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Imbalanced motivated behaviors 
according to motor sign asymmetry 
in drug‑naïve Parkinson’s disease
Matthieu Béreau 1,2*, Anna Castrioto 3, Mathieu Servant 2, Eugénie Lhommée 3, 
Maxime Desmarets 4, Amélie Bichon 3, Pierre Pélissier 3, Emmanuelle Schmitt 3, 
Hélène Klinger 5,6,7, Nadine Longato 8, Clélie Phillipps 8, Thomas Wirth 8,9,10, Valérie Fraix 3, 
Isabelle Benatru 11,12, Franck Durif 13,14, Jean‑Philippe Azulay 15, Elena Moro 3, 
Emmanuel Broussolle 5,6,7, Stéphane Thobois 5,6,7, Christine Tranchant 8, Paul Krack 16 & 
Mathieu Anheim 8,9,10

Few studies have considered the influence of motor sign asymmetry on motivated behaviors in 
de novo drug‑naïve Parkinson’s disease (PD). We tested whether motor sign asymmetry could be 
associated with different motivated behavior patterns in de novo drug‑naïve PD. We performed a 
cross‑sectional study in 128 de novo drug‑naïve PD patients and used the Ardouin Scale of Behavior in 
Parkinson’s disease (ASBPD) to assess a set of motivated behaviors. We assessed motor asymmetry 
based on (i) side of motor onset and (ii) MDS‑UPDRS motor score, then we compared right hemibody 
Parkinson’s disease to left hemibody Parkinson’s disease. According to the MDS‑UPDRS motor score, 
patients with de novo right hemibody PD had significantly lower frequency of approach behaviors 
(p = 0.031), including nocturnal hyperactivity (p = 0.040), eating behavior (p = 0.040), creativity 
(p = 0.040), and excess of motivation (p = 0.017) than patients with de novo left hemibody PD. Patients 
with de novo left hemibody PD did not significantly differ from those with de novo right hemibody PD 
regarding avoidance behaviors including apathy, anxiety and depression. Our findings suggest that 
motor sign asymmetry may be associated with an imbalance between motivated behaviors in de novo 
drug‑naïve Parkinson’s disease.

Parkinson’s disease (PD) is a neuropsychiatric condition that combines a broad range of motor and non-motor 
signs, even in the early stages of the  disease1–3. Among non-motor signs, behavioral syndromes including apathy 
and impulse control disorders (ICD) are frequently encountered and have a substantial impact on patient and 
caregiver quality of  life4–6. These behavioral disorders result from a complex interplay between dopaminergic 
denervation within nigrostriatal and mesocorticolimbic pathways, dopamine replacement therapy (DRT), and 
limbic and executive fronto-striatal  circuits4,6.

Some clinical and neurophysiological studies in healthy subjects or patients with brain diseases have reported 
frontal lobe lateralization in reward and punishment processing and motivated  behaviors7–10. Overall, these 
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studies demonstrated greater activation of the left prefrontal cortex in reward processing and approach behaviors 
and greater activation of the right prefrontal cortex in punishment processing and avoidance  behaviors7–10. Most 
evidence comes from unilateral stroke lesions, which have demonstrated approach behaviors including inappro-
priate euphoria or mania in cases of right frontal damage and avoidance behaviors including depression or the 
so called “catastrophic reaction” in cases of left hemisphere  lesions11,12. Importantly, authors have assumed that 
avoidance and approach behaviors are inversely related to each other, such that loss of one motivated behavior 
may lead to an imbalance in favor of the  other11. This hypothesis is also supported by previous studies in healthy 
subjects and patients with behavioral-variant frontotemporal dementia (bv-FTD), which have shown better 
approach learning in healthy subjects with larger reward responses in the left ventral striatum, and behavioral 
disinhibition in bv-FTD patients with right-sided asymmetric orbitofrontal grey matter  pathology13,14.

PD is characterized by asymmetric motor symptoms, which reflect asymmetric loss of dopaminergic neu-
rons within motor  circuits15–18. It has therefore been hypothesized that asymmetric dopaminergic denervation 
within non-motor fronto-striatal circuits in PD may contribute to different patterns of motivated  behaviors19. 
Previous studies that have examined the relationship between side of onset of motor signs and the occurrence 
of motivated behavior disorders in PD have reported conflicting  results20–23. Disease duration and dopamine 
replacement therapy (DRT) may also have been confounding factors. Moreover, two studies in de novo PD failed 
to demonstrate the influence of motor sign asymmetry on the occurrence of behavioral  manifestations19,24. These 
discrepancies may be related to the definition of PD asymmetry, the heterogeneity of PD populations and the size 
of the sample. We present a cross-sectional study of 128 patients with drug-naïve de novo PD, aiming to examine 
various aspects of motivated behaviors to test whether motor sign asymmetry is associated with an imbalance 
between approach and avoidance behaviors.

Materials and methods
Patient population
We included patients diagnosed with PD according to UK Brain Bank criteria for less than two years without 
significant cognitive impairment, defined as a score on the Mattis dementia rating scale (MDRS) > 130/144 or 
on the frontal assessment battery (FAB) > 15/18)25. We excluded patients undergoing treatment with levodopa 
and/or dopamine agonists, as well as MAO-B inhibitors, and/or psychotropic drugs including anxiolytics and 
 antidepressants25.

Study design
This cross-sectional study was ancillary to the “Honeymoon” study, a French prospective multicenter trial. 
Detailed methodology of the “Honeymoon” study has been described  elsewhere25.

PD asymmetry
Right hemibody PD (RPD) and left hemibody PD (LPD) were distinguished based on (i) the declarative hemi-
body side of onset of motor  symptoms23; (ii) the lateralized items of the Movement Disorder Society-Uni-
fied Parkinson’s Disease Rating Scale (MDS-UPDRS) part III (items 3b–e, 4–8, 15–16, 17a–d) at the time of 
 examination26. We calculated a laterality index adapted from Foster et al. using the following formula: 2 × (MDS-
UPDRS right − MDS-UPDRS left)/(MDS-UPDRS right + MDS-UPDRS left)27. A score within the range [-2; 
0[ indicated LPD whereas a score within the range ]0; 2] indicated  RPD27. Participants with indeterminable right 
or left hemibody PD were excluded from the corresponding analyses.]0;2]

Clinical assessment
We used the Ardouin Scale of Behavior in Parkinson’s Disease (ASBPD) to assess the whole behavioral spectrum 
of  PD28. The ASBPD is a semi-structured clinical interview in which trained psychologist assesses the severity of 
each hypodopaminergic and hyperdopaminergic item. It consists of 21 items, each of which are rated from 0 (no 
change) to 4 (severe change). For hypodopaminergic items, we considered scores ≥ 2, which indicate a moderate 
behavioral impairment, as clinically relevant in early-stage unmedicated PD  patients29. We added the number 
of items with a score ≥ 2 for apathy, anxiety and depression to calculate the avoidance behavior composite score 
(AvCS). For hyperdopaminergic items, de novo unmedicated PD patients are unlikely to exhibit ICD, which 
appears during progression of PD with chronic exposure to DRT, especially dopamine  agonists30. We therefore 
considered scores ≥ 1, which indicates slight but clinically significant behavioral impairment, as the relevant cut-
off to account for motivational imbalance in drug-naïve PD patients. We added together the number of items 
with a score ≥ 1 for nocturnal hyperactivity, eating behavior, creativity, hobbyism, punding, risk taking behavior, 
compulsive shopping, pathological gambling, hypersexuality and excess in motivation to calculate the approach 
composite score (AppCS)23. All patients underwent neuropsychological assessment including global cognitive 
efficiency and executive function using the MDRS and the FAB, respectively.

Statistical analyses
We compared the LPD and RPD groups using the chi-squared test for categorical variables and the Student’s 
t- test for quantitative variables. All statistical tests were two sided with a significance threshold of 0.05.

Ethical approval
 The “Honeymoon” study was approved by the Ethics Committee of Grenoble, authorized by the National Agency 
for the Safety of Medicines and Health Products (AFSSAPS), and registered as NCT02786667. All patients 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21234  | https://doi.org/10.1038/s41598-023-48188-0

www.nature.com/scientificreports/

included in the study gave written informed consent in accordance with local legislation. All methods were 
performed in accordance with the relevant guidelines and regulations.

Results
Patient characteristics are described in detail in Table 1 and the relationship between laterality index, AppCS 
and AvCS is presented in Fig. 1.

Of the 198 de novo PD patients initially enrolled in the “honeymoon” study, we excluded 46 patients receiv-
ing IMAO-B, 21 patients taking psychotropic drugs including anxiolytics and/or antidepressants, and 3 patients 
taking both IMAO-B and psychotropic drugs. Moreover, four patients who reported bilateral side of motor 
onset and three patients for whom right and left UPDRS part III subscores were equal were ruled out of the 
corresponding analyses. Finally, six patients classified as RPD according to MDS-UPDRS-III score reported 
left hemibody disease onset. Conversely, four patients classified as LPD according to MDS-UPDRS-III score 
reported right hemibody disease onset.

We first examined whether motor symptom laterality, determined from MDS-UPDRS motor score, modulated 
the approach (AppCS) and avoidance (AvCS) composite scores derived from the ASBPD. RPD patients exhibited 
significantly lower frequency than LPD patients on AppCS (p = 0.031) while RPD and LPD patients did not differ 
on AvCS. Analyses of score components showed that RPD patients exhibited significantly lower frequency on 
the ASBPD for nocturnal hyperactivity (p = 0.040), eating behavior (p = 0.040), creativity (p = 0.040) and excess 
in motivation (p = 0.017) than LPD patients. The results of these score component analyses did not survive False 
Discovery Rate (FDR) correction for multiple comparisons. Statistical findings were similar when using motor 
symptom laterality based on the side of motor onset, with the exception of creativity.

Table 1.  Patient characteristics. LPD Left Parkinson’s Disease, RPD Right Parkinson’s Disease, UPDRS Unified 
Parkinson’s Disease Rating Scale, MDRS Mattis Dementia Rating Scale, FAB Frontal Assessment Battery, NA 
not applicable. *Of the 128 patients included, 4 patients with indistinguishable hemibody onset and 3 patients 
with symmetric right and left UPDRS motor subscores were excluded from the corresponding analyses.

Laterality based on side of onset 
(N = 124*)

Laterality based on MDS-UPDRS III 
(N = 125*)

LPD (n = 58) RPD (n = 66) p value LPD (n = 60) RPD (n = 65) p value

Socio demographic variables

 Mean age (years, mean, SD) 58.5 (8.1) 59.1 (9.8) 0.702 58.5 (8.5) 59.3 (9.6) 0.661

 Disease duration (years, mean, SD) 2.2 (1.5) 2.3 (1.3) 0.777 2.3 (1.4) 2.2 (1.2) 0.583

 Sex (male/female) 35/23 45/21 0.363 35/25 45/20 0.205

Motor (mean, SD)

 UPDRS-III total score 23.8 (9.4) 25.2 (9.6) 0.412 25.1 (9.6) 24.3 (9.6) 0.659

 UPDRS-III left subscore 13.2 (5.4) 6.1 (5.2) < 0.001 14.4 (4.8) 5.0 (3.8) < 0.001

 UPDRS-III right subscore 4.5 (4.3) 12.7 (5.5) < 0.001 4.3 (4.0) 13.1 (5.2) < 0.001

Cognition (mean, SD)

 MDRS 139.1 (3.4) 139.3 (3.4) 0.784 139.2 (3.1) 139.0 (3.7) 0.722

 FAB 16.7 (1.0) 16.7 (1.1) 0.841 16.7 (0.9) 16.7 (1.1) 0.761

Avoidance behaviors (n ≥ 2,%)

 Avoidance behavior composite score 20 (34.5) 18 (27.3) 0.385 18 (30.0) 18 (27.7) 0.776

 Depressed mood 10 (17.2) 7 (10.6) 0.284 10 (16.7) 7 (10.8) 0.337

 Anxiety 16 (27.6) 10 (15.1) 0.090 14 (23.3) 10 (15.4) 0.260

 Irritability, agressiveness 2 (3.4) 1 (1.5) 0.493 2 (3.3) 1 (1.6) 0.521

 Hyperemotivity 10 (17.2) 10 (15.1) 0.752 8 (13.3) 11 (16.9) 0.576

 Apathy 12 (20.7) 10 (15.1) 0.420 10 (16.7) 11 (16.9) 0.969

Approach behaviors (n ≥ 1,%)

 Approach behavior composite score 19 (32.8) 9 (13.6) 0.011 19 (31.7) 10 (15.4) 0.031

 Nocturnal hyperactivity 6 (10.3) 1 (1.5) 0.033 6 (10.0) 1 (1.5) 0.040

 Eating behavior 6 (10.3) 1 (1.5) 0.033 6 (10.0) 1 (1.5) 0.040

 Creativity 5 (8.6) 1 (1.5) 0.066 6 (10.0) 1 (1.5) 0.040

 Hobbyism 6 (10.3) 4 (6.1) 0.382 6 (10.0) 5 (7.7) 0.649

 Punding 0 (0) 0 (0) NA 0 (0) 0 (0) NA

 Risk-taking behavior 2 (3.4) 0 (0) 0.128 2 (3.3) 0 (0) 0.138

 Compulsive shopping 1 (1.7) 1 (1.5) 0.927 2 (3.3) 1 (1.5) 0.512

 Pathological gambling 2 (3.4) 1 (1.5) 0.484 2 (3.3) 1 (1.5) 0.512

 Hypersexuality 2 (3.4) 0 (0) 0.128 2 (3.3) 0 (0) 0.138

 Excess in motivation 5 (8.8) 0 (0) 0.014 5 (8.5) 0 (0) 0.017
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Discussion
In this study, we demonstrated that patients with de novo drug-naïve PD had different motivated behavior 
patterns according to motor sign asymmetry regarding approach behaviors but not avoidance behaviors. These 
results raise questions about the role of PD asymmetry in motivational imbalance and the occurrence of behav-
ioral disorders in PD.

Motor sign asymmetry and approach behaviors
For the approach behaviors, we found lower frequency of AppCS score, nocturnal hyperactivity, eating behavior, 
and excess in motivation in de novo drug-naïve RPD compared to de novo drug-naïve LPD regardless of the 
method used to assess PD asymmetry. Moreover, we found lower frequency of creativity in de novo drug naïve 
RPD according to the MDS-UPDRS motor score dichotomy and a trend toward significance when considering 
the side of motor onset. These results are consistent with previous neuropsychological studies in PD, which 
highlighted lesser reward sensitivity and approach behaviors in the “OFF-medication” state in RPD compared 
to LPD, in line with our working  hypothesis31,32. Interestingly, these studies also emphasized a reversed pattern 
in reward sensitivity in PD patients in the “ON-medication” state, with greater gain sensitivity in RPD than in 
 LPD31,32. These later results are in line with a recent study dedicated to more advanced PD patients receiving 
pulsatile DRT, which has shown higher eating behavior, creativity, and AppCS scores, and more impulse control 
disorders (ICD) for RPD compared to  LPD23. Taken together, all these data are relevant and illustrate the close 
interaction between frontal lobe lateralization in reward processing, PD asymmetry, and DRT in motivated 
behavior disorders. We showed that asymmetric motor signs in PD may independently contribute to motiva-
tional imbalance, resulting in subtle but clinically significant distinct approach behavior patterns in LPD and 
RPD, irrespective of disease duration and DRT. In de novo RPD, dopaminergic denervation predominates within 
the left fronto-striatal circuits, which leads to an imbalance that may disfavor reward processing and approach 
behaviors. According to both the behavioral sensitization and overdose hypotheses, this imbalance could be 
reversed in patients with advanced RPD who are taking  DRT23,33–35. Consequently, RPD patients taking DRT 
seem to experience an excess of approach behaviors compared to LPD patients taking  DRT23. Regarding the 
sensitization hypothesis, non-physiological pulsatile stimulation of dopamine receptors in advanced RPD could 
favor molecular changes within the more denervated left hemisphere, promoting an exaggerated long-term 
potentiation, reward processing, and the occurrence of  ICD33. This is in line with levodopa-induced dyskinesia 
pathophysiology, which embodies motor sensitization and usually predominates in the most affected side of 
 PD36. When considering the dopamine overdose hypothesis, which assumes an inverted U-shaped relationship 
between dopamine levels and behavioral performances, DRT could restore dopamine level and optimal func-
tioning within the most denervated hemisphere but with a relative “overdosing” effect of the other hemisphere 
 accordingly34. In both cases, it could lead, under DRT, to a reverse pattern of motivated behaviors in favor of the 
most denervated  hemisphere34,35.

PD asymmetry and avoidance behaviors
Conflicting results have been reported regarding avoidance behaviors and PD lateralization, with either no dif-
ference or opposite patterns in LPD and  RPD19–22,24. Our results revealed that de novo drug-naïve LPD did not 
differ from RPD regarding avoidance behaviors, which raises questions about the link between motivational 
imbalance and these behaviors. Apathy, anxiety and depression have been previously characterized as a reward 
deficiency syndrome embodied by the so-called neuropsychiatric triad of  PD6,37. This amotivational syndrome 
has been linked to combined and widespread dopaminergic and serotonergic denervation within the mesocor-
ticolimbic  pathway4,38,39. However, some data challenge this view and outline the role of other brain circuits and 
neurotransmitter systems in apathy, which may involve cognitive functions and executive control in addition to 

Figure 1.  Approach and avoidance composite scores according to laterality index in de novo unmedicated 
Parkinson’s disease (PD). From left to right, patients are ranked from the lowest (LPD) to the highest (RPD) 
laterality index score. LPD: left hemibody onset PD, RPD: right hemibody onset PD.
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 motivation40,41. Lastly, anxiety may be considered to be partly independent of reward processing but related to 
dysfunction within the fear circuit involving the amygdala among other  structures42.

Limitations
Even though it is based on a relatively large cohort compared with previous work, our study has some limitations. 
We did not use striatal dopamine transporter imaging to confirm asymmetric dopaminergic denervation, even 
though our hypothesis was based on motor sign asymmetry. Moreover, our results related to score components 
for approach behaviors did not persist after FDR correction for multiple comparisons. Thus, these results, albeit 
consistent with other data in advanced PD on DRT, should be considered as exploratory and viewed as hypoth-
esis generating.

Finally, we used the ASBPD to consider the behavioral spectrum in PD by dividing these manifestations 
into avoidance (hypodopaminergic) and approach (hyperdopaminergic) behaviors. Although this division is 
clinically relevant, it is an oversimplification, since other neurotransmitter systems are also involved in these 
neuropsychiatric  signs4.

In summary, our results support the hypothesis that asymmetric motor signs are associated with imbalanced 
motivated behaviors in de novo drug-naïve PD. If confirmed in larger studies, these results should be taken into 
account for the personalized choice of dopaminergic treatment and its adjustment over the course of the disease.

Data availability
Anonymized data of this study will be available from the corresponding author on reasonable request from any 
qualified researcher, following the EU General Data Protection Regulation. The study protocol and statistical 
analysis plan will be shared upon request.
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