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Abstract

The algebraic A-calculus is an extension of the ordinary A-calculus with linear combi-
nations of terms. We establish that two ordinary A-terms are equivalent in the algebraic
A-calculus iff they are 8-equal. Although this result was originally stated in the early 2000’s
(in the setting of Ehrhard and Regnier’s differential A-calculus), the previously proposed
proofs were wrong: we explain why previous approaches failed and develop a new proof
technique to establish conservativity.

1 Introduction
The algebraic A-calculus was introduced by the second author [Vau07; Vau09] as a generic
framework to study the rewriting theory of the A-calculus in presence of weighted superpositions
of terms. The latter feature is pervasive in the quantitative semantics of A-calculus and linear
logic, that have flourished in the past twenty years [Ehr05; Lai+13; DE11; Cas+18, etc.] and
the algebraic A-calculus is meant as a unifying syntactic counterpart of that body of works.
The algebraic A-calculus was actually obtained by removing the differentiation primitives
from Ehrhard and Regnier’s differential A-calculus [ER03], keeping only the dynamics associated
with linear combinations of terms. This dynamics is surprisingly subtle in itself: for instance,
if 1 has an opposite in the semiring R of coefficients, then the rewriting theory becomes trivial.
We refer the reader to the original paper [Vau09] for a thorough discussion, and focus on the
question of conservativity only, assuming R is positive — i.e. if a+b =0 then a =b=0. We
briefly outline the main definitions, keeping the same notations as in the former paper, so that
the reader can consistently refer to it for a more detailed account if need be.

Overview of the algebraic A-calculus. The syntax of algebraic A-terms is constructed in
two stages. We first consider raw terms, which are terms inductively generated as follows:

Lk M,N,...:=2 | \e.M | (M)N|0| M+ N |a.M

where a ranges over the semiring R (beware that we use Krivine’s convention for application).
We consider raw terms up to a-equivalence: Lg contains the set A of pure A-terms as a strict sub-
set. We then consider algebraic equality £ on raw terms, which is the congruence generated
by the equations of R-module, plus the following linearity axioms:

Az.0 £ 0 Az.(M + N) & \z.M + \v.N \z.(a.M) £ adz.M
0)P£0 (M+N)P=(M)P+(N)P (a.M)P = a.(M)P

*This work was partially supported by the French ANR project PPS (ANR-19-CE48-0014).
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which reflects the point-wise definition of the sum of functions. Note that, without these
equations, a term such as (Az.M + Ax.N) P has no redex.

The terms of the algebraic A-calculus, called algebraic terms below, are then the £-
classes 0 = M of raw terms M € Lg. We extend syntactic constructs to algebraic terms (e.g.,
Az.M = \z.M, which is well defined because £ is a congruence). Among algebraic terms, we
distinguish the simple terms, which are intuitively those without sums at top level: a term
o is simple if ¢ = z for some variable z, or ¢ = Az.7 or 0 = (7) p where 7 is itself simple
(inductively). In particular, M is simple as soon as M € A. By definition, algebraic terms form
an R-module, and it is easy to check that it is freely generated by the set Ar of simple terms:
we write R(AR) for the module of algebraic terms.

A seemingly natural way to extend the S-reduction —A of A-terms to algebraic terms is to
define it contextually on raw terms, and then apply it modulo £: among other issues with this
naive definition, note that M £ M + 0.N would reduce to M + 0.N’ £ M for any N —» N’,
so that the obtained reduction would be reflexive and there would be no clear notion of normal
form. Ehrhard and Regnier’s solution is to rather consider two relations: — C Ag X R(AR)
defined contextually on simple terms with S-reduction as a base case; and = C R(Ag) x R{AR)
on algebraic terms, obtained by setting 0 = ¢’ iff 0 = a.7 4+ p and ¢’ = a.7/ 4+ p with 7 — 7/
and a # 0. Then = is confluent [ER03; Vau09] and, provided R is positive, an algebraic term
is in normal form iff it is the class of a raw term without S-redex.

Note that, for any fixed point combinator Y, by setting oo, = (¥) Az.(0 + z), we obtain
00 ¢+ 0+ 00, where « is the equivalence on R(AR) generated by the reduction relation =. In
case 1 € R has an opposite —1, we can now exhibit the above-mentioned inconsistency of the
theory: 0 = 00, + (—1).00, ¢+ o for any o. From now on, we thus assume that R is positive.

Contributions. Our goal is to establish that, for any two A-terms M and N € A, we have
M < N iff M <5 N, where <>, is the usual S-equivalence on A-terms. For that purpose, it is
sufficient to establish a conservativity result on reduction relations rather than on the induced
equivalences: if M =" N then M —} N. This is our main result, theorem 4.3 below.

In the next section, we explain what was wrong with the previous two attempts, first by
Ehrhard and Regnier, then by the second author, to establish conservativity, and we outline the
new proof strategy we propose. The rest of the paper is dedicated to the proof of theorem 4.3.!

2 Two non-proofs and a new approach

Recall that an ARS (abstract rewriting system) is a pair (A4,~) of a set A and binary relation
~ C A x A. An extension of (A,~) is another ARS (A’,~') such that A C A’ and ~ C
~+'. This extension is conservative if, for every ai,as € A, a1 ~ as iff a3 ~' as. An
equational system is an ARS (A, ~) such that ~ is an equivalence relation. Our goal is thus
to establish that the equational system (R{AR), <) is a conservative extension of (A, <>p) —
here we consider the injection M € A — M € R(ARr) as an inclusion.

In their paper on the differential A-calculus [ER03], Ehrhard and Regnier claim that this
follows directly from the confluence of =, but this argument is not valid: = does contain — 4,
and it is indeed confluent, without any positivity assumption; but we have already stated that

<> is inconsistent in presence of negative coefficients, so this observation cannot be sufficient.

1These results were obtained during a research internship of the first author, in the first half of 2019; they
were presented by the second author at the annual meeting of the working group Scalp (Structures formelles
pour le Calcul et les Preuves) in Lyon in October 2019. This collaboration was unfortunately disrupted by the
COVID-19 pandemic in the following year, which delayed dissemination to a wider audience.
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Figure 1: Inference rules for the mashup relations

Ehrhard and Regnier’s mistake is certainly an erroneous application of a general conserva-
tivity result in Terese’s textbook [Ter03], missing the fact that Terese’s notion of extension is
more demanding: for Terese, (4,~») is a sub-ARS of (4’,~') if A C A" and, for every a € A
and @’ € A, a ~' o it @/ € A and a ~ d/. The latter is strictly stronger than the mere
inclusion ~+ C ~/, and is indeed sufficient to deduce conservativity for the induced equational
systems from the confluence of the super-ARS [Ter(03, Exercice 1.3.21 (iii)]. But (A, —,) is not a
sub-ARS of (R{AR), =), even when R is positive: for instance, if R= QT and M —, M’ # M,
we have M = %M + %M = %M + %M ¢ A. So one must design another approach.

Given o € R{AR), one can consider the finite set of A-terms A(c) C A obtained by keeping
exactly one element in the support of each sum occurring in o [Vau09, Definition 3.18]. The
second author tried to establish the conservativity of =" over —} by iterating the following:

Claim 2.1 ([Vau09, Lemma 3.20]). If o = o’ and M’ € A(c’) then there exists M € A(o) such
that M —% M.

But the latter claim is wrong! Consider, for instance, 0 = (A\z.(z)z)(y +2) = o' =
(y +2) (y + 2). We have M’ = (y) z € A(o’) but no term in A(o’) = {(A\z.(z) z) y, A\z.(z) z) 2}
B-reduces to M’. Note that, in this counter-example, there is no M € A such that M =~ o:
somehow, we must exploit this additional hypothesis to establish a correct version of claim 2.1.

Reasoning on =~ directly is difficult, due to its definition as a reflexive and transitive closure.
The technique we propose involves the definition of a mixed-type relation M |- o between a
A-term M and a term o € R(AR): intuitively, M |F ¢ when o is obtained by pasting together
terms issued from various reductions of M, and we say M I o is a mashup of such reductions.
In particular: M I+ M’ as soon as M —} M’; and M I o + 7 as soon as M I o and M IF 7.
We then show that IF is conservative over —% (lemma 3.4) and that M I o as soon as M =" o
(lemmas 3.3 and 4.2): this ensures the conservativity of =" over —3 (theorem 4.3). Our whole
approach thus rests on the careful definition of the mashup relation. Among other requirements,
it must behave well w.r.t. the structure of terms: e.g., if M I o then Ax.M |- A\x.o.

3 Mashup of pg-reductions

We define two relations - C A x Ag and IF C A x R(Ag) by mutual induction, with the rules
of fig. 1. If 0 € R(AR), we write Supp(c) C Ag for its support set.

Lemma 3.1. We have M |+ o iff, for every ¢’ € Supp(o), M + o’.

Proof. The forward implication is done by induction on the derivation of M IF o, noting that
if o/ € Supp(at + p) with M = 7 and M I+ p then ¢/ = 7 or ¢/ € Supp(p). For the reverse
implication, we can write ¢ = Y. | a;.0; with o; € Supp(c) for 1 < i < n, and obtain a
derivation of M I ¢ by induction on n. O
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Figure 2: Admissible rules for the mashup relations

Lemma 3.2. The rules of fig. 2 are admissible.

Proof. For (s), it is sufficient to observe that o = 1o + 0. For the other three rules, we reason
on the support sets, using lemma 3.1. [l

Lemma 3.3 (Reflexivity of -). For every M € A, M + M.
Proof. By a straightforward induction on M, using the reflexivity of —} and rule (s). O
Lemma 3.4 (Conservativity of IF). If M I+ M’ then M —} M'.

Proof. Note that M’ € Ag, hence M = M’ by lemma 3.1. The proof is then by induction on
M'’, inspecting the last rule of the derivation of M + M’:

(v) If M =3} x and M’ = z then we conclude directly since M’ = z.

(A) If M =3 Az.N and N F 7 with M’ = Az.7, then M’ = Az.N’ with 7 = N'. By induction
hypothesis, N —% N’, hence M —% M.

() I M =% (N)P, NF 7 and P IF p with M’ = (1) p, then M’ = (N') P with 7 = N’
and p = P’. In particular p € AR, hence P I p by lemma 3.1. By induction hypothesis,
N —% N’ and P —} P’, hence M —} M. O

Lemma 3.5 (Compatibility with —4). If M =3 M’ o then M + o. Similarly, if M —3}
M’ o then M I o.

Proof. For the first implication, it is sufficient to inspect the last rule of the derivation M’ I~ o,
and use the transitivity of —%. The second implication follows directly by induction on the
derivation of M’ I o. O

4 Conservativity of algebraic reduction

Lemma 4.1 (Substitution lemma). If M IF o and P I p then M[P/x] Ik o[p/x].

Proof. We prove the result, together with the variant assuming M F o instead of M I+ o, by
induction on the derivations of those judgements.

(v) f M =} y and o = y then:

— if y = x, then M[P/xz] =} z[P/z] = P IF p and we obtain M[P/z]| Ik p = o[p/z] by
lemma 3.5;

— otherwise, M[P/z] —} y[P/x] =y, hence M[P/x]I-y = olp/z] by (v).



(A) If M =3 Ay.N and N + 7 with ¢ = A\y.7 (choosing y # x and y not free in P nor in p),
then M[P/x] =4 Ay.N[P/x] and, by induction hypothesis N[P/z] IF T[p/z]: we obtain
M[P/xz] I Ay.7[p/z] = o[p/x] by (\).

(a) If M —7% (N1) N2, Ny F 7 and Ny I 7, with 0 = (1) 72, then we have M[P/z] —%
(N1[P/z]) No[P/x] and, by induction hypothesis, Ni[P/x] IF 71[p/x] and Ny[P/x] IF
Ta[p/x]: we obtain M[P/x] Ik (11[p/x]) r2[p/x] = o[P/x] by (a’).

(0) If o = 0 then o[p/z] = 0 and we conclude directly, by (0).

(+) Ifo = a7y +712 with M 7 and M I+ 7, then, by induction hypothesis, M[P/z] Ik 1[p/x]
and M[P/x] Ik m2[p/x], hence M[P/x] Ik a.m1[p/x] + m2[p/x] = olp/x] by (a'). O

Note that, by positivity, if o = a.7+ p with 7 € Agr and a # 0, then 7 € Supp(c) 2 Supp(p).

Lemma 4.2 (Compatibility with =). Let M € A and o' € R(AR). For every o € Ar such
that M =0 — o’ (resp. every o € R(AR) such that M | o = o’), we have M IF ¢’.

Proof. The proof is by induction on the definition of the reduction ¢ — ¢’ or o = .
o If 0 = (A\z.7) p € Agr and o’ = 7[p/x], then the derivation of M F o must be of the form
N —=ixN  NFr o
M —% (N)P NFar Plrp .
ME (Ax.m)p (a

By lemma 4.1, we have N'[P/z] IF o’. Moreover, M —3 (N)P =3 (Az.N')P —)
N'[P/x] and we obtain M IF ¢’ by lemma 3.5.

e If 0 = \z.7 and ¢/ = Az.7/ with 7 — 7/, then the derivation of M F o must be of the

form
M =3 AN NFT

(A) -
ME Xzt
We obtain N I 7/ by induction hypothesis, and we conclude by (\’).

o If o = (7)pand o' = (7') p’ with either 7 — 7" and p = p/, or 7 = 7/ and p = p/, then
the derivation of M F o must be of the form
M—3i(N)P NkT Plp

ME(r)p
We obtain N I 7/ and P I p’ by induction hypothesis, and we conclude by (a’).

o If o =a.7+4pand o’ =a7' + pwith 7 — 7/ and a # 0, then we have already observed
that 7 € Supp(o) and Supp(p) C Supp(c). Since M I+ o, we obtain M F 7 and M I+ p by
lemma 3.1. The induction hypothesis gives M IF 7/, hence M I+ a.7’+p =o' by (+7). O

Theorem 4.3 (Conservativity of ="). If M =" N then M —3 N.

Proof. Assume M =" N. By lemma 3.3 and (s), we have M |- M. By iterating lemma 4.2, we
deduce M I N. We conclude by lemma 3.4. (|
Corollary 4.4 (Conservativity of «»). If R is positive then M <> N iff M <>p N.

Proof. Assuming M < N, the confluence of = ensures that there exist o € R(Ag) and k € N,

such that M =% 5 and N =7 . Tt follows [Vau09, Lemma 3.23] that ¢ =" M|* where 7 is
the term obtained by reducing all the redexes of 7 simultaneously. Observing that M| = M,

we obtain N =" M| hence N —A M ¥ by theorem 4.3, which concludes the proof. O
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