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Abstract

When estimated from survey data alone, the distribution of high incomes in a
population may be misrepresented, as surveys typically provide detailed coverage
of the lower part of the income distribution, but offer limited information on top
incomes. Tax data, in contrast, better capture top incomes, but lack contextual
information. To combine these data sources, Pareto models are often used to repre-
sent the upper tail of the income distribution. In this paper, we propose a Bayesian
approach for this purpose, building on extreme value theory. Our method integrates
a Pareto II tail with a semi-parametric model for the central part of the income
distribution, and it selects the income threshold separating them endogenously. We
incorporate external tax data through an informative prior on the Pareto II coeffi-
cient to complement survey micro-data. We find that Bayesian inference can yield a
wide range of threshold estimates, which are sensitive to how the central part of the
distribution is modelled. Applying our methodology to the EU-SILC micro-data set
for 2008 and 2018, we find that using tax-data information from WID introduces no
changes to inequality estimates for Nordic countries or The Netherlands, which rely
on administrative registers for income data. However, tax data significantly revise
survey-based inequality estimates in new EU member states.
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1 Introduction

Tracking income distribution dynamics and inequality requires accurate insights
into top incomes. This arises from the right-skewed nature of income distributions
and the strong influence of high incomes on communicable conventional inequality
measures like the Gini index or the top 1% income share.

For this purpose, Pareto distributions are convenient for representing the right
tail of an income distribution above a given income threshold. Although their utility
dates back to their introduction in Pareto (1896), they are nowadays vastly exploited
for imputing observations, correcting data issues like high-income measurement or
coverage errors (e.g., Bourguignon 2018, Bartels and Metzing 2019, Blanchet et al.
2022a), and for inter- or extrapolating empirical top quantiles when grouped data
are used (Blanchet et al., 2022b).

The key issue in using Pareto models for high incomes (as we do in this paper),
is to determine when and how additional available data sources on high incomes
can provide most appropriate results for fitting the Pareto tail. Survey data is an
essential source of information to study a population’s incomes, along with detailed
information on other contextual variables. However, survey data are evidenced to
misrepresent high incomes, mainly due to under-sampling due to unreliable sampling
schemes (e.g., not enough rich households are included in the survey’s sampling
design), or to non-sampling issues like high-income households being less likely to
report information on their income when surveyed or more likely to under-declare
their income in their responses (see e.g. Lustig 2020).

Tax data, though typically available only in tabulated form, provide information
on top incomes more reliably due to tax authority scrutiny, although this relative im-
provement compared to survey data may also be nuanced by tax avoidance and tax
evasion phenomena. While tax records are more accurate sources for information
on high incomes, they lack coverage of low-income populations as these popula-
tion groups are generally not concerned by tax filing regulations.1 Their utility to
study inequalities within entire populations using Pareto tails has therefore been
approached through efforts to exploit them simultaneously to survey data.

This paper develops a new approach suited for the study of income distributions
and inequality under Pareto tails, introducing information from tax data on high
incomes to distributional estimates computed from household survey microdata. In
doing so, it offers contributions to several strains of the recent literature on the
topic.

Firstly, this paper contributes to the literature on empirical methods for rec-
onciling information from survey microdata with Pareto tails from external data
on high incomes for inequality analysis. A key obstacle is that conventional para-
metric distributions integrating Pareto tails, such as the Singh-Maddala or more
general Generalized Beta distribution, lack an explicit setting for the threshold de-
limiting their asymptotic Pareto tail. This prevents these tails from being directly
substituted or adjusted using tax data on high incomes. Recent approaches, such
as those developed in Jenkins (2017) and Blanchet et al. (2022a), offer solutions
to incorporate Pareto tails from tax data on incomes above a fixed threshold value
to distributional estimates from other data sources for the rest of the distribution

1This question is illustrated in Atkinson (2005) who makes use of the super-tax data set for the UK
over the 20th century to analyse top 1% income shares. A crucial challenge for this purpose is the
computation of the income shares of low-income population groups excluded from the super-tax data.
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below it. A challenge that has risen in consequence is that of devising the income
threshold above which the Pareto distribution estimated on tax data is a better
representation of the population’s top incomes than that offered from survey data.

Specifying the threshold delimiting a Pareto distribution of high incomes is an
exercise where several sources of uncertainty intersect. One source of uncertainty lies
in the discrepancies in the populations and income concepts each source of data is
concerned with, limiting the direct conversion of estimated quantities from tax data
to survey data. Another important source of uncertainty is the sampling variability
introduced by the sampling scheme yielding the survey sample, or by the possibility
of undetected tax filing omissions in the available data. In light of the several uncer-
tainties surrounding possible values for the threshold, a Bayesian treatment of the
issue seems a feasible alternative. This paper offers a first proposal in this direction
by treating this income threshold as an unknown parameter within a parametric
income distribution model with a Pareto tail and by devising a Bayesian inference
procedure to estimate posterior probability distributions for all model parameters.
The proposed Bayesian strategy builds on the recent literature modelling extreme
events using Pareto tails with an uncertain threshold (e.g., Cooray and Ananda
2005, Scarrott and MacDonald 2012, Majid and Ibrahim 2021b).

Secondly, this paper further contributes to the literature using Pareto distri-
butions to correct survey microdata estimates for high-income under-reporting or
non-response problems. An issue limiting this use of Pareto tails is that resulting
inequality estimates are only often reasonable when the income threshold delimiting
the tail is set to high values within the top decile of the distribution. This setting re-
sults restrictively too high, considering that significant high-income under-reporting
issues are often evidenced to take place well below this segment of the income distri-
bution (e.g., see matched survey and tax samples’ analyses of Angel et al. 2019 for
Austria and Flachaire et al. 2022 for Uruguay). Treating the income threshold as
uncertain, our proposed approach can exploit external tax-data estimates if available
by putting informative priors on the parameters ruling the Pareto tail.

We apply our methodology to the study of income distributions for most states
covered by the European Union’s Statistics on Income and Living Conditions (EU-
SILC) household survey microdata in 2008 and 2018. To allow the possibility of
revising high-income estimates through external tax-data estimates of top incomes
available from the World Inequality Database (WID) we build informative prior
distributions on the parameter ruling right-tail dispersion. This approach can in-
troduce external information for inference if upper-tail inequality as estimable from
EU-SILC microdata alone is significantly lower than that implied in the WID top
income estimates. We find that using tax-data estimates from WID introduces no
changes to inequality estimates for Nordic countries or The Netherlands, which rely
on administrative registers for income data variables in the EU-SILC. We also find,
however, that setting priors to be consistent with WID data significantly revises
survey-based inequality estimates in new EU member states.

Finally, this paper also contributes to the recent literature seeking to extend the
traditional Pareto I distribution to more elaborate Pareto distributions, allowing for
more flexible high-income representations less sensitive to the issue of selecting the
income threshold delimiting them. The original Pareto distribution is of particu-
lar popularity due to the simplicity of estimating its single parameter independent
of data format when an appropriate income threshold delimiting the upper tail is
known and because it serves as a practical linear interpolator between empirical top
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quantiles. Two crucial restrictions of this Pareto I model are that it leads to biased
estimates of income inequality if the threshold income is fixed to an inappropriately
low value and that it assumes a common and constant level of inequality within any
high-income population groups.

To address these limitations, more flexible models such as the Generalized Pareto
Distribution (GPD) of Pickands (1975) have been proposed, with the Pareto II be-
ing a particularly useful variant for income distributions.2 This latter distribution is
obtained through the addition of one parameter to the conventional Pareto I model,
effectively containing it as a particular case, and typically yield high-income esti-
mates that are less sensitive to the choice of the income threshold, though possibly
at a loss of precision (e.g., see Jenkins 2017 or Charpentier and Flachaire 2022). We
illustrate in our applications how posterior distribution estimates obtained under
our proposed approach can be used for probabilistically assessing the equivalence of
inequality estimates obtained under a Pareto II distribution with those obtainable
under a simpler Pareto I distribution, the former being evidenced as more appropri-
ate in almost all our analyses.

The paper is organized as follows. In section 2, we present the EU-SILC data for
15 initial member states (EUR15) and 8 new member states (NMS). We analyse the
limitation of this data set in terms of missing high-incomes information when it is
confronted to the WID data set. We compare in a Bayesian framework the Pareto
I tails of each data set. However, the Pareto model has limitations, compared
to the Pareto II model. In section 3, we show how the compound model of the
extreme value theory can be a basis for estimating the threshold. We detail Bayesian
inference for the compound Pareto II model with an informative prior on the Pareto
coefficient in section 4. We also detail in this section how to decompose the Gini
coefficient in a Bayesian framework. In section 5, we apply the proposed method to
analyse EU income distributions from EU-SILC microdata, exploiting external tax-
data estimates available from WID. Finally, section 6 offers concluding discussions
and several venues for future research stemming from these.

2 The EU-SILC data set and its missing rich

The European Community Statistics on Income and Living Conditions (EU-SILC)
aims at collecting comparable data on income, poverty and living conditions at the
European level. Income data can have alternative sources depending on the way they
are collected. The first source comes from surveys, which means that the respondent
provides directly her income. The second source comes from administrative data,
covering various sources such as social security or fiscal declarations, which are
supposed to be of a better quality, not suffering from under-reporting. It means
that when a respondent is surveyed, her income is taken from the administrative
source, under the condition that this respondent accepts to be surveyed. So these
data can nevertheless suffer from under-sampling, similarly to usual survey data,
but less from under-reporting. The source can be also mixed, which means that the

2The Pareto family also includes the Pareto III and Pareto IV which are all particular cases of the
Feller-Pareto distribution detailed in Arnold (2008). Note also that other models corresponding to a
Pareto tail have been proposed in the literature, such as the extended Pareto distribution of Beirlant
et al. (2009) used in Charpentier and Flachaire (2022) or the Pareto-Log-normal or double Pareto-Log-
normal distributions of Reed and Jorgensen (2004) used in Hajargasht and Griffiths (2013).

4



source, survey or administrative, depends on the year of collection, most of the time
without further precision. The variable HX090 corresponds to household income,
normalized by the OECD equivalence scale.

The main source for external tax data is provided by the World Inequality Data
base (WID). However, this information (the variable fiinc) is not available for
every country and for every year. Nevertheless, this database provides valuable in-
formation when using an alternative income variable (scainc or its variant sdiinc)
that we shall use instead to construct our prior information. It represents post tax
income. This variable is available in the form of grouped data when the EU-SILC
data are individual data. These data were the object of several corrections for data
issues and in particular for top incomes as detailed in Alvaredo et al. (2016).

2.1 The quantity of information provided by WID data

Assuming a Pareto I for top 5% incomes, we analyse, in Table 1 for two years (2008
and 2018) how the extra source of information provided by WID data, manages to
modify the estimation of the Pareto coefficient α when using EU-SILC data. For
doing this, we first make inference on α, using a non-informative prior. This is a
textbook exercise (see e.g. Arnold 2008). For a known threshold, this posterior den-
sity is a Gamma. We then do proceed to inference, using a gamma prior based on the
WID data, derived from the top 5% income shares, which is typically interpreted as
an inverse measure of the concentration of top incomes (Atkinson 2017).3 We finally
measure the Kullback-Leibler divergence between these two posterior densities. In
theory, this distance should be minimum when the source of the data is mixed or
administrative, and maximum when the source is survey.4

The main message of Table 1 is that the WID data provide on average a much
more dispersed right tail than the EU-SILC, justifying the need of extra information
for correcting for top incomes in surveys. In other terms, α0 is always lower than
α, except for Portugal in 2008. The maximum KL distance is for Estonia (EE)
which uses survey data and minimum for the Netherlands (NL) which makes use
of register data. Top incomes are particularly under-sampled in the New Member
States. Otherwise, there does not seem to be any relation between the source of
the income data and the KL distance, showing the need of a correction, whatever
the source. This is a puzzling fact for Nordic countries, which all have register data
that have the reputation of being quite accurate. This is the main message brought
by the simple Pareto I model, with a fixed threshold. However, this model has

3For EU-SILC micro data, we use the income variable HX090 with weights DB090. When h is known,
the posterior density of α is a gamma density with parameters n and

∑
log xi/h, where n is the number

of observations in the tail above h.
For the WID tabulated data, we use the scainc income variable. The Pareto coefficient α is estimated

using the two top income shares and the formula given for instance in Atkinson (2007, page 24). The
gamma prior is indexed by ν0 and ν0αWID, where ν0 is the prior precision.

The WID data are available at https://wid.world/fr/donnees/ and can be downloaded using the
package wid available at devtools::install github("WIDworld/wid-r-tool"). Income data are avail-
able in the form of income shares sπ with for instance π = p95p100, meaning in this case the top 5% share.
The Pareto I distribution implies that the relative share of two groups is given by s1/s2 = (π1/π2)

(α−1)/α

leading for instance to the following formula α̂ = 1/(1− (log(s0.05/s0.01)/ log(0.05/0.01))).
4The Kullback-Leibler divergence between two gamma densities G(ν1, s1) and G(ν2, s2) is given by

DKL(G1||G2) = (ν1 − ν2)dG(ν1)− log(Γ(ν1)/Γ(ν2)) + ν2 log(s1/s2) + ν1(s2 − s1)/s1, where dG(·) is the
digamma function.
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Table 1: The quantity of extra information contained in WID data assuming that the
5% tail is a Pareto I

2008 2018
Country Source α α0 α∗ KL α α0 α∗ KL

DK Register 3.440 1.735 3.125 2.426 2.788 1.665 2.532 1.988
FI Register 3.291 1.896 3.148 0.954 3.162 2.007 3.044 0.700
SE Register 3.867 1.855 3.500 2.649 3.861 2.214 3.543 1.868
IE Register 2.901 2.301 2.741 0.620 3.038 2.104 2.734 1.696
UK Survey 2.647 1.839 2.497 0.909 2.975 2.028 2.869 0.587
AT Mixed 3.445 1.738 3.006 3.477 3.648 1.921 3.251 2.800
BE Mixed 3.183 2.791 3.093 0.197 3.701 2.953 3.511 0.561
DE Survey 2.948 1.958 2.817 0.775 3.08 1.888 2.905 1.147
FR Mixed 2.844 2.045 2.73 0.586 2.766 2.125 2.667 0.433
LU Mixed 3.314 1.676 2.749 4.81 3.485 2.422 3.123 1.751
NL Register 3.044 2.761 3.004 0.068 3.069 2.708 3.022 0.096
EL Survey 2.940 2.514 2.832 0.298 3.049 2.137 2.969 0.404
ES Mixed 3.469 2.231 3.305 0.877 3.838 1.853 3.591 1.745
IT Mixed 3.276 2.455 3.208 0.268 2.888 1.746 2.797 0.643
PT Survey 2.858 3.017 2.908 0.087 3.393 2.389 3.257 0.617
EE Survey 4.036 1.896 3.24 6.100 10.846 1.767 8.274 11.871
LT Mixed 2.731 2.05 2.517 1.071 2.819 2.024 2.572 1.349
LV Mixed 3.022 2.365 2.799 0.892 3.011 2.416 2.821 0.693
CZ Survey 3.410 1.597 3.063 2.921 4.141 1.816 3.642 3.698
HU Survey 3.388 2.106 3.15 1.408 2.907 1.991 2.637 1.597
PL Survey 2.948 1.759 2.762 1.332 3.998 1.854 3.687 2.200
SI Register 4.591 2.841 4.288 1.326 4.213 2.559 3.904 1.528
SK Survey 3.762 2.143 3.311 2.837 6.284 2.353 5.247 5.839

α is the posterior expectation of the Pareto coefficient under a non-informative prior, α0 is the prior
expectation of α derived from WID data and α∗ the posterior expectation of α under the informative
prior. KL is the Kullback-Leibler divergence between the posterior under a non-informative and the
same posterior under an informative prior, centred on the WID data with ν0 = 100. For EU-SILC
data, means and quantiles were computed using the R package DescTools. We selected ρ = 0.95 (top
5% incomes) for both sources as in Atkinson (2017).

many limitations that can be removed by using the more elaborate Pareto II model
promoted by Jenkins (2017).

2.2 The Pareto II distribution

Pareto I and Pareto II are intimately related (see e.g. Arnold 2008). For 0 < h ≤ x,
the cdf and pdf of the Pareto I are:

FP1(x) = 1− (x/h)−α, fP1(x) = αhαx−α−1. (1)

The Pareto II process is built from these expressions when taking h as a location
parameter and introducing a separate scale parameter β, leading to:

FP2(x) = 1−
(
1 +

x− h

β

)−α

, fP2(x) =
α

β

(
1 +

x− h

β

)−α−1

. (2)

A Pareto I corresponds to the testable restriction h = β. A Pareto I models the
distribution of relative excesses, x/h, whereas a Pareto II models the distribution of
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absolute excesses x− h (see e.g. Charpentier and Flachaire 2022). The mean is:

E(x) = h+
β

α− 1
.

The Gini can be deduced from Arnold (2008, page 135) with:

G(x) = 1− h+ 2αβB(2α− 1, 2)

h+ αβB(α− 1, 2)
, (3)

where B(, ) is the Beta function. Pareto I and Pareto II measure inequality in a
quite different way for a given value of the Pareto coefficient α, as the Gini for the
Pareto I is:

G =
1

2α− 1
. (4)

This opposition in measuring inequality is well depicted in Figure 1 of example 1.

Remark 1. A prior on α can be translated directly into a prior on the value of
the Gini in the Pareto I case. For a Pareto II, we have no longer this one-to-one
correspondence, as the value of the Gini depends both on α and on the value of the
difference h− β. If the sign of h− β is negative, the Pareto II Gini will be greater,
and lower in the reverse case.

Example 1. For a given value of α = 1.75 and β = 5, we let h vary between 0 and
10. The Gini of the Pareto I corresponds to the particular case h = β. Depending
on the value of h, compared to that of β, the Pareto II process can display either
more or less inequality than the Pareto I process. Maximum inequality is obtained
for h = 0. This behaviour is related to the fact that the Gini is invariant by scaling
(i.e. change in a monetary unit), but not invariant by translation (when the same
sum is given to or taken from everybody). In Figure 1, we have plotted the value of
the Gini against (h− β)/β, which provides a scale free graph. The Pareto I Gini is
equal to 0.4. For the Pareto II Gini to vary between reasonable bounds (0.3 to 0.5),
(h− β)/β has to be limited to the range (-0.466 to 0.778).

−1.0 −0.5 0.0 0.5 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

(h−beta)/beta

G
in

i

Gini Pareto II
Gini Pareto I

Figure 1: Gini constellation, varying h for a given β = 5 and α = 1.7
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2.3 Comparing Pareto I and Pareto II tails

Jenkins (2017) discusses the difficulty of empirically distinguishing between these
two Pareto processes, leading eventually to the question: Is a Pareto II model really
needed to fit well the data? To answer briefly this question, we have run a simulation
exercise and exploited the message given by the Pareto plot. This example shows
that depending on the sign of the difference h − β, the Pareto plot presents quite
different configurations that identify the deviance of extreme observations from a
simple Pareto I process. The Pareto diagram, as named by Cowell (2011), takes logs
in the expression of the Pareto CDF and leads to the linear expression:

log(1− F (x)) = −α log x+ α log h.

So a plot of log(1− F̂ (x)) against log x provides a straight line with a negative slope
if the data follow a Pareto I distribution. Data generated according to a Pareto II
leads to particular results depending on the sign of h− β.

Example 2. We have generated two series of Pareto II random numbers with α =
2.5 and β = 5. One is obtained with h = 2.5, so with h < β and the other with
h = 10, so with h > β. For each of these two samples, we draw the corresponding
Pareto plot and compare them in Figure 2. With h−β > 0, extreme points are located
above the Pareto line, a configuration that was qualified of outliers in Charpentier
and Flachaire (2022, Figure 7). With h− β < 0, we have the reverse situation. We
can conclude that when h − β < 0, rich households are under-sampled, and when
h− β > 0 rich households are better represented.

2.5 3.0 3.5 4.0

−7
−6

−5
−4

−3
−2

−1
0

h>beta

log(y)

lo
g(

1 
− 

F)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

−7
−6

−5
−4

−3
−2

−1
0

beta>h

log(y)

lo
g(

1 
− 

F)

Figure 2: Comparing Pareto tails obtained from the Pareto II

Example 2 shows how Pareto II processes can generate quite different tail be-
haviours depending on the sign of h − β. In the empirical application of section 5,
the EUR15 states and typically the Nordic countries will in general correspond to
h− β > 0, while the NMS will correspond to h− β < 0.

3 Compound log-normal-Pareto II models

Deciding at which point should start the Pareto tail is an important problem that
cannot be solved easily, as discussed in Scarrott and MacDonald (2012).5 An elegant

5For instance, a graphical solution such as the Hill plot has been referred to as the Hill horror plot
in the literature, due to its very poor performance, see Scarrott and MacDonald (2012).
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solution consists in considering a complete model mixing a truncated distribution
(the central model) for the observations below the threshold h and a tail model
belonging to the Pareto family above the threshold. The threshold is treated as a
parameter to be estimated. The extreme value literature has proposed many ways to
combine these two models. The composite log-normal-Pareto model was introduced
by Cooray and Ananda (2005) and Scollnik (2007). This model was found useful to
model extreme events in insurance claims, ecology and many other topics including
modelling the income distribution (see e.g. the references provided in Scollnik 2007,
Cabras and Castellanos 2011 or Nadarajah and Bakar 2013).

3.1 The bulk model as a useful restriction

The initial compound model can be written as a two component mixture:

f(x|θ) = ρf1(x|θ) + (1− ρ)f2(x|θ), (5)

where ρ is the proportion of observations below the threshold h. The truncated
log-normal distribution with parameters µ and σ2 is usually chosen for f1(x|θ):

f1(x|θ1) =
fΛ(x|µ, σ2)

FΛ(h|µ, σ2)
1(x ≤ h), (6)

where 1(·) is the indicator function. We have chosen the Pareto II for f2(x|θ). The
literature (see e.g. Behrens et al. 2004) has proposed to impose the restriction:

ρ = 1− FΛ(h|µ, σ2), (7)

leading to what is called the bulk model. Its PDF is:

f(x|θ) = fΛ(x|µ, σ2)1(x < h) + (1− FΛ(h|µ, σ2))fP2(x|h, α, β)1(x ≥ h), (8)

and its corresponding CDF:

F (x|θ) = FΛ(x|µ, σ2)1(x < h) + FΛ(h|µ, σ2)1(x ≥ h)

+ (1− FΛ(h|µ, σ2)FP2(x|h, α, β)1(x ≥ h). (9)

A model with a Pareto I tail is obtained by replacing fP2(x|h, α, β) by fP1(x|h, α)
and FP2(x|h, α, β) by FP1(x|h, α) in these expressions.

The bulk model presents a discontinuity at h as shown in Figure 3 of Example 3.
Continuity is usually not imposed, as this would mean a restriction on the Pareto
parameters. For the Pareto II, the continuity restriction would mean a restriction
on the value of β with (see Majid and Ibrahim 2021b):

β = α
1− FΛ(h|µ, σ2)

fΛ(h|µ, σ2)
. (10)

For the Pareto I, the continuity restriction is even more severe, as it fully determine
the value of α:

α = h
fΛ(h|µ, σ2)

1− FΛ(h|µ, σ2)
. (11)
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Example 3. Let us give now an idea of the shape of the bulk model with Figure
3. In this example, the parameters of the log-normal component are µ = 0.5 and
σ = 0.5. We have then added the Pareto II component with h = 2.0, α = 1.7 and
β = 3, so (h − β) < 0. The Pareto II right tail is well above the log-normal tail.
Imposing continuity would mean β = 1.605324, a restriction that lowers the position
of the Pareto II tail and implies (h − β) > 0. The Pareto I tail corresponds to
another restriction with (h− β) = 0.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Compound model with various tails

x and h

D
en

si
ty

LogNormal bulk
Lognormal tail
Pareto II tail
Continuity imposed
Pareto I tail
Threshold h

Figure 3: The Compound lognormal-Pareto II family

To summarize, with the compound Pareto model, we have a framework where
we are free to choose the central model (here the log-normal density) and the shape
of the tail which can be Pareto I, Pareto II or Generalized Pareto. The threshold
parameter h can be estimated in this framework. Due to the discontinuity, the
Bayesian approach is most of the time privileged.

Several other models are said to have a Pareto-like tail. They all include a
continuity restriction, limiting thus the shape of the right tail. Limiting ourselves to
three parameter distributions, the first candidate is of course the famous Singh and
Maddala (1976) distribution which embed directly a Pareto II tail as can be seen from
its CDF F (x) = 1− (1 + (x/β)q)−α, to be compared to (2). Our second candidate
is the Pareto-log-normal distribution of Reed and Jorgensen (2004). Its properties
were amply discussed in Hajargasht and Griffiths (2013). Further comparisons can
be found in Majid and Ibrahim (2021a). Finally, we want to mention the Kaniadakis
distribution (see Kaniadakis 2013 or Clementi and Gallegati 2016 for complementary
details). Clementi et al. (2012) provide an interesting exploration of this density for
income distributions, using the GSOEP, BHPS and PSID data sets.

3.2 Alternative likelihood functions

The likelihood function is the central ingredient for Bayesian inference. Using Bayes’
theorem, it serves to revise the prior density φ(θ), leading to the posterior density
φ(θ|x). In most cases, this posterior density has to be explored using simulation
methods, one of them being Monte Carlo Markov Chain (MCMC). In our context,
the likelihood function of model (8), when adding weights, is:

L(x; θ) =
∏

i,xi≤h

fΛ(xi|µ, σ2)wi

∏
i,x>h

(
1− FΛ(h|µ, σ2)

)
fP2(x|α, β, h)wi , (12)
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with θ = (µ, σ, α, β, h). Majid and Ibrahim (2021a) have compared several composite
models for modelling the income distribution in Malaysia, using either a Pareto
I or a Pareto II for the tail and various uni-modal parametric distributions for
the central model, such as log-normal, gamma, Weibull with two parameters or
Dagum and Singh-Maddala with three parameters. It appeared that the log-normal-
Pareto II composite model provided the most satisfactory fit. However, they did not
measure the impact of these choices on the estimation of h, and consequently on
their measurement of inequality.

On the contrary, the main objective of Cabras and Castellanos (2011) was to
find the best way to estimate extreme values for insurance claims. They propose
to treat the parameters of the central model as nuisance parameters, which leads
them to consider a profile likelihood function where the central model is replaced by
a MLE estimator of a semi-parametric data density procedure based on orthogonal
polynomials. The alternative likelihood function of their model is:

LProf (x; θ) =
∏

i,xi≤h

F̂ (h)f̂h(xi)
∏

i,x>h

(1− F̂ (h))fP2(x|α, β, h)wi , (13)

where F̂ (h) is the proportion of observations below h and f̂h(xi) a polynomial ap-
proximation of the truncated distribution of the observations below h.6 In this ap-
proach, the number of parameters to estimate is reduced to three with θ = (α, β, h).

We shall see later that choosing between fΛ(xi|µ, σ2) and f̂(xi) can have a tremen-
dous effect on the estimation of the threshold h, the value of h−β and consequently
on the decomposition of the corresponding Gini coefficient, as detailed below.

3.3 Gini decomposition using the Pareto II

Jenkins (2017) has proposed to decompose the Gini index in a classical framework
between observed low incomes, corresponding to the ρ lower quantiles (those corre-
sponding to x < h) and upper incomes modelled with a Pareto II. The population
shares are πu for the upper quantiles and πl = 1− πu for the lower quantiles. Cor-
responding income shares are su = πux̄u/x̄, sl = 1 − su, where x̄u is the average
income for upper quantiles and x̄ the average income. Alvaredo (2011) has shown
that the between groups inequality can be simplified to su − πu leading to the Gini
decomposition formula:

G = πl × sl ×Gl + πu × su ×Gu + su − πu, (14)

where Gl is the empirical Gini for the lower group, while Gu is the parametric Gini
given by the Pareto tail. There are two important parameters in this decomposition:
the population share πu which is a direct function of h and the value of Gu which
depends on both α and h− β.

Using a bulk model brings in new features in this decomposition, due to the
fact that h is now random and that we have stored a full MCMC output θ(j) =
(α(j), β(j), h(j)) (a m × 3 matrix of draws from the posterior density φ(θ|x)) if we
adopt a profile likelihood. Because h is now a random variable, πl, sl and Gl become
random variables. First, πl(h

(j)) = F̂ (h(j)). Then, for each draw h(j), we have a new
sample separation on which we can compute the empirical values x̄l(h

(j)), sl(h
(j))

6In Appendix B, we develop an approach based on Bernstein polynomials for f̂(x) and F̂ (x).
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and Gl(h
(j)). Collecting these results, we arrived at Algorithm 1, assuming that

the weights were taken into account when estimating θ and that the MCMC output
[θ(j)] has been stored.

Algorithm 1 Bayesian decomposition of the Gini index

1: From the m stored values of θ(j) = (α(j), β(j), h(j))
2: for j = 1,m do
3: nj =

∑
1(x < h(j))

4: πl(h
(j)) = F̂Λ(h

(j))
5: xl(h

(j)) = x[x < h(j)]
6: x̄l(h

(j)) =
∑

xl(h
(j))/nj

7: Gl(h
(j)) = Gini(xl(h

(j)))
8: πu(h

(j)) = 1− πl(h
(j))

9: E(xu|θ(j)) = h(j) + β(j)/(α(j) − 1)

10: Gu(θ
(j)) = 1− h(j) + 2α(j)β(j)B(2α(j) − 1, 2)

h(j) + α(j)β(j)B(α(j) − 1, 2)

11: E(x|θ(j)) = πl(h
(j)) x̄l(h

(j)) + πu(θ
(j)) E(xu|θ(j))

12: su(θ
(j)) = πu(θ

(j)) E(xu|θ(j))/E(x|θ(j))
13: slθ

(j)) = 1− su(θ
(j))

14: G(θ(j)) = πl(θ
(j)) sl(θ

(j))Gl(θ
(j)) + πu(θ

(j)) su(θ
(j))Gu(θ

(j)) + su(θ
(j))− πu(θ

(j)).
15: end for

Using Algorithm 1, we get draws from the posterior density of the Gini coefficient.

4 Bayesian inference for a Pareto II tail

For decomposing the Gini index in a Bayesian way, we need a MCMC output [θ(j)].
We now detail how to obtain it for the bulk model (8).

4.1 Priors for making inference on h

Let us decompose the prior density related to the likelihood function (12) of model
(8) as:

φ(θ) = φ(µ|σ2)φ(σ2)φ(α)φ(β)φ(h).

We have a strong interest in being informative on the Pareto parameter α, in
order to introduce our prior information coming from the WID data set. A gamma
informative prior on α is natural conjugate and corresponds to:

φ(α|ν0, s0) ∝ αν0−1 exp(−αs0),

with prior expectation E(α) = ν0/s0. The WID estimated values α0 of Table 1
provide a value for the ratio ν0/s0, leaving aside the question of prior precision. A
non-informative prior corresponds to ν0 = 0 and φ(α) ∝ 1/α. A non-informative
prior is equivalent to method A of Jenkins (2017). The prior precision increases with
the value of ν0 and thus for scientific reporting it is essential to provide results for
ν0 = 0 and for say ν0 = 100. Note that an informative prior on α directly provides
a specific prior information on the concentration of high incomes, but not on the
value of the implied Gini coefficient, which, in a Pareto II context, depends also on
the sign of h − β. We can have a much higher Gini if h − β < 0, or a much lower
Gini if h− β > 0 as was illustrated in Figure 1.
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For φ(h), Cabras and Castellanos (2011) have chosen a uniform prior between
bounds:

φ(h) ∝ 1, h ∈ [h, h].

This prior has been amply discussed in Majid and Ibrahim (2021b). In the Bulk
model, there is a one-to-one relation between h and ρ, which is the proportion of
observations in the tail, as given in (7). So, a prior on h can be translated into a
prior on ρ, with the advantage that the latter is scale-free and consequently much
easier to elicit.7

Jenkins (2017) conducted a sensitivity analysis for different values of ρ, the start-
ing point of the Pareto tail. He has chosen ρ = 0.90, 0.95, 0.99, 0.995. Amongst
other recent studies relating ρ to the upper sample proportion of incomes for which
data issues should be corrected, Bartels and Metzing (2019) opted for ρ = 0.99,
while Angel et al. (2019) or Flachaire et al. (2022) found that the corrections could
start as early as the median. With a Bayesian approach and a bulk model, we in-
tegrate over a possible range, letting the sample choose the most plausible range.
So, we decided for ρ = 0.650 and ρ = 0.995. The corresponding prior range for h

corresponds to the empirical quantiles [h = Qx(0.650), h = Qx(0.995)].
We can choose to be non-informative on the scale parameter β, so that:

φ(β) ∝ 1/β.

Because the central model is not our prime interest, we decide to be non-
informative on (µ, σ2), the parameters of the log-normal, so that:

φ(µ, σ2) ∝ 1/σ2.

With the profile likelihood (13), this prior is no longer relevant.

4.2 Conditional posterior distributions

The posterior distribution is proportional to the product of the likelihood function
and the prior, using either (12) or (13):

φ(θ|x) ∝ φ(θ)L(x; θ), or φ(θ|x) ∝ φ(θ)LProf (x; θ). (15)

As this posterior density has no closed form, we propose in a next section a Gibbs
sampler to produce draws from an approximation to it, draws that will serve to
decompose the Gini index, as explained above.

Conditionally on h, we can separate inference on the central part and on the
tail. The two conditional posterior distributions of the Pareto II are found by
discarding alternatively the proportional terms on which we condition in one of

7As noted in Majid and Ibrahim (2021b), a uniform prior on h does not mean a uniform prior on ρ.
We must keep in mind that the threshold h has two meanings. An optimal h can first correspond to the
level at which a correction has to be done. It can be rather low or high depending on the quality of the
survey (for instance if the source used for income is administrative or results from a simple interview).
A second meaning is at which level a Pareto model best fits the data. A statistical approach defines
h according to an optimal fit. The posterior density of h will correspond to this second meaning. We
thank Emmanuel Flachaire for pointing out this distinction.
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the two complete posterior densities in (15). The conditional posterior distribution
of α corresponds to a gamma density with:

φ(α|h, β, x, w) = fG(α|ν0 + n, s0 +
∑

i,xi≥h

wi log(1 + (xi − h)/β)). (16)

Conditionally on a previous draw of β and h, it is easy to draw random numbers
from this density.

The conditional posterior distribution of β does not correspond to a known den-
sity with:

φ(β|h, α, x, w) ∝ β−n−1 exp(−(α+ 1)
∑

wi log(1 + (xi − h)/β)). (17)

We propose to implement an enriched version of the Griddy-Gibbs of Bauwens and
Lubrano (1998) to draw from this conditional posterior density. We use a moment
estimator (see 25 in Appendix A) to determine an initial value β(0) and a grid bp
of k points on the range [β(0)/3, 3β(0)]. Conditionally on a draw of α, we evalu-
ate φ(β|α, x) on the predetermined grid and derive its normalized empirical CDF.
Equipped with this empirical CDF, we use the logic of the inverse transformation
method, sampling a random value from a uniform distribution over [0, 1], determin-
ing its position in the CDF and then proceeding by linear interpolation to determine
the corresponding value β(1) on the predefined grid of k points. The method can
be enriched by considering an update of the initial exploration range [β(0)/3, 3β(0)],
adjusting the lower and upper bounds of the grid, using the minimum and maximum
draws obtained during the warming up of the chain.

The conditional distribution of h depends on the whole sample, and thus of
course on the central model. In the case of a profile likelihood, we have:

φ(h|α, β, x, w) ∝ φ(h)×
∏

i,xi≤h

F̂ (h)f̂(xi)× (18)

∏
i,x>h

(
1− F̂ (h)

)[
α

β
(1 + (xi − h)/β)−α−1

]wi

.

Weights were already used for estimating f̂(xi) and F̂ (h). The Griddy-Gibbs of
Bauwens and Lubrano (1998) is here again a good solution to draw from this con-
ditional posterior density. The exploration grid is calibrated from the prior range
[h, h]. It can be adjusted in the same way as the grid used for β.

If we decide to opt for a truncated log-normal central model, the conditional
posterior distribution of h has the following form:

φ(h|α, β, µ, σ, x, w) ∝ φ(h)×
∏

i,xi≤h

fΛ(xi|µ, σ2)wi × (19)

∏
i,x>h

(
1− FΛ(h|µ, σ2)

) [α
β
(1 + (xi − h)/β)−α−1

]wi

.

It depends both on draws of (α, β), but also on draws for (µ, σ2). So we have to find
the conditional posterior density of (µ, σ2) for a given h. Due to the truncation, this
conditional distribution does not belong to a known family. It is obtained from the
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likelihood function (12), neglecting the factors that do not depend on (µ, σ2):

φ(µ, σ2|h, x) ∝ 1

σ2

∏
i,xi≤h

fΛ(xi;µ, σ
2)wi

∏
i,x>h

(
1− FΛ(h;µ, σ

2)
)
. (20)

We propose an independent Metropolis step within Gibbs algorithm. We first esti-
mate (µ̂, σ̂2) by maximizing numerically a conditional likelihood function built on
(6), for a fixed h, corresponding to the top 5% tail. The proposal is a truncated
bi-variate normal indexed by the MLE:

q(µ, σ2) = fTN (µ, σ|(µ̂, σ̂), Ĥ−1),

where Ĥ is the Hessian matrix from the MLE. A draw ζ = (µ(j+1), σ2(j+1)) from
this proposal is accepted with probability p given by:

p = min

[
φ(ζ|h, x)q(θ(j))
φ(θ(j)|h, x)q(ζ)

, 1

]
,

where φ(ζ|h, x) is given in (20). Otherwise the previous draw θ(j) = (µ(j), σ2(j)) is
kept.

4.3 A Gibbs sampler

Let us now regroup all these results into Algorithm 2 to propose a Gibbs sampler
for making inference on all the parameters in the case of a profile likelihood. For a
maximum range ρ = 0.995, we first estimate f̂(x|k) and F̂ (x|k) where k is the degree
of the Bernstein polynomial (see Appendix B for more details on density estimation
using Bernstein polynomials). Then, for an initial guess for h, a sample separation

is found, F̂ (h|k) and f̂(x|x < h, k) are evaluated. The algorithm simulates draws
for α and β. Given these draws, a new draw for h is proposed. The obtained
MCMC output will be used to propose a new measure of inequality, thanks to a
decomposition of the Gini detailed in section 3.3.

5 Top income correction for EU-SILC data

First, we show that the truncated log-normal is a poor choice for the central model,
compared to the Bernstein density estimator. Equipped with a profile likelihood of
the bulk model, we then detail how the correction for missing information on high
incomes very much depends on the sign and amplitude of (h−β)/β̄. We finally show
that the high incomes correction is not effective for the Nordic countries, is mild for
the remaining EUR15 countries and important for the New Member States.

5.1 The pitfalls of a truncated log-normal central model

We provide in Figures 4 and 5 the histograms of the 2008 income data for the
EU15 and the NMS. On the same plot, we provide the Bernstein density estimates
of the truncated distribution in red and of the truncated log-normal in green for
h corresponding to the 95% lower tail. If a truncated log-normal central model
provides a reasonable fit for some countries (Luxembourg, Netherlands, Portugal,
Hungary), for all the other countries the error committed for estimating the 0.95
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Algorithm 2 Bayesian inference for the bulk model
1: Select m the number of draws and mdrop the size of the warming chain
2: Choose a prior range for ρ, [ρ, ρ] and determine the corresponding values of [h, h] using the empirical

CDF of the sample
3: Estimate F̂ (x|k) and f̂(x|k) on the restricted sample x ≤ h using Bernstein polynomials of degree k
4: Chose a starting value for ρ, e.g. ρ(0) = 0.95 (inside the prior range) and the corresponding h(0)

5: Build the initial grid hp of np points (h, h2, · · · , hnp−1, h) for h
6: Compute an initial estimate of α and β, conditionally on h(0), using a method of moments
7: Determine an initial grid bp of np points (b1, · · · , bnp) for β
8: for j = 1, . . . ,m+mdrop do
9: Select the sample vector xl = x[x ≤ h(j−1)]
10: Compute ρ(j) = 1− F̂ (h(j−1)|k)
11: Compute f̂(xl|k)
12: Select the sample vector xu = x[x > h(j−1)]− h(j−1)

13: Sample α(j) from fG(α|n+ ν0, s0 +
∑

wi log(1 + xui/β
(j−1))

14: Draw β(j) ∼ φ(β|h(j−1), α(j), xu), using a Griddy-Gibbs
15: Draw h(j) ∼ φ(h|α(j), β(j), x), using a Griddy-Gibbs
16: if j = mdrop then
17: update the grid for h using the min and max of the previous draws of h
18: update the grid for β using the min and max of the previous draws of β
19: end if
20: end for
21: Discard the initial mdrop draws for computing posterior moments and densities

truncation point is too important. This will have crippling consequences for inference
on the Gini coefficient. On the contrary, the error committed by the Bernstein
estimator is always lower than half a percent (see Table 4 of Appendix B). So, the
profile likelihood based on a Bernstein polynomial (with k = 15) provides a much
better approach and we shall stick to it.

5.2 Bayesian Gini correction

Let us first compare the results obtained for the UK by Jenkins (2017) to those
provided by our approach and highlight the contrast. Jenkins (2017) recommends
that the truncation point should be 95% or over, a finding based on data accuracy.
His corrected Gini was estimated at 0.49 for 2007 with a Pareto I or II for a value
of h corresponding to 0.99, results based on the data of the UK Survey of Personal
Income. Using SILC data, we found the much lower values of 0.350 for 2008 and
0.339 for 2018 (the WID data alone would have meant a Gini of 0.373 for 2008 and
0.327 for 2018, under a Pareto I assumption).

Concerning the posterior expectations for ρ, we found for the UK in Table 2 0.926
and 0.954 in 2008 and 2018. These are values slightly lower than those recommended
by Jenkins (2017). Moreover, we have found for other countries that E(ρ|x) could
be as low as 0.82 (Estonia, 2008) and were never higher than 0.95 (Tables 2 and 3).
The Pareto II model is found to provide a better fit than Pareto I, when inspecting
the scaled posterior distribution of h− β. A Pareto I corresponds to the restriction
h = β. Zero never belongs to a posterior 95% credible interval, except for Greece in
2008. For the UK, the value of the information given by the prior is rather weak,
with a very low KL distance between the posterior of the Gini with and without
an informative prior on α. This could question the adequacy of WID data for the
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Figure 4: Truncated density estimates with Bernstein or Log-normal, EU15 2008

UK. The posterior expectation of the Gini has 0.687 chances of being greater than
the sample Gini in 2008 and 0.997 in 2018, implying that a correction was effective
with a Pareto II tail for 2018, but less for 2008. The use of survey versus register
data does not make a difference when comparing Ireland and the UK, as the KL
distances reported in the last column of Table 2 are comparable.

Because we are using the EU-SILC data, we have access to a much diverse
number of cases, examining a total of 23 countries. Using this diversity, we shall see
that the differences between survey and register data are significant for some groups
of countries, but not for all (Nordic countries versus the others). And adopting a
Pareto I can lead to biased results for the Gini, when the posterior expectation of
(h− β)/β̄ is important as it is in Nordic countries.

For the Nordic countries that are using register data, our approach tells that
there is no need for a correction: adopting a Pareto tail does not manage to in-
crease the value of the sample Gini. This is also the case for France (mixed) and the
Netherlands (register). For those countries, the posterior expectation of the normal-
ized difference h − β is positive and can be quite large. This means that we have
a quite large number of observations which are above the Pareto plot, a situation
qualified as outliers in Charpentier and Flachaire (2022). So high incomes are well
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Figure 5: Truncated density estimates with Bernstein or Log-normal, NMS 2008

represented in the original data.
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Figure 6: Posterior density of the Gini index: Ireland and the UK

In Figures 6, 7, 8, 9, we provide the graph of the posterior density of the corrected
Gini, using either a Pareto II or a Pareto I right tail. As already said, the difference
is mild for Ireland and the UK. This is also the case for most of the New Member
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Table 2: Bayesian correction for the Gini index: EU15

Ctry Data E(Gini) E(ρ) E(h− β) Pr(GB > Gy) KL

DK Register 0.237 0.937 1.812 0.000 1.575
0.268 0.928 0.740 0.000 0.370

FI Register 0.261 0.945 1.531 0.000 0.935
0.254 0.950 0.653 0.000 3.241

SE Register 0.252 0.926 1.705 0.000 0.424
0.261 0.920 1.846 0.000 0.391

IE Register 0.321 0.895 0.224 0.951 0.202
0.316 0.854 0.412 0.892 0.369

UK Survey 0.350 0.926 0.638 0.687 0.038
0.339 0.954 0.314 0.997 0.242

AT Mixed 0.297 0.896 0.550 0.992 1.169
0.278 0.903 0.396 0.524 2.132

BE Mixed 0.270 0.901 1.049 0.001 0.420
0.264 0.908 0.628 0.562 0.313

DE Survey 0.316 0.947 0.722 0.824 0.009
0.312 0.942 0.346 0.933 0.902

FR Mixed 0.292 0.937 0.457 0.033 0.208
0.285 0.934 0.381 0.058 0.024

LU Mixed 0.301 0.833 0.162 1.000 3.016
0.319 0.837 0.361 0.689 0.108

NL Register 0.262 0.943 0.969 0.000 0.222
0.278 0.941 0.697 0.047 0.172

EL Survey 0.334 0.908 0.033 0.971 0.077
0.323 0.962 0.129 0.982 0.013

ES Mixed 0.330 0.942 0.405 0.928 0.370
0.330 0.941 0.493 0.908 1.775

IT Mixed 0.312 0.956 0.747 0.428 0.070
0.333 0.955 0.784 0.783 0.244

PT Survey 0.378 0.851 -0.465 0.996 0.472
0.343 0.936 -0.545 1.000 7.580

Obtained with 5000 draws plus 500 for warming the chain. E(Gini) is the posterior expec-
tation of the Bayesian corrected Gini, using the informative prior on α. KL is the Kullback-
Leibler distance between the Gini estimated under an informative prior and without this
prior information. E(ρ) is the posterior expectation (under the informative prior) of the
proportion of observations concerned by the Pareto II tail. E((h−β)) indicates the posterior
expectation of the normalized difference (h − β). Pr((GB > Gy)) indicates the posterior
probability that the Bayesian corrected Gini is greater than the measured data Gini without
Pareto II correction. For each country, the first line is for 2008 and the second line for 2018.

States. However, the difference is important for the Nordic countries, where the
posterior expectation of (h− β)/β̄ is quite large.

When turning to the new member states, we find two main differences. First,
the value of the prior information is much higher, on average, as measured by the
KL distance. Second, the posterior density of (h − β)/β̄ is now either very low or
negative. This means that the income data are lacking extreme values, or in other
words, that the rich are under-represented. We are in the second case of Example
2.
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Table 3: Bayesian correction for the Gini index: NMS
Country Data E(Gini) E(ρ) E(h− β) Pr(GB > Gy) KL

EE Survey 0.364 0.820 -0.194 1.000 7.332
0.355 0.822 -0.041 1.000 3.773

LT Mixed 0.371 0.888 -0.298 1.000 3.038
0.404 0.879 0.014 0.994 0.648

LV Mixed 0.429 0.865 -0.386 1.000 2.802
0.409 0.882 -0.452 1.000 2.515

CZ Survey 0.280 0.923 0.033 1.000 5.339
0.268 0.910 0.275 1.000 4.415

HU Survey 0.256 0.929 0.215 0.981 1.022
0.328 0.894 -0.327 1.000 3.164

PL Survey 0.345 0.935 -0.191 1.000 4.792
0.312 0.932 -0.188 1.000 7.160

SI Register 0.254 0.924 0.140 0.625 1.393
0.258 0.923 -0.097 0.983 3.429

SK Survey 0.248 0.898 0.862 0.897 0.216
0.222 0.899 -0.379 1.000 25.134

Obtained with 5000 draws plus 500 for warming the chain. E(Gini) is the posterior expec-
tation of the Bayesian corrected Gini, using the informative prior on α. KL is the Kullback-
Leibler distance between the Gini estimated under an informative prior and without this
prior information. E(ρ) is the posterior expectation (under the informative prior) of the
proportion of observations concerned by the Pareto II tail. E((h−β)) indicates the posterior
expectation of the normalized difference (h − β). Pr((GB > Gy)) indicates the posterior
probability that the Bayesian corrected Gini is greater than the measured data Gini without
Pareto II correction. For each country, the first line is for 2008 and the second line for 2018.
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Black lines correspond to 2008 and red lines to 2018. Plain lines are for the Pareto II and dotted lines for
the Pareto I. Vertical dotted lines represent the sample Gini computed with weights.

Figure 7: Posterior density of the Gini index: Nordic countries

6 Conclusion

By embedding the Pareto tail into a larger model, we could estimate the threshold in
a sound and logical way. However, for doing this, we had to use a semi-parametric
approach for the central model, as a simple log-normal would have led to biased
results. We have shown that the threshold posterior expectations can be quite
diverse, even for the same country, as we gave estimates for two years. These
estimates gave a value at which the Pareto II tail adjusted the best. They could
range between 0.882 and 0.95, on average. We did not report standard deviations,
they are in general not very large. For instance, if the posterior expectation is 0.95,
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Figure 8: Posterior density of the Gini index: Northern Europe
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Figure 9: Posterior density of the Gini index: Southern Europe
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Figure 10: Posterior density of the Gini index: New Member States

a 95% credible interval would be around [0.94, 0.96]. But, we have provided the
plots of the posterior density of the corrected Gini, posterior densities that were
quite concentrated.

Using a Pareto II model provides interesting information on the shape of the
tail of the income distribution. In particular, the posterior expectation of h − β
indicates if there are important outliers or if very rich people are really absent from
the sample. Most of the posterior expectations of this normalized quantity were
negative for the new member states and also for Portugal, indicating the real need
of a correction for missing information on high incomes.

Our attempt to correct for missing information on high incomes implies the
modelling of an underlying income distribution. We had results for two years, which
means that we can follow how quantiles have evolved over time. Moreover, we have
these results for a group of countries, belonging to the same economic space. So
it is tempting to derive the Growth Incidence Curve for these countries and what
was the impact of integrating the NMS on the European Income Distribution, when
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taking into account the missing information on high incomes. This is planned for
future work.
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Appendix A Classical inference for the Pareto II

For classical inference, Arnold (2008) considers estimating the threshold by ĥ = x[1]

and then solving numerically the normal equations of the likelihood function. Using
exogenous weights wi summing to n, the full likelihood is:

L(x; θ) =

n∏
i=1

f(xi;h, β, α)
wi .

The log-likelihood:

l(x; θ) =

n∑
i=1

wi log f(xi;h, β, α) (21)

= −(α+ 1)

n∑
i=1

wi log

(
1 +

xi − h

β

)
− n log β + n logα, (22)

leads to the normal equations:

β̂ =
α̂+ 1

n

∑
wi(xi − x[1])

[
1 +

xi − x[1]

β̂

]−1

, (23)

α̂ =

[
1

n

∑
wi log

(
1 +

xi − x[1]

β̂

)]−1

. (24)

A method of moments can also be implemented, using the translated raw moments
m1 and m2 and equating them to their theoretical counterparts. We start from
the definition of the weighted sampling moments:

mr =
1

n

n∑
i=1

wi(Xi −X[1])
r , r = 1, 2,

Arnold (2015, page 255) proposes the following estimator for β:

β̂ = m1m2/(m2 − 2m2
1), (25)

from which we can deduce an estimator for α, using the normal equation:

α̂ = n/

n∑
i=1

wi log(1 + (xi − x[1])/β̂). (26)

Finally, let us recall that the MLE estimate of the Pareto coefficient in the Pareto
I process is simply given by:

α̂PI = n/

n∑
i=1

wi log(xi/x[1]). (27)

Appendix B Bernstein polynomials for density es-
timation

Vitale (1975) was the first to propose a density estimator based on Bernstein poly-
nomials. Let us suppose that we have n observations with distribution f(x) from
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which we form histogram values of k + 1 bins. Let xj be the centre of each class
and nj the corresponding frequencies. A semi-parametric estimator of the density
is then formed by a polynomial approximation of the empirical function described
by the k + 1 couples (xj , nj).

We propose here another Bernstein density estimator, where the coefficients of
the polynomial approximation are obtained by a regression. Let us first recall the
expression of a Bernstein polynomial defined for x ∈ [0, 1]:

Bk(x, j) = Cj
kx

j(1− x)k−j , (28)

where Cj
k is the binomial coefficient. This polynomial has, among many, the prop-

erties that
∑

j Bk(x, j) = 1 and Bk(x, j) ≥ 0. If the range of x is [a, b], then we
can always use the transformation y = (x − a)/(b − a) and use Bk(y, j) instead of
Bk(x, j). The estimator proposed by Vitale (1975) corresponds to:

f̂n,k(x) = (k + 1)

k∑
j=0

nj

n
Bk(x, j). (29)

We propose to approximate the coefficients in (29) by using a regression of the log
of the vector of the histogram frequencies nj over Bk(xj, j) where xj is the vector
of the cell midst xj with the advantage of choosing the degree k of the Bernstein
polynomial independently of the number of cells of the histogram:

log(nj) = Bk(xj, 0)δ0 + · · ·+Bk(xj, k)δk + ϵ.

Calling δ̂j the estimated regression coefficients, the new density estimator is:

f̂n,k(x) = exp(

k∑
j=0

Bk(x, j) δ̂j). (30)

It has to be normalized to one by numerical integration. Using a regression on the
logs and then predicting the exponential is a way to impose the positivity of the
density estimate.

The same approach can be used for estimating the CDF. Let us assume that the
vector of the n values of x has been sorted and let Fn = (1, · · · , n)/(n + 1).8 The
estimator proposed by Babu et al. (2002):

F̂n,k(x) =

k∑
j=0

Fn(j/k)Bk(x, j),

has the same problem as before, that we solve by introducing a new regression. Be-
cause an estimated cumulative is not only a positive, but also an increasing function
of x, we have to impose this supplementary restriction inside the new regression.
For this, we use a logistic regression, obtained by regressing the log of (1− Fn)/Fn

over the Bernstein basis Zk(x) = [Bk(x, j)] with:

log[(1− Fn)/Fn] = Zk(x)δ + ϵ.

8If we have weights w summing to n, then Fn = cumsum(w)/(n + 1) where cumsum in the operator
giving the cumulative sum.
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The estimated CDF is then obtained by the inverse transformation with:

F̂n,k(x) =
1

1 + exp(Zk(x)δ̂)
. (31)

Remains the question of the range of x which is not [0,1] in empirical applications.
This time, we use the following logistic transformation of the x, y = 1/(1+exp(x/x̄)),
the initial transformation y = (x−a)/(b−a) producing unsatisfactory results at the
top of the distribution.

In Table 4, we provide the error committed when estimating the 95th percentile
with the EU-SILC data.

Table 4: Error in percentage for estimating a 0.95 truncating point
Country Bernstein Log-normal Country Bernstein Log-normal

DK 0.04 9.35 ES 0.48 9.31
FI 0.23 2.06 IT 0.21 9.47
SE 0.16 20.73 PT 0.46 1.49
IE 0.16 2.76
UK 0.22 2.08 EE 0.17 6.93
AT 0.19 32.64 LT 0.49 2.93
BE 0.14 8.85 LV 0.78 2.25
DE 0.23 7.43 CZ 0.09 0.92
FR 0.16 2.24 HU 0.34 1.41
LU 0.27 1.04 PL 0.24 0.68
NL 0.20 1.16 SI 0.09 7.55
EL 0.20 3.97 SK 0.13 4.69
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