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Abstract
Mechanistic modeling of drying is well-established since several decades. Based on fundamental
balance equations and driven by relevant material parameters, it can predict the entire process,10

including configurations that were not observed before. Besides, thanks to their ability to tackle
non-linear and dynamics problems, approaches based onMachine Learning (ML) based are capa-
ble of coping with complex situations even better thanmechanistic modeling. Themain drawback
of mechanistic models is their complexity as operational tools, namely in providing the whole set
of product characteristics, while the main drawback of ML tools is its restriction to the domain15

paved by the data set. This paper summarizes the physics of the mechanistic formulation and
then presents the different possibilities of coupling the mechanistic and ML approaches to obtain
an "augmented" mechanistic model. The idea is to merge the advantages of both worlds. Different
strategies can be imagined:

• A full coupled method (hybrid model)20

• A fully decoupled method
• A cascade coupling

The second part of the paper gives examples of a fully decoupled approach: themechanisticmodel
is used to populate a data set, which is further exploited by a neural network. The originality of
the work is to compare a classical neural network with a physics informed neural network.25

Keywords: coupled transfers, drying rate, hybrid model, neural network, soft sensor.

1. Introduction

Drying is a complex process involving many coupled and non-linear thermal, physical,
mechanical, chemical, and biological phenomena. Due to the coupling between heat and
mass transfer, spatial fields of moisture content (MC) and temperature develop inside30

the product. The drying quality depends primarily on transfers as the moisture content
and temperature fields trigger shrinkage, thermo- and hydro-activation, thermal degra-
dation, internal pressure... For example, the transfers are also responsible for the chemical
degradation due to the coupled effect of hydric and thermal activation over time, for the
final MC heterogeneity, for the memory of mechanical behavior, for the development or35

inhibition of biological activity. Deformation, internal stress, product failure (collapse,
checking) and poor re-hydration are among the major challenges encountered in drying
quality. Solid mechanics is needed to address these aspects. The driving force for stress
development is the shrinkage induced by water removal. During drying, the presence of
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internal stresses induces creep and/or plastic deformation, that vary in space and time.40

The mechanical behavior also depends on temperature and moisture content. All these
aspects give rise to a complex and intricate coupling, explaining stress reversal and case-
hardening. Many aspects impact the quality and cost of the drying process: drying, time,
energy consumption, product quality, impact of using intermittent energy... Most aspects
are contradictory and compromised are not easy to define, prior or during the process.45

Modeling these complementary and strongly coupled aspects (transfer, mechanics and
additional phenomena) provides a comprehensive and in-depth view of the process and
allows optimization/adaptation to current situations. This is particularly welcome in the
current context of high energy prices, intermittent energy, and the need to save food and
raw materials.50

This complexity explains why machine learning is increasingly used in drying, to predict
drying traits such as moisture content or drying time, but more often to tackle more com-
plex aspects such as product quality [1, 2, 3, 4, 5, 6]. Theses works mainly rely on the use
of ML instead of mechanistic modeling.
On the contrary, this document aims to promote strategies capable of using ML in syn-55

ergy with mechanistic modeling, to proposed an "augmented" mechanistic model, in the
spirit of what is proposed in [7]. Among all phenomena involved to get a comprehensive
mechanistic model of drying [8], this paper is focused on coupled heat and mass trans-
fers. These intricate transfer are first outlined to better illustrate the possibilities offered
by machine learning (ML). In this section, we will concentrate on the potential combined60

contributions of ML to MM, i.e. different pathways able to merge the best of the two
worlds. Among the different possibilities, examples of fully decoupled approach is pro-
posed: generation of a data set by MM and subsequent exploitation of this data set by
ML: classical Neural Network and Physics Informed Neural Network.

2. The comprehensive macroscopic formulation65

The foundations of coupled transfer in porous media have been laid by the pioneering
works undertaken in the 50s and 60s [9, 10, 11]. The set the comprehensive set of macro-
scopic equations governing coupled heat and mass transfer in porous media was then
rigorously derived byWhitaker [12] using the method of volume averaging [13, 14]. The
development of volume-averaged transport equations requires the existence of a represen-70

tative elementary volume (REV) V sufficiently large to smooth the microscopic fluctua-
tions and sufficiently small to avoid macroscopic variations. The full set of equations [15]
adapted to the case of hygroscopic products [16] can be considered as the state-of-the-art
of the macroscopic formulation. It includes three state variables (for example moisture
content, temperature, and total pressure) and can describemost drying processes, includ-75

ing those which give rise to an internal over-pressure (high temperature drying, vacuum
drying, microwave drying). This comprehensive formulation can be found in [8]. For a
better understanding, the different modes of moisture transfer embedded in these equa-
tions are described in figure 1.

80

The three basics modes of migration inside a solid are induced by a gradient of MC:

• Liquid migration driven by capillary pressure,

• Binary diffusion in the gaseous phase, a crossed diffusion of water vapor and air,
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Gradient of moisture as driving force Other driving forces
Capillary migration Thermo-migration

Liquid water migrates from zones with large
MC, hence large menisci to zones with low
MC, where suction is larger due to smaller
menisci.

Temperature increases water vapor migration
(effect of T on Pvs), lowers capillary pressure
(effect of T on surface tension) and activates
bound water. Whatever the nature of water,
moisture always migrates from hot zones to
cold zones.

COLD HOT

Migration of vapor, bound water, liquid

Temperature gradient

Binary diffusion Convection of vapor
In the gaseous phase, binary diffusion takes
place. The driving force is the gradient of mo-
lar or mass fraction.

Vapor

Air

In high temperature configurations, the
internal temperature can be higher than the
external boiling point of water. A gradient
of total gaseous pressure develops, which is
an efficient driving force to enhance vapor
transport (together with air) by Darcy’s law.

Bound water diffusion Convection of liquid
Bound water molecules can jump from one
sorption site to the other. This is a statistical
behavior activated by both temperature and
MC (the molecules mobility increases for less
bound molecules).

Bound water

In the presence of a gradient of total gaseous
pressure (high temperature configuration)
and when MC is still high, the gaseous
pressure can act on menisci to drive liquid
water. The driving force is the gradient of
liquid pressure (gaseous pressure - capillary
pressure).

Figure 1: The different physical mechanisms able to drive moisture in a solid that are embedded in the com-
prehensive macroscopic formulation (adapted from [8]).
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• Boundwater diffusion, resulting from statistical jumps of water molecules bound to
the solid85

Apart from these MC gradient-triggered moisture fluxes, additional mechanisms might
be of huge importance:

• Thermo-migration refers to a flux of moisture induced by a gradient of tempera-
ture. This is very likely to occur in a solid during drying. Whatever the state of
water (gaseous, bound or liquid), the flux is always against the temperature gradi-90

ent (moisture migration from hot to cold),

• High temperature configuration (T > 100°C or vacuum drying), for which a gradi-
ent of total pressure develops and gives rise to an additional, very efficient, driving
force. This can be obtained by a high external temperature or by volumetric heating
(high frequency or microwave heating for example).95

All these phenomena, togetherwith the couplingwith thermal transfer generated through
the latent heat of evaporation, act together in space and in time during drying. This heat
andmass coupling is part of the complexity of the drying process andneed care in terms of
computational methods. Over the decades, the tremendous increase of computer power
together with the use of efficient mathematical solvers (full Newton-Raphson, exponen-100

tial integrator, Jacobian-free Newton-Krylov framework) completely changed the situa-
tion: the CPU time needed to solve the 3-variable model in 1D, dropped from one day
to 0.1 second! Full 3D models and dual-scale configurations (a microscopic special field
at each point of the macroscopic mesh) were progressively achieved (see [8] for further
detail).105

Most products exhibit a reduction of size, shrinkage, whenwater is removed. During dry-
ing, the local shrinkage, as defined by free shrinkage induced by the local MC value, does
not satisfy the compatibility conditions (the strain cannot be integrated into a displace-
ment field). Consequently, an additional strain field, related to a stress field, develops for110

the total field to be compatible. In turn, this stress level produces additional strain tied
to the constitutive law of the product: viscoelastic creep, mechano-sorptive creep, plastic
deformation. . . These additional strain fields act on the drying stresses and a complex
process takes place over time. These aspects, with their different levels of coupling with
heat and mass transfer, must be kept in mind as they are of crucial importance to the115

quality of the drying process. These mechanisms are well-documented in the literature
[17, 18, 19, 20, 21] and will not be discussed further here.

3. Combining Machine Learning and mechanistic modeling

By its predictive capability, the mechanistic modeling of drying is already a tool for inno-
vation in drying. However, despite its great potential, the state-of-the-art of the simulation120

of solids drying presents some limitations for its use as an operational tool:
1. The need for physical and mechanical characterization (all parameters involved in

the formulation) makes it very difficult to extend the model to different products.
2. The need to include additional features for predicting the drying quality (chemical

degradation, color, collapse, biological and microbiological activity. . . ).125
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3. In certain configurations, non-local equilibrium requires a dual-scalemodeling frame-
work to be implemented [22].

4. The lack of standard software, to solve this complex physics limits the extension of
modeling and simulation in practice.

5. The computational time, namely for 3D simulation or dual-scale modeling (dual-130

scale medium or packed-beds/beds of particles).
This explains that such tools are still rarely used in industry for process optimization and
control-command. However, the situation is evolving. For example, the code TransPore
was recently used to identifymoisture transfer properties from drying tests [23], address-
ing point 1, or to adapt wood drying schedules to intermittent energy [24]. We believe135

that the fast-growing field of data science will be an excellent driver for the dissemination
of mechanistic modeling in industry. Over the past decades, thanks to its ability to tackle
non-linear and dynamics problems, machine learning, namely neural networks (NN),
was amazingly successful in several fields such as autonomous cars, face recognition and
weather forecasting without solving any physical equation. ML has also spread to the140

drying field [2, 4]. However, in most cases, ML is used instead of mechanistic modeling.
In this sense, ML is capable of coping with complex situations, provided that the training
data set is large enough to cover the situations of interest: as main drawback, the predic-
tive capability is restricted to the domain paved by the data set. Rather than using ML
instead of mechanistic modeling, we believe that both areas are now mature enough to145

benefit from the best of both worlds: a predictive model capable of adapting to different
products. Such a digital twin approach would work both offline or online [7]. In this hy-
brid approach, the mechanistic model would remain at the heart of the interactions (Fig.
2).
ML-based models are easily operational and can be used in process control, based on150

an existing data set or real-time sensors, or both (arrows 2 of Fig. 2). As main draw-
back, the predictive capability of pureML-basedmodels is limited to situations than have
been observed many times before. On the contrary, even though they remain complex
as operational tools, mechanistic models can simulate situations that have never been en-
countered before: they can be used both for control/command and innovation (arrows 3155

of Fig. 2). Drying is a process for which the product quality depends on the whole pro-
cess history and is therefore difficult to predict different scenarios without a mechanistic
approach. This is the reason why both areas should work together. For example, energy
concerns are likely to increase in the future. Drying control will have to account for the
availability of energy, in terms of cost and quantity. These ever-changing situations could160

be handled by hybridmodels, combiningmechanistic modeling andML. Themechanistic
core will allow several scenarios to be predicted and tested in silico by ML algorithms to
choose the best one, dynamically. The quality of real-time information is crucial. ML ex-
cels at interpreting complex information gathered in real time during the process, such as
spectral information, computer vision or combination of several variables, known as soft165

sensors. Applied to drying, ML can extract real-time information such as drying time,
temperature, moisture content, color, deformation or product quality. The combination
of mechanistic modeling and ML can be organized in different ways:

1. A fully coupledmethod (hybridmodel): ML exploits real-time information for on-
line tuning of the mechanistic model. The model becomes more and more accurate170

with time (arrows 5 of Fig. 2) and can be used to test several strategies regarding en-
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Generative AI Database

Control/optimization Innovation

Soft sensors

Gateway to expertise

Hybrid modelMachine Learning Mechanistic model

2

1

3 3

2

4
4

5 5

6

6 Example proposed
in this paper

Figure 2: Synoptic diagram of the benefits of AI in the domain of drying for three fields of interest: gateway
to a first expertise, control/optimization of an existing process and innovation (adapted from [25])
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ergy demand, drying time and product quality and select the best condition based
on multi-objective optimization.

2. A fully decoupled method (arrows 4 of Fig. 2): The prediction capability of the
mechanistic model is used to generate a data set by numerous simulations covering175

awide range of conditions. The final approach is a black box, but a black box trained
on a mechanistic data set. The generation of the data set can be very CPU-intensive
but, once done, the ML model trained on this data set is very fast.

3. A cascade coupling: The mechanistic model is “augmented” by ML used to ex-
tend the outputs of the mechanistic model. For example, the prediction of product180

quality by amechanistic model (drying stress, thermal degradation, product shape,
stress reversal, color change, biological activity, etc.) is by far more challenging than
that ofmoisture content or temperature. Yet, the prediction of the final product qual-
ity by ML is likely to be more relevant if inferred from the evolution of temperature
and moisture content fields over time than directly from the drying conditions.185

In the not too far horizon, we could also imagine generative AI being powerful enough
to revolutionize this complex coupling between mechanistic modeling and data science.
Generative AI will certainly be able to derive a set of partial differential equations gov-
erning the problem from a large data set, then generating the code capable of solving it in
a predictive way and using this simulation tool in a dynamic loop, considering real-time190

information and the forecast of exogenous parameters (arrows 6 or Fig. 4). Then, the
initial data set would be dynamically populated by further real observations or simulated
configurations.
For illustrative purposes, the following sections show how a neural network can be used
to exploit a data set generated by mechanistic modeling.195

4. Generation of a data set using the mechanistic model

By accounting all transfers phenomena in computationally solved in a coupled way, a
mechanistic model is able to produce a comprehensive description of the physics of dry-
ing: all variable fields, including temperature, moisture content and internal pressure
can be simulated over time in 1D, 2D or 3D [26]. Figure 3 illustrates the coupling between200

variables that arise during high temperature (which triggers internal vaporization) of a
strongly anisotropic material (softwood here).
Using a simpler example (1D drying at low temperature), this section illustrates the po-
tential of a fully decoupled approach. A driver was written to populate a data set with
the code TransPore. In this example, a 20-mm thick board of softwood was simulated with205

varying conditions: Temperature (T), relative humidity (RH) of the air and initial mois-
ture content (MCini). These valueswere generated randomlyusing a uniformdistribution
in selected ranges:

• Training data set 1: 20 °C < T < 60 °C; 20 % < RH < 80 %; 40 % < MCini < 80 %,

• Test data set: T = 50 °C and 20 % < RH < 90 %; 20 % < MCini < 100 %.210

The conditions of the test data set were intentionally slightly different. 400 simulation
runs were generated to populate each data set. Fig. 4 proposes a graphical representation
of these data sets.
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Figure 3: Potential of mechanistic modeling. 2D simulation of high temperature drying of wood. The internal
overpressure developed when the product temperature is above the boiling point triggers a significant liquid
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.

Training data set Test data set

Figure 4: The two data sets populated by the mechanistic simulation tool TransPore. Left) Training data set 1
(400 runs with random variations of temperature, RH and initial MC) and Right) Test data set (400 runs at
50°C with random variations of RH and initial MC)
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For the sake of example, the simulation results are plotted in figure 5 for two contrasted215

tests. The averageMC, surfaceMC and coreMC are plotted as blue lines. For these tests at
low temperature convective drying andwith a diffusionmainly as boundwatermigration
in the hygroscopic domain, the temperature remains quasi uniform in the thickness. for
this reason, only the surface temperature is represented as a red line. The first example
is a test with severe conditions : T = 80 °C; RH = 20 % and MCini = 60 %. With these220

conditions, the drying kinetics is very fast. The temporal evolution of the surface tem-
perature indicates that there is no constant drying period. This fact is confirmed by the
very fast drop of MC at the surface. In this case, the average MC is already very close to
equilibrium at 10 hours of drying.
The second example is a test with mild conditions : T = 50 °C; RH = 80 % andMCini = 90225

%. The kinetics is consistently much slower than the previous test, with 30 hours needed
to reach the equilibrium, against 10 hours in the previous one. The temperature evolution
depicts a long plateau at the wet bulb temperature: it lasts more than 15 hours. Then,
the product enters the hygroscopic domain and the temperature gradually increases to
eventually reach the dry bulb temperature when the product is at its equilibrium MC. In230

this case, the MC values at 10 and 20 hours are still far from equilibrium.
The evolution of the MC profiles over time are depicted in figure 6. As expected, sharp
profiles are obtained with the severe drying conditions and more flat profiles for mild
conditions. It is interesting to notice that the solution of coupled heat andmass transfer is
able to capture the condensation at the beginning of drying, the time for the surface tem-235

perature to become higher that the dew point. This is explained by the initial temperature
of 25 °C set in the simulations. Consistently, the quantity of condensate water if larger in
the case of a very humid air.
Although these simulations are very rich in information, the following examples of Neu-
ral Network will be focused on a very reduced information: the MC values computed240

at 10 and 20 hours of drying by TransPore. The results section will show that, although
very coarse, this information is capable of producing excellent results thanks to the large
number of calculations.

5. Classical Neural Network

The neural network was implemented in Julia using the package Flux [27, 28]. A dense245

network of 4 layers (2 hidden layers, see Fig. 7), with sigmoid curve as activation func-
tion, was used. The hidden layers contain respectively 5 and 3 neurons. Trails proved that
70 000 epochs is a good compromise to obtain a low value of the objective function, with
no further decrease beyond this value. Temperature, Relative Humidity and Initial MC
are the three input values and MC at 10 and 20 hours are the output values.250

Figure 8 plots the MC values predicted by NN at 10 hours (green markers) and 20 hours
(red markers) as function of the MC simulated by the mechanistic model. For the train-
ing data set (left), the prediction is excellent, but the test data set (right) depicts serious
discrepancies for the largest values of MC. This is explained by the situations of the test255

data set that were not covered by the training data set: RH up to 90 % instead of 80 % and
initialMCup to 100% instead of 80%. Which such high values of both RH andMCini, MC
values as high as 60 % were simulated at 10 hours of drying. However, NN limits these
values at around 40 % (the maximum values of the training data set). The explains the
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Figure 5: Two contrasted examples of mechanistic simulation. Top) Severe conditions (T = 80 °C; RH = 20
% and MCini = 60 %) Bottom) Mild conditions (T = 50 °C; RH = 80 % and MCini = 90 %).
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Figure 8: Performances of the Neural Network using data set 1. Left) Training set and Right) Test data set.
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Figure 9: Performances of the Neural Network using data set 2. Left) Training data set and Right) Test data
set.

poor performance of this neural network for the test step (Table 1), with amaximum error260

of 20.2 %. The advantage of populating the data set by a mechanistic model, rather than
by experiments, is that it can be generated again with suitable conditions. We generated
a second training data set, which includes 1000 runs with wider ranges of parameters. In
particular, this data set has a wider range and temperature and initial MC and includes
tests with a very high relative humidity (up to 90 %), which results in very slow drying265

rate:

• Training data set 2: 20 °C < T < 90 °C; 20 % < RH < 90 %; 20 % < MCini < 100 %,

Using this second set, the NN excels in both training and test (Fig. 9 and Table 1). The
maximum error now equals 2.93 % with a RMSE of 0.42 %.
Once trained, the NN is very fast and can be used to address various problems. As a case270

study, it was used here to extract the combination of parameters able to produce a target
MC of 20 % (red dots of Fig. 10) or 10 % (blue dots) at 10 hours of drying. The desired
target MC values were selected from 50,000 random sets of input parameters computed
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Table 1: Performances of the neural networks.

RMSE(% MC) Max error (% MC)

Training data set 1 Training 0.17 0.98
Test 1.76 20.2

Training data set 2 Training 0.46 3.71
Test 0.42 2.93

Temperature (°C)RH (%°)
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75

20

40
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100

Figure 10: Using the Neural Network to determine the combination of parameters allowing the MC at 10
hours to be equal to 20 % (red dots) or 10 % (blue dots). Selection performed from 50 000 random values.

in less than one second by the trained NN. As the date set was produced by a mechanistic
model, the trends reported in this figure are physically consistent. For example, as the275

initial MC approaches 20 %, the drying conditions required to obtain 20 %, which means
almost no drying, after 10 hours of drying should be extremely mild: low temperature
with nearly saturated conditions.

6. Physics Informed Neural Network

Classical neural networks perform efficiently but they don’t include any physical informa-280

tion. This section gives an example of Physics Informed Neural Network (PINN). Start-
ing from the simple case presented in the previous section, it is clear that each individual
drying kinetics, whatever the drying conditions, follows a well-known trend explained
by the drying rate : constant drying rate when it exists, followed by a decreasing drying
rate [29, 30].285

In this section, a simple physical model was embedded in the Neural Network. Instead
of predicting the MC values at 10 and 20 hours, the NN was used to predict the degrees
of freedom of the concept of dimensionless drying rate curve, as defined decades ago by
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A← Ẋ0/(Xcr −Xeq)
B ← min(Xcr, Xini)−Xeq

if Xini ≥ Xcr then
tcr ← (Xini −Xcr)/Ẋ0

if t ≤ tcr then
X(t) = Xini − Ẋ0 × t

else
X(t) = B exp(−A(t− tcr)) +Xeq

end if
else

X(t) = B exp(−A(t)) +Xeq

end if

Figure 11: Algorithm coded in Julia to compute the drying kinetics defined by the van Meel model

van Meel [29]. The concept of dimensionless drying curve expressed the drying rate as a
function of the dimensionless moisture content X∗:290

X∗ =
X −Xeq

Xcr −Xeq
(1)

Where Xeq is the equilibrium moisture content defined by the sorption isotherm of the
product andXeq the critical moisture content, the value belowwhich the drying rate is not
constant any more and stats to decrease. The drying rate is then expressed as a function
of X∗:

Ẋ = Ẋ0 f(X∗) (2)
Here, the simplest shape of f (f(X∗) = X∗) was used. With this function, the drying295

kinetics can be then obtained by analytical integration of (2). This involves several cases
summarized in the algorithm of figure 11. Ẋ0 is supposed to be a positive number in these
expressions.
The model is defined by three parameters : Xcr,Xeq and Ẋ0. This simple physical model
was coded as a Julia function and embedded in the neural network. A network similar300

to that of figure 7 was used, except that the last layer has 3 outputs instead of 2. These
outputs correspond to the 3 model parameters. The physical model was embedded in the
loss function: for each point of the data set (learning or testing), the kinetics is solved
to obtain the moisture contents at the given times and compute the RMSE error to the
computational values. For the sake of comparison, the learning phase parameters were305

the same parameters in the previous section (70,000 epochs and a convergence rate of the
Adam’s solver of 10−2).
With the same piece of information, the quantified results show that the PINN case always
performs better than the simple NN (Table 2). This is particularly true for the test phase
using data set 2, for which the RMSE drops from 0.42 % to 0.35 %, and the maximum310

error from 2.93 % to 1.55 %. Figure 12 depicts the quality of the predicted MC versus the
computed MC for the two data sets already used in section 5. Data set 1 clearly suffers
from its too narrow range of conditions for a goodprediction of theMCvalues, as depicted
by the slight scattering of points still visible after the learning phase (right top sub-graph).
However, even though, the PINNexhibitsmuch less points badly predicted in the test data315

set than in the case of classical NN (to be compared to figure 8), which denotes a better
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Table 2: Performances of the physics informed neural networks.

RMSE(% MC) Max error (% MC)

Training data set 1 Training 0.45 2.07
Test 1.18 17.2

Training data set 2 Training 0.43 2.11
Test 0.35 1.55

potential of prediction. For data set 2, the fit is excellent for the two steps (learning and
test).
Figure 13 depicts the three values of the van Meel model obtained by the PINN after the
learning phase on data set 2 (1000 simulation runs). The equilibrium moisture content320

Xeq is strongly related to the relative humidity of the air flow and it is easy to recognize
the sorption isotherm embedded in the computational code. It is interesting to notice that
the point above this sorption curve correspond to high relative humidity values and low
temperature (clear marker colors). These points are also tied to conditions with a high
initial moisture content (not represented in this curve). All these conditions represent325

configurations that remained far from the equilibrium at 20 hours, the longest drying
time provided as input data.
The critical moisture contentXcr is always near 100 %with a low relative humidity, hence
a fast drying rate. Consistently, this value drops to about 50 % at high relative humidity,
which represent very mild conditions.The constant drying rate value Ẋ0 depends on both330

relative humidity and temperature: high values at low RH and high temperature, lower
values at low RH but lower temperature and, as expected, and very low values at high
relative humidity (low gap between the dry and wet bulb temperatures), whatever the
temperature level.
The Physics Informed Neural Network is therefore much closer to the physical behavior.335

It is remarkable to observe such relevant trendswhen supplying only themoisture content
at two different times. One must keep in mind that these good trends are explained by
two main facts:

• the data set was generated by a comprehensive mechanistic-based computational
model,340

• the information for each test is scarse (2 drying times), but the data set contains
1000 runs with random drying conditions values.

Another major advantage of the Physics Informed Neural Network over the classical neu-
ral network is to allow the full kinetics to be predicted, instead of only the moisture con-
tent at the two drying times supplied in the data set. For the sake of example, figure 14345

plots the drying kinetics of the eight first conditions of the data set. These kinetics were
computed using the van Meel model with the model parameters predicted by the trained
PINN (Table 3). The random conditions explains the diversity of these curves. For exam-
ple, the pink curve is a test with a high initial moisture content and moderate conditions.
One the contrary, the dark yellow curve is a test with very low initial content and very350

small drying rate. For each predicted curve, the moisture contents computed by the com-
prehensive model are plotted as markers of the same color. The match is always good,

15



Simulated MC
0.1 0.2 0.3 0.4

Pr
ed

ict
ed

 M
C

0.1

0.2

0.3

0.4
Training Data Set 1

10 hours
20 hours

Simulated MC
0.2 0.4 0.6

Pr
ed

ict
ed

 M
C

0.1

0.2

0.3

0.4

Test Data Set

10 hours
20 hours

Training data set 1 Test data set

Simulated MC
0.2 0.4 0.6

Pr
ed

ict
ed

 M
C

0.2

0.4

0.6
Testing Data Base

10 hours
20 hours

Simulated MC
0.2 0.4 0.6

Pr
ed

ict
ed

 M
C

0.2

0.4

0.6

Training Data Base 2

10 hours
20 hours

Training data set 2 Test data set

Figure 12: Performances of the Physics Informed Neural Network using data set 1 (Top) and data set 2 .(Bot-
tom). Left) Training data set and Right) Test data set.
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Figure 13: Parameters of the vanMeelmodel obtained after training of the Physics InformedNeural Network.
From top to bottom: equilibrium moisture content, critical moisture content and constant drying rate.
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Figure 14: Drying curves computed using the trained PINN parameters for the first eight random drying
conditions.

if not excellent, which confirms the global figures of table 2. Table 3 includes the values
of moisture content at 10 and 20 hours: the gap is most generally less than 0.5 % with a
maximum value of 0.9 % at 20 hours for test 5 (the dark yellow curve of Fig. 14). The355

results obtained for the test data set are not shown here, but are very similar in terms of
quality. They are just less interesting due to the choice of a single temperature value.

As final remark, one must keen in mind that the PINN can give the van Meel parameters
for any set of drying conditions covered by data set 2. Then, the drying kinetics can be360

computed very simply. Thismeans that this PINN became a very fast predictive tool. This
opens the door for a neural network approach able to predict much more than the drying
kinetics. Keeping in mind how rich are the data generated by the mechanistic model, in-
formation such as energy consumption, thermal degradation, mechanical quality... could
be added to the data set before subsequent exploitation by the PINN. For example, ther-365

mal degradation can be obtained by the time-integration of the product temperature and
mechanical quality by the time-integration of the different of shrinkage between the sur-
face and the core of the product. This requires only a simple quantification of the product
temperature or the MC values at the surface and core (Fig. 5) to be supplied to the data
set.370

7. Conclusion

This paper intends to show how mechanistic modeling and machine learning can work
jointly in the field of drying. It first summarized the physics embedded in the mecha-
nistic formulation of drying. Then, ML, a mushrooming domain, is not proposed to be
used instead of mechanistic model, but as a complement to it. The different possibilities375
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Table 3: The eight first random conditions of the learning data set and the corresponding data (values of the
van Meel model predicted by the PINN after learning and the values of moisture contents t 10 and 20 hours,
both for the comprehensive computational model and for the van Meel model using the PINN values.).

Drying conditions van Meel values MC at 10 hours MC at 20 hours
T RH Xini Xcr Xeq Ẋ0 Simul. Pred. Simul. Pred.
°C % % % % % /h % % % %

1 58.9 83.3 91.2 56.7 13.3 6.1 36.6 36.8 18.2 19.0
2 54.8 23.4 25.5 98.1 5.5 56.9 5.0 5.5 5.0 5.5
3 43.0 24.2 80.6 99.1 5.1 33.7 7.2 7.2 5.3 5.1
4 51.6 40.4 41.1 95.4 7.6 51.4 7.9 7.7 7.8 7.6
5 30.3 78.3 20.8 74.2 14.2 5.0 17.1 17.0 16.3 15.4
6 53.7 55.7 89.8 86.6 9.4 21.5 13.9 14.4 10.2 9.7
7 45.0 76.2 62.7 68.8 12.7 7.6 25.7 25.7 15.6 16.1
8 20.6 56.0 37.7 94.1 10.4 7.8 21.9 21.2 14.5 14.6

of coupling the mechanistic and ML approaches to obtain an "augmented" mechanistic
model are outlined. Different pathways are proposed and commented to merge the best
of the two worlds:

• A full coupled method (hybrid model)

• A fully decoupled method380

• A cascade coupling

As an illustrative example, a fully decoupled approach is proposed and discussed at the
second part of the paper. To that purpose, a large data set was generated by a comprehen-
sive mechanistic model and then explored by Neural Networks. The originality of this
section is to compare a classical Neural Network (NN) and a Physics Informed Neural385

Network (PINN). The second one depicts a much higher accuracy and a real prediction
potential. Many drying aspects can be tackled on this basis by in-depth exploitation of
the exhaustive data set generated by the mechanistic model (energy consumption, ther-
mal degradation, mechanical quality, etc.). Another interesting perspective would be to
use neural ordinary differential equations (neural ODEs), particularly well suited to pre-390

dicting time-dependent configurations.
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Appendix A. Macroscopic formulation of coupled heat and mass transfer480

This annex describes the comprehensive set of macroscopic equations describing coupled
transfer occurring during drying. This set was proposed by [12, 15] and adapted to the
case of hygroscopic products with a balance of dry air required to consider the effect of
internal pressure [26, 31].

485

Moisture conservation
All water phases are considered in the accumulation term (liquid, vapor and bound).
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The fluxes includes the liquid velocity driven by the liquid pressure (convection and cap-
illary), the convection of gas, the diffusion of bound water, and the binary diffusion of
vapor in air.490

∂ (εwρw + εgρ
g
v + ρb)

∂t
+∇ · (ρwv̄w + ρgvv̄g + ρbvb) = ∇ · (ρgDeff · ∇ωv) (A.1)

Energy conservation
The enthalpy conservation includes the enthalpy of all phases in the accumulation terms,
the pressure work, and all enthalpy fluxes due to convection of diffusion migrations.

∂

∂t

(
εwρwhw + εg(ρgvhv + ρgaha) + ρbhb + εsρshs − εgpg

)
+∇ · (ρwhwv̄w + (ρgvhv + ρgaha)v̄g + hbρbvb) + v̄w · ∇pw + v̄g · ∇pg

= ∇ · (ρgDeff (hv∇ωv + ha∇ωa) + λeff∇T ) + ϕ (A.2)

In this equation, the term ϕ accounts for possible volumetric heat sources, for example in
the case of high frequency, or microwave heating. The transport of enthalpy due to bound495

water migration must be treated with care. As the differential heat of sorption depends
on the bound water content, the averaged value hb should be used in the time evolution
(accumulation term), whereas the value at ρb (hb) should be used in the migration term,
as it is assumed that the less bound water molecules are those likely to migrate.

500

Air conservation
This equation simply considers the accumulation of dry air in the gaseous phase and its
migration by convection and diffusion.

∂ (εgρ
g
a)

∂t
+∇ · (ρgav̄g) = ∇ · (ρgDeff∇ωa) (A.3)

In these equations, the barycentric mass velocities are from the generalized Darcy’s law:

v̄g = −Kkg
µg

(∇pg − ρg∇ψg) (A.4)

v̄w = −Kkw
µw

(∇pw − ρw∇ψg) with Pw = Pg − Pc(X,T ) (A.5)

When the bound water flux is expressed using the bound water density as the driving
force, the bound water flux takes the following form:505

ρbvb = −Db∇ρb = −ρ0Db∇Xb

where Xb = min(X,Xfsp) (A.6)

Boundary conditions

Jv|x=0+ · n = hm cMv ln

(
1− x∞

1− xv|x=0

)
Jh|x=0+ · n = hh (T |x=0 − T∞)

Pg|x=0+ = Patm (A.7)
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The first boundary equation assumes that only water vapor is exchanged between the
product and the surrounding air.

This macroscopic formulation assumes that the porous medium is locally at equilibrium:
A1 the temperature is the same for all phases Ts = Tw = Tg510

A2 the partial pressure of water vapor inside the gaseous phase is in equilibrium with
moisture content X via pv = pvs(T ) × aw(T,X), where function aw is the sorption
isotherm, also called water activity, namely in food science.

Further assumptions allow this set of equations to have a more convenient form:
A3 the variation in partial densities inside the REV are negligible; therefore, the intrinsic515

average is equal to the local value ρgv = ρv and ρga = ρa,
A4 the solid density is assumed to be constant ρs = constant,
A5 the moisture content X is used to consider the total amount of water present in the

porous medium ρ0X = εwρw + εgρ
g
v + ρb where ρ0 = εsρs,

A6 the effective diffusivity is expressed as a function of the binary diffusivity of vapor520

in air: Deff = fDv, where f is a dimensionless diffusivity tensor (indeed, along
one given direction, f = 1/µwhere µ is the vapor resistance ratio used for building
materials),

A7 The effect of pressure variation has a negligible contribution in enthalpy conservation
With these additional assumptions, the set of equations takes the following compact form:525

Moisture conservation

ρ0
∂X

∂t
+∇ · (ρwv̄w + ρvv̄g) = ∇ · (ρgfDv∇ωv + ρ0Db∇Xb) (A.8)

Energy conservation

∂

∂t

(
εwρwhw + εg(ρvhv + ρaha) + ρbhb + εsρshs

)
+∇ · (ρwhwv̄w + (ρvhv + ρaha)v̄g)

= ∇ · (λeff∇T + (hv − ha)ρgfDv∇ωv + hbρ0Db∇Xb) + ϕ (A.9)

Air conservation
∂ (εgρa)

∂t
+∇ · (ρav̄g) = ∇ · (ρgfDv∇ωa) (A.10)

Nomenclature

Greek Symbols
ε Volume fraction -
µ Viscosity Pa · s530

Φ Porosity -
ρ Density kg/m3
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ϕ Volumetric heating term W/m3

Roman Symbols
n Normal unit vector -535

cp Heat capacity J/(K ·m3)

D Diffusion coefficient m2/s

f Dimensionless mass diffusivity -
h Specific enthalpy J/(K · kg)

hh Heat transfer coefficient W/(K ·m2)540

hm Mass transfer coefficient m/s

K Permeability m2

Lv Latent heat of vaporization J/kg

m Mass kg

MC Moisture content, dry basis -545

P Pressure Pa

qh Flux density of heat W/m2

qv Flux density of vapor kg/(s ·m2)

R Gas constant 8.314 J/(K ·mol)

RH relative humidity -550

T Temperature °C
t Time s

V Volume m3

v Velocity m/s

X Moisture content, dry basis -555

Subscripts
a Air
atm Atmospheric value
eff Effective value at the macroscopic scale
eq Equilibrium560

g Gaseous
h Heat
m Mass
s Solid
v Water vapor565

w Wet bulb or liquid water
Superscripts
ψ average of variable ψ over the REV

24



Other Symbols
∇ Gradient570

∇· Divergence
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