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A B S T R A C T

Harnessing the power of tidal streams is a sustainable way of exploiting renewable marine energy resources. It
involves installing tidal stream turbines underwater to harness the energy. Nevertheless, these turbines are
prone to the accumulation of biofouling, which significantly reduces their energy output and operational
efficiency. It is therefore crucial to implement a condition-based monitoring system to detect biofouling
promptly and ensure the continuous operation of a tidal stream turbine. In this context, this paper presents
a data-centric approach that uses model submerged tidal stream turbine video images to detect and quantify
biofouling. The relevance of a two-dimensional variational mode decomposition approach is investigated to
extract relevant information from the potentially noisy collected images. While generative adversarial networks
are used to address the data imbalance problem, a convolutional neural network is adopted to detect and
assess the extent of biofouling. The performance of the proposed approach is assessed and validated using two
experimental datasets obtained from the tidal stream turbine platforms of the Shanghai Maritime University
and the Lehigh University.
1. Introduction

The energy sector is a pillar of the country’s economic activity
through its various forms of energy in nature, both fossil and renew-
able (Nafkha-Tayari et al., 2022). Fossil energy comes from sources
available in limited quantities on Earth, which are exhausted over
time. Renewable energy comes from natural resources that can be
replenished and are environmentally friendly. This type of energy is
available in nature in various forms, such as solar, wind, ocean, etc. The
advantage of the latter is its independence from the climate, as well as
its sustainability. There are several ways of harnessing this energy, such
as tidal stream, with the advantages of good predictability and minimal
visual and environmental impact (Rashid et al., 2023d; Dezhdar et al.,
2023).

Harnessing tidal stream energy requires a tidal turbine (TST) em-
bedded in the estuary, rotating under the effect of the tidal stream
(Liguo et al., 2022). Unfortunately, these turbines present a favorable
environment for biofouling deposits (Titah-Benbouzid et al., 2023).
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These plant organisms cause an increase in aerodynamic resistance,
a reduction in efficiency, and accelerated corrosion of the turbines
(Rashid et al., 2023c,a). At this stage, cleaning is necessary. Sys-
tematic preventive maintenance consists of setting dates for turbine
cleaning. This strategy has proved costly and has been replaced by
condition-based maintenance (CBM), which uses various monitoring
techniques such as vibration monitoring caused by turbine blade imbal-
ance, current and voltage monitoring, underwater imaging inspection,
etc. (Abbas and Shafiee, 2020; Freeman et al., 2021).

Recent frameworks have exploited image-based methods, which are
the easiest to master and the most efficient, despite the disadvantage of
noisy and blurry images (Rashid et al., 2023b). Bloomfield et al. (2021)
applied deep learning to automate the classification of biofouling in
images and compared it to expert assessments. A model trained on
over 10,000 annotated images showed accuracy comparable to that of
experts, suggesting that automated analysis could effectively replace
costly manual inspections. Zhao et al. (2023) introduced the FIDCE
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algorithm to enhance biofouling image segmentation. The MFONet
model, incorporating MobileNetV2 and ASPP, achieved precise pixel-
level segmentation. Results demonstrated that MFONet enabled ac-
curate and swift identification of biofouling, making it suitable for
underwater cleaning robots. Santos et al. (2022) utilized hyperspectral
imaging to detect and quantify marine biofouling on coated surfaces,
offering greater precision than visual methods. A new imager, incor-
porating a liquid crystal filter and uniform LED illumination, achieved
high accuracy. The model enabled detailed biofouling quantification
despite spectral similarities among species. Gormley et al. (2018) tested
CoralNet, an automated image analysis software, on images of marine
biofouling from UK offshore platforms. The results revealed varying
levels of biofouling diversity and showed no significant differences
between analysis methods. CoralNet has enabled a more efficient and
consistent approach to the assessment of biofouling in offshore struc-
tures. Pedersen et al. (2022) used image analysis to evaluate fouling
control coatings, in contrast to manual inspections. A pixel classifi-
cation model, trained with ilastik, quantified biofouling coverage on
panels exposed at sea. The results facilitated a standardized assess-
ment of coating resistance. First et al. (2021) developed a method for
quantifying biofouling using a low-cost underwater camera and image
processing algorithms. In situ images were analyzed with machine
learning models to classify and quantify fouling. This approach proved
to be quick, simple, and cost-effective for managing biofouling. As
is well known, underwater vision is always noisy, which makes ob-
ject detection more difficult, especially for biofouling, whose irregular
shapes and colors vary from species to species. In this context, the
above-discussed works on the detection of biofouling through imaging
involves a variety of image processing techniques. These techniques
include feature extraction by convolutional layers (Bloomfield et al.,
2021), combined with a guided filter (Zhao et al., 2023), a physical fil-
ter combined with hyperspectral imaging (Santos et al., 2022), software
for image processing (Gormley et al., 2018; Pedersen et al., 2022), and
color code filtering (First et al., 2021).

Recently, the two-dimensional variational mode decomposition (2D-
VMD) has been suggested as an efficient tool for image processing.
This technique offers better advantages, such as good multi-scale de-
composition and better image denoising. 2D-VMD is used in different
areas and has proven its efficiency for image processing. In the field
of medicine, Parashar and Agrawal (2021) treat glaucoma disease for
severity classification (3 classes). Compact 2D-VMD is used for the
decomposition of the retinal image of the eye. For each variational
mode, they calculate indicators that are then reduced using LDA. At the
end, a classification by SVM and experimental validation. In the field
of image processing, Ma et al. (2019) used 2D-VMD for color image
reconstruction, beginning with the decomposition of the image using
compact 2D-VMD and the removal of artifact pixels. They then adjusted
the image lighting and reconstructed the image to achieve better con-
trast. Pei et al. (2020) used 2D-VMD in geological interests for source
edge detection. Using decomposition by 2D-VMD and mathematical
morphology, this makes it possible to detect field edges. 2D-VMD is
also used for hyperspectral image classification by Zhuo et al. (2023).
It begins by decomposing the images into a series of mode components,
then collects the temporal characteristics of each mode to be learned
using an SVM.

Researchers in recent years have adopted machine learning-based
approaches for early detection and diagnosis. Such an approach pro-
vides a decision-support tool deployed in real-time and permanently.
Chen et al. (2020) transformed vibration signals from bearing de-
fects into RGB images after time-frequency transformation-based CWT.
These images are used for the training of a ResNet network and for
the diagnosis of bearing defects. Zhong et al. (2022) With the same
processing technique, signals are transformed into images. To improve
diagnostic quality, a transfer model called SqueezNet is combined
with the self-attention mechanism. This methodology is applied to the

bearing defect. The same methodology was applied using ResNet34

2 
for bearing fault classification (Zhou et al., 2022). Zhu et al. (2023)
converted vibration signals to spectral images using synchrosqueezing
wavelet transform. These images are used to train a network combining
VGG for feature extraction and LSTM for good memory and better
classification. This method is applied to fault diagnosis of hydraulic
axial piston pumps.

Despite the significant advancements made by machine learning,
the primary challenge remains the lack of sufficient data. Various data
augmentation techniques are employed to address this issue, including
noise addition, rotation, scaling, translation, and cropping (Anaya-Isaza
and Mera-Jiménez, 2022; Habbouche et al., 2021a). An innovative aug-
mentation technique known as generative adversarial networks (GANs)
has recently emerged. These networks are designed to generate syn-
thetic images that closely resemble the original input images. Several
crossings were based on this technique, Liang et al. (2020) transformed
the monitoring vibratory signals into images using CWT, then increased
using GAN. The resulting images are then used for fault classification
using CNN. Liu et al. (2022) used GAN to generate synthetic vibratory
signals for better CNN network training for fault classification, vali-
dated on an experimental dataset. For the same purpose of increasing
data, Li et al. (2022b) generated spectra of the different mechanical
faults based on conditional Wasserstein GAN, and then evaluated the
correlation between generated and real signals. Finally, faults classifi-
cation by GRU. Li et al. (2020) applied GAN with a gradient penalty to
balance and complete the dataset. From real surveillance spectra, new
signals are generated to improve learning. This approach is applied to
gearbox diagnosis.

Based on the above background and current state-of-the-art tech-
niques, this paper proposes the development of a new method for the
detection and estimation of biofouling. The method relies on GANs for
data enhancement through synthetic image generation, uses 2D-VMD
for image processing and filtering, and employs ResNet50 for feature
extraction and classification. In this context, the main contributions of
the proposal are as follows:

- Providing an intelligent decision support tool for real-time estima-
tion of biofouling by first detecting and then estimating it;

- Data augmentation using GAN for synthetic image generation;
- Underwater image denoising using 2D-VMD for improved biofoul-

ing detection;
- Extraction of multi-scale functions using ResNet50 to retrieve the

most discriminating features between different classes;
- Double experimental evaluation and validation using TST platform

datasets;
- Demonstration of the effectiveness of the proposed methodology

in different operating modes (5 different tidal stream speeds).
The paper is organized as follows: Section 2 is devoted to the

theoretical presentation of the methodology. Section 3 deals with ex-
perimental evaluation and validation. Section 4 presents an analysis of
the obtained results, while Section 5 is the conclusion.

2. Proposed 2D-VMD image processing-based machine learning
approach

The proposed methodology for biofouling detection and estimation
is illustrated by the flowchart of Fig. 1. Starting with data augmentation
using GAN, then image processing by 2D-VMD feature extraction and
classification using ResNet50. Finally, an experimental evaluation of
the methodology using different statistical criteria.

2.1. Generative adversarial network

GAN is a type of deep learning network proposed by Goodfellow
in 2014. Consisting of two internal networks, the first one is called
generator (𝐺) and the second one is called discriminator (𝐷). The role
of the 𝐺 is to generate images resembling real images. The role of

𝐷 is to differentiate between real and fake images (fake images are
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Fig. 1. Proposed methodology flowchart.

those generated by 𝐺), as illustrated in the flowchart of Fig. 2. The two
networks continue to improve the images generated so that they are
as close as possible to the original, minimizing the difference between
the generated images and the real ones (min𝐺), on the other hand,
improving the quality of differentiation between fake and real images
(max𝐷) (Li et al., 2022a).

This minimax competition is expressed by an optimization problem
formulated as follows:
min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 𝐸𝑥∼𝑝𝑟(𝑥)
[

log𝐷(𝑥)
]

+𝐸𝑧∼𝑝(𝑧)
[

log(1 −𝐷 (𝐺 (𝑧)))
] (1)

𝑧 represents the random signal generated with the distribution 𝑝(𝑧);
𝑥 represents the input signal with the distribution 𝑝(𝑥); 𝐺(𝑧) is the
generated sample; 𝐷(𝑥) is the obtained result. If 𝐷(𝑥) > 0.5 the sample
is real, else it is fake (Li et al., 2022b,a).

The training process is done by the descent gradient for updating
parameters, and loss function minimization.

2.2. 2D variational mode decomposition

Based on multi-scale image decomposition, allow decomposing im-
age to 𝑘 modes, named intrinsic mode function (IMF). Each one is
characterized by a limited bandwidth and a central frequency. 2D-
VMD, an extension of VMD, is an adaptive, non-recursive algorithm.
3 
Fig. 2. GAN flowchart (Li et al., 2022a).

Based on a multi-scale decomposition of the image, it allows the image
to be divided into 𝑘 modes, known as intrinsic mode functions (IMFs).
Each of these is characterized by a limited bandwidth and a central
frequency.

The decomposition steps are described in the following steps
(Dragomiretskiy and Zosso, 2015; Jiang et al., 2019):

1. The analytic signal (�̂�𝐴𝑆,𝑘(�⃗�)) to be decomposed is formulated as
in Eq. (2). Obtained by the Hilbert transformation of the original signal
𝑓 (𝑥), which allows to obtain unilateral frequency spectrum:

̂𝐴𝑆,𝑘(�⃗�) = �̂�𝑘(�⃗�) ∗

(

𝛿
(⟨

�⃗�, �⃗�𝑘
⟩)

+
𝑗

𝜋
⟨

�⃗�, �⃗�𝑘
⟩

)

𝛿
(⟨

�⃗�, �⃗�𝑘,⊥
⟩)

(2)

where 𝛿 (𝑡) is the unit impulse function; ∗ is the 2D convolution opera-
tor.

2. The formulated spectrum consists of a set of modes around central
frequencies 𝑒−𝑗⟨�⃗�,�⃗�𝑘⟩ and specific bandwidth. The spectral formulation
of the multi-modal signal is as follows:
[

�̂�𝑘(�⃗�) ∗

(

𝛿
(⟨

�⃗�, �⃗�𝑘
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+
𝑗

𝜋
⟨

�⃗�, �⃗�𝑘
⟩

)

𝛿
(⟨

�⃗�, �⃗�𝑘,⊥
⟩)

]
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3. The frequency bandwidth is estimated by an optimization of the
gradient L2-norm, formulated as in Eq. (4).

min
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(4)

where �̂�𝑘 =
{

𝑢1, 𝑢2,… , 𝑢𝑘
}

represents 2D modes after decomposition;
𝜔𝑘 =

{

𝜔1, 𝜔2,… , 𝜔𝑘
}

represents center frequencies of each mode; ∇
represents second derivative.

The resolution of the constrained variational problem is transformed
into an iterative optimization problem, by the introduction of the
Lagrangian matrix function 𝐿. The new formulation in Eq. (5).

𝐿
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𝑢𝑘(𝑘)

⟩

(5)

where 𝜆 represents the Lagrange multiplier; 𝛼 represents the penalty
factor parameter.

This transformation allows to solve unconstrained problem Eq. (6).

min max𝐿
({

𝑢𝑘
}

,
{

𝜔𝑘
}

, 𝜆
)

(6)

𝑢𝑘 ,𝜔𝑘 𝜆
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Fig. 3. Residual learning (He et al., 2016).

At each iteration, the optimization variables are updated by the follow-
ing formulas:

𝑢𝑛+1𝑘 (�⃗�) =
𝑓 (�⃗�) −

∑𝐾
𝑘=1 𝑢𝑘(𝜔) +

𝜆(𝑡)
2

1 + 2𝛼(𝜔 − 𝜔𝑘)
2

(7)

�⃗�𝑛+1
𝑘 =

∫𝛺𝑘
�⃗�|
|

�̂�(�⃗�)|
|

2𝑑�⃗�

∫𝛺𝑘
|

|

�̂�(�⃗�)|
|

2𝑑�⃗�
(8)

�̂�𝑛+1(𝜔) = �̂�𝑛(𝜔) + 𝜏

(

𝑓 (𝜔) −
𝐾
∑

𝑘=1
𝑢𝑛+1𝑘 (�⃗�)

)

(9)

A check of the stop condition at each iteration in Eq. (10):
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2

2

‖

‖

‖

�̂�𝑛𝑘
‖

‖

‖

2

2

< 𝜀 (10)

where 𝜏 is the fixed time step and 𝜀 is convergence error.
After convergence of the problem, the mode spectra obtained are

transformed into the time domain by the inverse Fourier transform.

2.3. Transfer learning

Convolution networks have been a considerable success in recent
years, and their introductions in different fields for image classifica-
tion. The strength of these networks is in relation to their two-stage
architecture, the first stage of feature extraction through convolution
and pooling operations. The second stage, learning, can be performed
by different types of networks, such as MLP, LSTM, etc. (Habbouche
et al., 2021b,a). The design of these networks is time-consuming and
requires significant resources and a large amount of data. For this
task, pre-trained networks are preferable, and this procedure is called
transfer learning. This procedure involves using networks trained on
complex classification tasks and adapting them to achieve a less com-
plex task (Anaya-Isaza and Mera-Jiménez, 2022). Several convolution
networks are used for this purpose, such as ResNet50, VGG16, VGG19,
etc. (Rashid et al., 2023b). These networks were trained on a large
dataset developed for standard computer vision benchmarks. Deep
Residual Network (ResNet) was created by He et al. (2016) and won
the ImageNet competition in 2015. ResNet is a network of 50 deep
layers (48 convolutive layers, one MaxPool layer, and one medium
pool layer). Previously, learning was enhanced by means of deeper
and deeper networks. Gradient vanishing is an emerging problem.
ResNet can improve accuracy without going deep by adding residual
connection skip layers, as shown in Fig. 3.

This residual connection tip formulated as fellow (He et al., 2016):

𝐻(𝑥) = 𝐹 (𝑥) + 𝑥 (11)

where 𝑥 denote the input layer, 𝐹 (𝑥) output layer, and 𝐻(𝑥) output of
residual layer. where 𝑥 denotes the input layer, 𝐹 (𝑥) the output layer,
and 𝐻(𝑥) the residual layer output.
4 
Fig. 4. The Shanghai Maritime University tidal stream turbine experimental
platform (Saidi et al., 2020).

Table 1
Summary of training parameter.

Parameter Value

Optimizer Adam
Mini batch size 128
Learning rate 0.0002
Gradient decay factor 0.5
Squared gradient decay factor 0.99

2.4. Evaluation and classification

The classification is evaluated using statistical indicators. Among
these indicators, accuracy is the most used and gives a global overview
of learning and classification quality. The confusion matrix is an-
other representation of the classification and gives more detail on the
classification quality for each class (Habbouche et al., 2021b). Other
performance metrics classifications are used for global and specific
evaluation which are: Recall, precision, and F1-score (Chien et al.,
2022).

3. Experimental dataset-based evaluation and validation

3.1. Dataset description

For the experimental validation of the proposed methodology, a
dataset created at the Shanghai Maritime University TST platform
laboratory is used (Fig. 4). The test rig consists of a tunnel to simulate
aquatic turbulence. In this tunnel is submerged an electric turbine
230W/8 pole pairs direct-drive permanent magnet synchronous gen-
erator. On the blades of this turbine, different masses are glued to
prevent the imbalance caused by the deposition of algae, as shown in
Fig. 5. The test rig made it possible to create a dataset of five classes
(healthy, single blade densely attached, single blade sparsely attached,
two blades densely attached, and three blades densely attached). Every
class contains five images for five speed levels (level 1, level 2, level
3, level 4, and level 5) captured from a recorded video (Saidi et al.,
2020).

3.2. Methodology description

The implementation procedure for the proposed methodology is as
follows: We begin by reading images from the dataset containing 5
images (5 different operating modes) for the 5 classes, resulting in a
total of 25 images. This number of images is extremely low for deep
network training, which requires a data augmentation process.

For data augmentation, GAN is used to generate synthetic images
to expand the training dataset. The description of the used network is
illustrated in Figs. 6 and 7.

The training parameters are summarized in Table 1.
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Fig. 5. Emulated biofouling states: (a) healthy, (b) single blade sparsely attached, (c)
single blade densely attached, (d) two blades densely attached, (e) three blades densely
attached.

Fig. 6. Generator network architecture.

Fig. 7. Discriminator network architecture.
5 
Table 2
Performance metrics of proposed methodology.

Accuracy Recall Precision F1-score

94.1% 94.1% 93.7% 93.9%

Table 3
Comparison of transfer learning networks.

Resnet50 VGG16 VGG19 MobileNet

Accuracy 94.1% 92.9% 93.8% 85.1%

Through this step, the database is increased from 5 to 105 images for
each class (5 originals and 100 generated). At this level, the quantity of
images is acceptable, with the disadvantage that the original images are
noisy as shown in Fig. 5, as well as the images obtained by GAN. To
address this issue, an image processing approach known as 2D-VMD,
which was thoroughly detailed in the preceding section, is applied.
For the configuration of this technique, learning accuracy is chosen
as the objective function. The best accuracy is obtained for a random
initialization and a decomposition at 5 IMF only. The setting adopted
is: bandwidth constraint = 5000, Lagrangian multipliers = 0.25, and
tolerance = 5 × 10−6.

The next step is the detection and then estimation of biofouling.
ResNet50 is used with modifications to adapt to our problem. Replace
the classification layer from 1000 classes to 2 classes for detection
(healthy and faulty) and to 5 classes for severity estimation.

Learning is initiated by the ResNet50 network and the dataset is
obtained after processing with a random selection of 80% for training
and 20% for testing. Adopting the following training options obtained
by grid-search: optimizer = Adam; mini batch size = 32; learning rate
= 0.01.

The final step is the evaluation, using different statistical criteria
and comparisons, to show the effectiveness of the proposed methodol-
ogy, with a discussion of results in the next section.

4. Results and evaluation

4.1. Experimental validation using the Shanghai Maritime University plat-
form

To successfully complete this part, the evaluation criteria are shown
for each step to justify the adopted approach.

The first step is data augmentation, resulting in an accuracy of
22.9%. This step is necessary in this context with the dataset used,
and the accuracy obtained shows that the beginning of learning is not
sufficient due to the quality of the noisy images used.

To improve accuracy, the image was then processed using 2D-VMD.
All images were processed prior to training using the ResNet50 network
(Fig. 8). This technique improved accuracy by up to 94.1%, with the
confusion matrix shown in Fig. 9. The confusion matrix shows good
classification with an average recall of 94.1% and an average precision
of 93.7% (Table 2). With a maximum shift of 3% for both indicators,
the detection of the different classes is homogeneous.

The results obtained are satisfactory, demonstrating the interest
and effectiveness of the 2D-VMD technique for processing underwater
images, by retaining only the first five IMFs and eliminating the residue.

As previously mentioned, different networks are used for transfer
learning. This study compared different pre-trained networks, includ-
ing VGG16, VGG19, and MobileNet. Table 3 outlines this comparison
and highlights the superiority of ResNet50 in the classification of
underwater biofouling images.

For practical reasons, it is preferable to detect the biofouling before
its estimation. Detection, as defined in many frameworks, is the binary
classification between defective and healthy states (Habbouche et al.,
2021a). Using the previous dataset, detection is performed between
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Fig. 8. Turbine image decomposition: (a) original, (b) 1st IMF, (c) 2nd IMF, (d) 3rd
IMF, (e) 4th IMF.

Fig. 9. Confusion matrix.

the healthy state and the other collected states. The accuracy ob-
tained was 98.7%. This demonstrates the effectiveness of the proposed
methodology for detecting biofouling in the event of data imbalance.
6 
Fig. 10. The Lehigh University tidal stream turbine experimental platform.

Condition-based monitoring systems are needed to reduce the im-
pact of biofouling on energy production. The proposed methodology
addresses two practical challenges of TST monitoring. The first is data
imbalance, which has been remedied by using GAN for data augmenta-
tion. The second concerns the processing of noisy underwater images,
which was solved using the 2D-VMD technique. Deployment of the
proposed methodology has provided a decision support tool for tidal
stream turbine monitoring, with a detection accuracy of 98.7% and an
estimation accuracy of 94.1% in different operating modes.

4.2. Experimental validation using the Lehigh University platform

To reinforce the effectiveness of the proposed methodology, ad-
ditional experiments were carried out at the Tidal Turbulence Test
Facility at Lehigh University, Pennsylvania, USA (Vinod et al., 2021).
The open-surface, recirculating water tunnel (Engineering Laboratory
Design Inc., Model# 505) has a test section that is 0.61 m wide, 0.61 m
tall and 1.98 m long. It is equipped with a 25HP single stage axial flow
propeller pump and is capable of attaining flow speeds up to 1 m/s in
the test section (Kolekar et al., 2019; Kolekar and Banerjee, 2015).

The test set-up used for creating the database is illustrated in Fig. 10.
A 1:20 scale, three-bladed tidal turbine model was tested in the current
work. The 0.279 m diameter (D) rotor was made of constant chord
(c = 0.016 m), no twist, SG6043 profiled blades (Hu et al., 2014;
Subhra Mukherji et al., 2011; Kolekar et al., 2011). The turbine has
a rotor area of 0.061m2 and is operated at a blockage ratio (rotor
area/cross-section of the test section) of 16% while operating in the
T3F facility. It is operated under a water flow velocity of 0.83 m/s
and an image capturing frequency of 70 images per second (Vinod
and Banerjee, 2019). To replicate the biofouling in a laboratory, we
employed plastic beads and tripwire as a surrogate for biological or-
ganisms commonly associated with fouling in aquatic environments.
These beads, characterized by specific dimensions and features, were
randomly distributed and affixed to the front face of blades listed below
and depicted in Fig. 11:

- 200 images in the ‘‘Leading Edge Trip Wire’’ class (Fig. 11(a));
- 200 images in the ‘‘One blade Randomly Distributed Seventeen

Beads’’ class (Fig. 11(b));
- 100 images in the ‘‘Test With Clean Turbine’’ class (Fig. 11(c));
- 200 images in the ‘‘Three blades Randomly Distributed Eight

Beads’’ class (Fig. 11(d));
- 200 images in the ‘‘Three Blades Randomly Distributed Seventeen

Beads’’ class (Fig. 11(e));
- 200 images in the ‘‘Trip Wire With Fifty Eight Percent Coverage’’

class (Fig. 11(f));
- 200 images in the ‘‘Two beads along RPS’’ class (Fig. 11(g));
- 200 images in the ‘‘Two Blades Randomly Distributed Seventeen

Beads’’ class (Fig. 11(h)).
Additional details about the default class execution procedure are

provided in Table 4.
The class ‘‘Test With Clean Turbine’’ is a minority class with 100

samples compared to other classes, each having 200 images. The issue
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Fig. 11. Emulated biofouling states.

Table 4
Experimental conditions.

Parameter Value

Distance of wire from leading edge 0.11 cm
Distance of wire from tip 0.65 cm
Length of turbine blade 10.3 cm
Width of leading edge trip wire 0.48 cm
width of turbine blade 1.4 cm
Height of wire 0.11 cm
Diameter of wire 0.11 cm
Area of turbine blade 14.42 cm2

Area of one blade covered by leading edge wire 4.94 cm2

percentage of covered area by wire of blade 29.3%
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Fig. 12. Turbine image decomposition: (a) original, (b) 1st IMF, (c) 2nd IMF, (d) 3rd
IMF, (e) 4th IMF.

of imbalanced data necessitates an increase in data to ensure that all
classes have 200 images. To address this, GAN is used to generate
synthetic images.

The image set (original and generated by GAN) is decomposed
using 2D-VMD under the same parameters as those applied to the first
dataset. The original image and those obtained by decomposition are
shown in Fig. 12.

The original images and those generated by 2D-VMD, are parti-
tioned into training and testing sets. Following the ResNet50 training,
the accuracy reaches 95.7%, and the corresponding confusion matrix is
depicted in Fig. 13.

Through this dual validation, we affirm the accuracy of the pro-
posed methodology for TST monitoring through photographic imaging,
even with the constraint of lack of data and noisy images.

5. Conclusion

This paper proposed a data-centric approach using submerged tidal
stream turbine video images for biofouling detection and estimation.
The proposed methodology framework incorporated 2D variational
mode decomposition (2D-VMD) for denoising underwater images, gen-
erative adversarial networks (GAN) to address data imbalance, and
ResNet50 for multi-scale feature extraction. The approach demon-
strated superior accuracy in detection and estimation tasks, validated
through two experimental datasets from the tidal stream turbine plat-
forms of Shanghai Maritime University and Lehigh University.
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Fig. 13. Confusion matrix.

The proposed method has several advantages, including that of
providing an intelligent decision-support tool for real-time estimation
of biofouling, guaranteeing accurate detection and subsequent estima-
tion. The use of GAN for synthetic image generation has increased
the training data, improving the robustness of the model. The method
was validated on the TST platforms dataset, demonstrating effective-
ness under various operational conditions, including different speeds,
and particularly showing an increase in accuracy in highly turbulent
environments.

However, the study did not address the annotation of different
types of biofouling, which limited the detailed analysis of biofouling.
The focus was solely on classifying the blades images affected by
biofouling rather than detecting biofouling as an object in the im-
ages. The 2D-VMD technique required significant expertise in image
and signal processing, and the lack of a clear criterion for selecting
appropriate decomposition levels could potentially affect efficiency.
Additionally, while ResNet50 performed well, its effectiveness could
be further enhanced by incorporating additional feature extraction
tools, as suggested in prior works. Overall, the proposed detection and
estimation framework has proven to be an effective decision-support
tool for monitoring biofouling on tidal stream turbines.

Future investigations aim to design a digital twin of the TST for
the detection and prediction of biofouling. To develop this digital twin,
it is necessary to combine a model (mathematical or numerical) with
experimental data such as images or signals (e.g., vibrations, currents,
etc.). When it comes to modeling the biofouling settling phenomenon,
this is probabilistic and depends on environmental parameters, such as
temperature, salinity, nutrient levels, flow rate, light availability, etc.,
as well as operational parameters, such as rotation speed limits, oper-
ating hours, etc. The operational parameters are operator-dependent,
while the environmental parameters are probabilistic and vary accord-
ing to the geographical deployment site of the TST. If we manage
to model these environmental parameters and establish probabilistic
colonization models for each region, this will enable us to predict the
behavior of the machine at each level of deposit. The biofouling deposit
induces an imbalance that is reflected in vibrations or fluctuations
in the TST-generated current. By deploying a data acquisition system
(vibration and/or current) and studying the similarity between the
obtained signal and that simulated by the deposition model, we can
define the severity state and estimate the remaining operational life.
This information is crucial for maintenance purposes, as it enables
to plan the TST cleaning in terms of human and material resources,
therefore avoiding an unscheduled shutdown.
8 
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