and analytics very efficient.

9.8 Out-of-order updates
We built an ooo update benchmark based on graph500-22 and
graph500-24 as follows. (𝑖) For each edge in the datasets, record first
its insertion, then its deletion, leading to an OOO update list we
call OUL, whose entries are timestamped 1, 2, etc. (𝑖𝑖) For a given
swap percentage 𝑠𝑤 , we swap some updates in OUL. For instance,
if 𝑠𝑤 is 10%, after each 10 entries in OUL, we select one edge and
swap its insertion with its deletion. If 𝑠𝑤 is 100%, among each 10
edges in the list, we swap each insertion with its deletion. As in
Sec. 9.7, we only use one thread in this experiment.

Table 3 shows no slowdown (even a little improvement) in HAL
throughput as 𝑠𝑤 grows: ooo deletions are fast. We also tested the
accuracy of HAL with respect to other systems that do not support
ooo updates; we used LiveGraph (Sortledton throws an exception
at the first ooo update, while Teseo seems to get “stuck”). For each
𝑠𝑤 , after loading, each system is asked for all the edges present in
the graph. HAL returns an empty graph regardless of 𝑠𝑤 , which is
correct (in OUL, for each insertion with a given ST, there exists a
deletion with ST+1). LiveGraph wrongly returns more and more
edges as 𝑠𝑤 grows.
Lesson learned: The ability to properly handle ooo updates is cru-
cial to ensure correctness (transactional querying). HAL achieves
this at the cost of more memory.

10 CONCLUSION AND PERSPECTIVES
We presented HAL, a scalable in-memory dynamic graph store,
providing consistent graph analytics even in the presence of out-
of-order updates. Our system is currently capable of processing
approximately 7.5 million updates per second, which is 2.5× faster
than the best-performing state-of-the-art system (Sortledton [14]).
On analytic graph queries, HAL outperforms existing systems by
up to 357×, depending on the task and the settings.

ACKNOWLEDGMENTS
This work was supported by ANR-20-CHIA-0015.

A. Anadiotis, G. Khan, I. Manolescu

REFERENCES
[1] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian

Convey, Sangdon Lee,Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik.
2003. Aurora: a new model and architecture for data stream management. VLDB
J. 12, 2 (2003), 120–139. https://doi.org/10.1007/S00778-003-0095-Z

[2] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous
query language: semantic foundations and query execution. VLDB J. 15, 2 (2006),
121–142. https://doi.org/10.1007/S00778-004-0147-Z

[3] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark
Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/1508.
03619

[4] Jon C. R. Bennett, Craig Partridge, and Nicholas Shectman. 1999. Packet reorder-
ing is not pathological network behavior. IEEE/ACM Trans. Netw. 7, 6 (1999),
789–798. https://doi.org/10.1109/90.811445

[5] Achilles D. Boursianis, Maria S. Papadopoulou, Panagiotis D. Diamantoulakis,
Aglaia Liopa-Tsakalidi, Pantelis Barouchas, George Salahas, George K. Karagian-
nidis, Shaohua Wan, and Sotirios K. Goudos. 2022. Internet of Things (IoT) and
Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehen-
sive review. Internet Things 18 (2022), 100187. https://doi.org/10.1016/J.IOT.2020.
100187

[6] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. 2008. Spec-
ulative out-of-order event processing with software transaction memory. In
Proceedings of the Second International Conference on Distributed Event-Based
Systems, DEBS 2008, Rome, Italy, July 1-4, 2008 (ACM International Confer-
ence Proceeding Series, Vol. 332), Roberto Baldoni (Ed.). ACM, 265–275. https:
//doi.org/10.1145/1385989.1386023

[7] Badrish Chandramouli, Jonathan Goldstein, and David Maier. 2010. High-
Performance Dynamic Pattern Matching over Disordered Streams. Proc. VLDB
Endow. 3, 1 (2010), 220–231. https://doi.org/10.14778/1920841.1920873

[8] Mengmeng Chang, Zhiming Ding, Zilin Zhao, and Zhi Cai. 2024. Heterogeneous
Modular Traffic Prediction Based on Multilayer Graph Convolutional Network.
IEEE Trans. Intell. Transp. Syst. 25, 7 (2024), 7805–7817. https://doi.org/10.1109/
TITS.2024.3358747

[9] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav
Shkapenyuk. 2003. Gigascope: A Stream Database for Network Applications. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data, San Diego, California, USA, June 9-12, 2003, Alon Y. Halevy, Zachary G. Ives,
and AnHai Doan (Eds.). ACM, 647–651. https://doi.org/10.1145/872757.872838

[10] Guimin Dong, Mingyue Tang, ZhiyuanWang, Jiechao Gao, Sikun Guo, Lihua Cai,
Robert J. Gutierrez, Bradford Campbell, Laura E. Barnes, and Mehdi Boukhechba.
2023. Graph Neural Networks in IoT: A Survey. ACM Trans. Sens. Networks 19, 2
(2023), 47:1–47:50. https://doi.org/10.1145/3565973

[11] David Ediger, Robert McColl, E. Jason Riedy, and David A. Bader. 2012. STINGER:
High performance data structure for streaming graphs. In IEEE Conference on
High Performance Extreme Computing, HPEC 2012, Waltham, MA, USA, September
10-12, 2012. IEEE, 1–5. https://doi.org/10.1109/HPEC.2012.6408680

[12] Thomas Eiter and Leonid Libkin (Eds.). 2005. Database Theory - ICDT 2005, 10th
International Conference, Edinburgh, UK, January 5-7, 2005, Proceedings. Lecture
Notes in Computer Science, Vol. 3363. Springer. https://doi.org/10.1007/B104421

[13] Abdulhalim Fayad, Tibor Cinkler, and Jacek Rak. 2024. Toward 6G Opti-
cal Fronthaul: A Survey on Enabling Technologies and Research Perspec-
tives. CoRR abs/2406.00308 (2024). https://doi.org/10.48550/ARXIV.2406.00308
arXiv:2406.00308

[14] Per Fuchs, Jana Giceva, and Domagoj Margan. 2022. Sortledton: a universal,
transactional graph data structure. Proc. VLDB Endow. 15, 6 (2022), 1173–1186.
https://doi.org/10.14778/3514061.3514065

[15] Lukasz Golab and M. Tamer Özsu. 2003. Issues in data stream management.
SIGMOD Rec. 32, 2 (2003), 5–14. https://doi.org/10.1145/776985.776986

[16] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. 2022.
Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for
Traffic Forecasting. IEEE Trans. Knowl. Data Eng. 34, 11 (2022), 5415–5428.
https://doi.org/10.1109/TKDE.2021.3056502

[17] Hassan Halawa and Matei Ripeanu. 2021. Position paper: bitemporal dy-
namic graph analytics. In GRADES-NDA ’21: Proceedings of the 4th ACM SIG-
MOD Joint International Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA), Virtual Event, China,
20 June 2021, Vasiliki Kalavri and Nikolay Yakovets (Eds.). ACM, 7:1–7:12.
https://doi.org/10.1145/3461837.3464514

[18] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In Third Biennial Conference on Innovative Data Systems Research, CIDR 2007,
Asilomar, CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org,
68–78. http://cidrdb.org/cidr2007/papers/cidr07p07.pdf

[19] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-
Pérez, Thomas Manhardt, Hassan Chafi, Mihai Capota, Narayanan Sundaram,
Michael J. Anderson, Ilie Gabriel Tanase, Yinglong Xia, Lifeng Nai, and Peter A.
Boncz. 2016. LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis
on Parallel and Distributed Platforms. Proc. VLDB Endow. 9, 13 (2016), 1317–1328.
https://doi.org/10.14778/3007263.3007270

[20] Vinesh Kumar Jain, Arka Prokash Mazumdar, Parvez Faruki, and Mahesh Chan-
dra Govil. 2022. Congestion control in Internet of Things: Classification, chal-
lenges, and future directions. Sustain. Comput. Informatics Syst. 35 (2022), 100678.
https://doi.org/10.1016/J.SUSCOM.2022.100678

[21] Sadaf Javed, Ali Hassan, Rizwan Ahmad, Waqas Ahmed, Rehan Ahmed, Ah-
san Saadat, and Mohsen Guizani. 2024. State-of-the-Art and Future Research
Challenges in UAV Swarms. IEEE Internet Things J. 11, 11 (2024), 19023–19045.
https://doi.org/10.1109/JIOT.2024.3364230

[22] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hacken-
broich, and Christof Fetzer. 2015. Quality-driven processing of sliding window
aggregates over out-of-order data streams. In Proceedings of the 9th ACM Inter-
national Conference on Distributed Event-Based Systems, DEBS ’15, Oslo, Norway,
June 29 - July 3, 2015, Frank Eliassen and Roman Vitenberg (Eds.). ACM, 68–79.
https://doi.org/10.1145/2675743.2771828

[23] Pradeep Kumar and H. Howie Huang. 2020. GraphOne: A Data Store for Real-
time Analytics on Evolving Graphs. ACM Trans. Storage 15, 4 (2020), 29:1–29:40.
https://doi.org/10.1145/3364180

[24] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection. In 22nd Inter-
national World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17,
2013, Companion Volume, Leslie Carr, Alberto H. F. Laender, Bernadette Farias
Lóscio, Irwin King, Marcus Fontoura, Denny Vrandecic, Lora Aroyo, José
Palazzo M. de Oliveira, Fernanda Lima, and Erik Wilde (Eds.). International
World Wide Web Conferences Steering Committee / ACM, 1343–1350. https:
//doi.org/10.1145/2487788.2488173

[25] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (1978), 558–565. https://doi.org/10.1145/359545.
359563

[26] Hoang D. Le and Anh T. Pham. 2022. Link-Layer Retransmission-Based Error-
Control Protocols in FSO Communications: A Survey. IEEE Commun. Surv.
Tutorials 24, 3 (2022), 1602–1633. https://doi.org/10.1109/COMST.2022.3175509

[27] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013,
Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou (Eds.). IEEE
Computer Society, 38–49. https://doi.org/10.1109/ICDE.2013.6544812

[28] Dean De Leo and Peter A. Boncz. 2021. Teseo and the Analysis of Structural
Dynamic Graphs. Proc. VLDB Endow. 14, 6 (2021), 1053–1066. https://doi.org/10.
14778/3447689.3447708

[29] Aljoscha P. Lepping, Hoang Mi Pham, Laura Mons, Balint Rueb, Philipp M.
Grulich, Ankit Chaudhary, Steffen Zeuch, and Volker Markl. 2023. Showcasing
Data Management Challenges for Future IoT Applications with NebulaStream.
Proc. VLDB Endow. 16, 12 (2023), 3930–3933. https://doi.org/10.14778/3611540.
3611588

[30] Hourun Li, Yusheng Zhao, Zhengyang Mao, Yifang Qin, Zhiping Xiao, Jiaqi Feng,
Yiyang Gu, Wei Ju, Xiao Luo, and Ming Zhang. 2024. A Survey on Graph Neural
Networks in Intelligent Transportation Systems. CoRR abs/2401.00713 (2024).
https://doi.org/10.48550/ARXIV.2401.00713 arXiv:2401.00713

[31] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. 2005.
Semantics and Evaluation Techniques for Window Aggregates in Data Streams.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Baltimore, Maryland, USA, June 14-16, 2005, Fatma Özcan (Ed.). ACM,
311–322. https://doi.org/10.1145/1066157.1066193

[32] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-
son, and David Maier. 2008. Out-of-order processing: a new architecture for
high-performance stream systems. Proc. VLDB Endow. 1, 1 (2008), 274–288.
https://doi.org/10.14778/1453856.1453890

[33] Ming Li, Mo Liu, Luping Ding, Elke A. Rundensteiner, and Murali Mani. 2007.
Event Stream Processing with Out-of-Order Data Arrival. In 27th International
Conference on Distributed Computing Systems Workshops (ICDCS 2007 Workshops),
June 25-29, 2007, Toronto, Ontario, Canada. IEEE Computer Society, 67. https:
//doi.org/10.1109/ICDCSW.2007.35

[34] Rui Li, Fan Zhang, Tong Li, Ning Zhang, and Tingting Zhang. 2023. DMGAN:
Dynamic Multi-Hop Graph Attention Network for Traffic Forecasting. IEEE
Trans. Knowl. Data Eng. 35, 9 (2023), 9088–9101. https://doi.org/10.1109/TKDE.
2022.3221316

[35] Zhaoyi Li, Jiawei Huang, Shiqi Wang, and Jianxin Wang. 2024. Achieving Low
Latency for Multipath Transmission in RDMA Based Data Center Network. IEEE
Trans. Cloud Comput. 12, 1 (2024), 337–346. https://doi.org/10.1109/TCC.2024.
3365075

[36] Dapeng Liu and ShaochunXu. 2015. Comparison of Hash Table Performancewith
Open Addressing and Closed Addressing: An Empirical Study. Int. J. Networked
Distributed Comput. 3, 1 (2015), 60–68. https://doi.org/10.2991/IJNDC.2015.3.1.7

[37] Guohan Lu, Yan Chen, Stefan Birrer, Fabián E. Bustamante, and Xing Li. 2010.
POPI: a user-level tool for inferring router packet forwarding priority. IEEE/ACM
Trans. Netw. 18, 1 (2010), 1–14. https://doi.org/10.1145/1816288.1816289

[38] Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer. 2015.
LLAMA: Efficient graph analytics using Large Multiversioned Arrays. In 31st
IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea,

https://doi.org/10.1007/S00778-003-0095-Z
https://doi.org/10.1007/S00778-004-0147-Z
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1109/90.811445
https://doi.org/10.1016/J.IOT.2020.100187
https://doi.org/10.1016/J.IOT.2020.100187
https://doi.org/10.1145/1385989.1386023
https://doi.org/10.1145/1385989.1386023
https://doi.org/10.14778/1920841.1920873
https://doi.org/10.1109/TITS.2024.3358747
https://doi.org/10.1109/TITS.2024.3358747
https://doi.org/10.1145/872757.872838
https://doi.org/10.1145/3565973
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1007/B104421
https://doi.org/10.48550/ARXIV.2406.00308
https://doi.org/10.14778/3514061.3514065
https://doi.org/10.1145/776985.776986
https://doi.org/10.1109/TKDE.2021.3056502
https://doi.org/10.1145/3461837.3464514
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.14778/3007263.3007270
https://doi.org/10.1016/J.SUSCOM.2022.100678
https://doi.org/10.1109/JIOT.2024.3364230
https://doi.org/10.1145/2675743.2771828
https://doi.org/10.1145/3364180
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/COMST.2022.3175509
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.14778/3447689.3447708
https://doi.org/10.14778/3447689.3447708
https://doi.org/10.14778/3611540.3611588
https://doi.org/10.14778/3611540.3611588
https://doi.org/10.48550/ARXIV.2401.00713
https://doi.org/10.1145/1066157.1066193
https://doi.org/10.14778/1453856.1453890
https://doi.org/10.1109/ICDCSW.2007.35
https://doi.org/10.1109/ICDCSW.2007.35
https://doi.org/10.1109/TKDE.2022.3221316
https://doi.org/10.1109/TKDE.2022.3221316
https://doi.org/10.1109/TCC.2024.3365075
https://doi.org/10.1109/TCC.2024.3365075
https://doi.org/10.2991/IJNDC.2015.3.1.7
https://doi.org/10.1145/1816288.1816289

Dynamic Graph Databases with Out-of-order Updates (extended version)

April 13-17, 2015, Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim, Sang Kyun
Cha, and Guy M. Lohman (Eds.). IEEE Computer Society, 363–374. https:
//doi.org/10.1109/ICDE.2015.7113298

[39] Guido Maier, Antonino Albanese, Michele Ciavotta, Nicola Ciulli, Stefano Gior-
dano, Elisa Giusti, Alfredo Salvatore, and Giovanni Schembra. 2024. WatchEDGE:
Smart networking for distributed AI-based environmental control. Comput. Net-
works 243 (2024), 110248. https://doi.org/10.1016/J.COMNET.2024.110248

[40] Christopher Mutschler and Michael Philippsen. 2013. Distributed Low-Latency
Out-of-Order Event Processing for High Data Rate Sensor Streams. In 27th
IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2013,
Cambridge, MA, USA, May 20-24, 2013. IEEE Computer Society, 1133–1144. https:
//doi.org/10.1109/IPDPS.2013.29

[41] Christopher Mutschler and Michael Philippsen. 2013. Reliable speculative pro-
cessing of out-of-order event streams in generic publish/subscribe middlewares.
In The 7th ACM International Conference on Distributed Event-Based Systems,
DEBS ’13, Arlington, TX, USA - June 29 - July 03, 2013, Sharma Chakravarthy,
Susan Darling Urban, Peter R. Pietzuch, and Elke A. Rundensteiner (Eds.). ACM,
147–158. https://doi.org/10.1145/2488222.2488263

[42] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis,
Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 677–689. https://doi.org/
10.1145/2723372.2749436

[43] Arnau Rovira-Sugranes, Abolfazl Razi, Fatemeh Afghah, and Jacob Chakareski.
2022. A review of AI-enabled routing protocols for UAV networks: Trends,
challenges, and future outlook. Ad Hoc Networks 130 (2022), 102790. https:
//doi.org/10.1016/J.ADHOC.2022.102790

[44] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM. https:
//doi.org/10.1137/1.9780898718003

[45] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz,
Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bern-
hard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi,
Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan
Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian Schulz,

Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-
masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun
Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future is big graphs:
a community view on graph processing systems. Commun. ACM 64, 9 (2021),
62–71. https://doi.org/10.1145/3434642

[46] Wei Sang, Huiliang Zhang, Xianchang Kang, Ping Nie, Xin Meng, Benoit Boulet,
and Pei Sun. 2024. Dynamic multi-granularity spatial-temporal graph attention
network for traffic forecasting. Inf. Sci. 662 (2024), 120230. https://doi.org/10.
1016/J.INS.2024.120230

[47] Jifan Shi, BiaoWang, and Yun Xu. 2024. Spruce: a Fast yet Space-saving Structure
for Dynamic Graph Storage. Proc. ACM Manag. Data 2, 1 (2024), 27:1–27:26.
https://doi.org/10.1145/3639282

[48] Utkarsh Srivastava and Jennifer Widom. 2004. Flexible Time Management in
Data Stream Systems. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 14-16, 2004, Paris,
France, Catriel Beeri and Alin Deutsch (Eds.). ACM, 263–274. https://doi.org/10.
1145/1055558.1055596

[49] Srikanta Tirthapura and David P. Woodruff. 2012. A General Method for Esti-
mating Correlated Aggregates over a Data Stream. In IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Vir-
ginia), 1-5 April, 2012, Anastasios Kementsietsidis and Marcos Antonio Vaz Salles
(Eds.). IEEE Computer Society, 162–173. https://doi.org/10.1109/ICDE.2012.62

[50] Haijun Wang, Haitao Zhao, Jiao Zhang, Dongtang Ma, Jiaxun Li, and Jibo Wei.
2020. Survey on Unmanned Aerial Vehicle Networks: A Cyber Physical System
Perspective. IEEE Commun. Surv. Tutorials 22, 2 (2020), 1027–1070. https:
//doi.org/10.1109/COMST.2019.2962207

[51] Wenjun Yang, Lin Cai, Shengjie Shu, Jianping Pan, and Amir Sepahi. 2024. MAMS:
Mobility-Aware Multipath Scheduler for MPQUIC. IEEE/ACM Trans. Netw. 32, 4
(2024), 3237–3252. https://doi.org/10.1109/TNET.2024.3382269

[52] Mingyang Zhang, Tong Li, Yue Yu, Yong Li, Pan Hui, and Yu Zheng. 2022. Urban
Anomaly Analytics: Description, Detection, and Prediction. IEEE Trans. Big Data
8, 3 (2022), 809–826. https://doi.org/10.1109/TBDATA.2020.2991008

[53] Xiaowei Zhu, Marco Serafini, Xiaosong Ma, Ashraf Aboulnaga, Wenguang Chen,
and Guanyu Feng. 2020. LiveGraph: A Transactional Graph Storage System
with Purely Sequential Adjacency List Scans. Proc. VLDB Endow. 13, 7 (2020),
1020–1034. https://doi.org/10.14778/3384345.3384351

https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1016/J.COMNET.2024.110248
https://doi.org/10.1109/IPDPS.2013.29
https://doi.org/10.1109/IPDPS.2013.29
https://doi.org/10.1145/2488222.2488263
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1016/J.ADHOC.2022.102790
https://doi.org/10.1016/J.ADHOC.2022.102790
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1145/3434642
https://doi.org/10.1016/J.INS.2024.120230
https://doi.org/10.1016/J.INS.2024.120230
https://doi.org/10.1145/3639282
https://doi.org/10.1145/1055558.1055596
https://doi.org/10.1145/1055558.1055596
https://doi.org/10.1109/ICDE.2012.62
https://doi.org/10.1109/COMST.2019.2962207
https://doi.org/10.1109/COMST.2019.2962207
https://doi.org/10.1109/TNET.2024.3382269
https://doi.org/10.1109/TBDATA.2020.2991008
https://doi.org/10.14778/3384345.3384351

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Storage System Overview
	4.1 The vertex array (VA)
	4.2 The stream-time ordered adjacency list (STAL)

	5 Insertion
	5.1 In-order insertion
	5.2 Out-of-order insertion

	6 Deletion
	6.1 Garbage collection
	6.2 Deletion of an in-order insertion
	6.3 Deletion of an ooo insertion

	7 Queries
	8 HTs and UPI details
	9 Evaluation
	9.1 Hardware and software settings
	9.2 Workloads
	9.3 Edge insertions
	9.4 Updates (insertions and deletions)
	9.5 Analytics
	9.6 Concurrent read-write workload
	9.7 Out-of-order insertions
	9.8 Out-of-order updates

	10 Conclusion and Perspectives
	Acknowledgments
	References

