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ABSTRACT
Co-speech gestures are fundamental for communication. The ad-
vent of recent deep learning techniques has facilitated the creation
of lifelike, synchronous co-speech gestures for Embodied Conver-
sational Agents. "In-the-wild" datasets, aggregating video content
from platforms like YouTube via human pose detection technologies,
provide a feasible solution by offering 2D skeletal sequences aligned
with speech. Concurrent developments in lifting models enable the
conversion of these 2D sequences into 3D gesture databases. How-
ever, it is important to note that the 3D poses estimated from the 2D
extracted poses are, in essence, approximations of the ground-truth,
which remains in the 2D domain. This distinction raises questions
about the impact of gesture representation dimensionality on the
quality of generated motions. Our study examines the effect of
using either 2D or 3D joint coordinates as training data on the
performance of speech-to-gesture deep generative models.
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1 INTRODUCTION
In human communication, gestures play an integral role by con-
veying intentions and emphasizing points [13]. Recent studies [1–
3, 5, 7, 14, 16, 18–22] aim to create similar gestures for Embodied
Conversational Agents (ECA), using learning algorithms and exten-
sive human motion datasets. Data on 2D motion is easily accessible
from “in-the-wild” monocular videos, which are videos freely ac-
cessible online. To gather 3D gestures from such videos, one can
use a pre-trained model to convert these 2D poses to 3D. However,
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it still faces the bottleneck of the 2D body pose representation. In
"in-the-wild" datasets lifted in 3D, the source is still 2D monocular
videos. Deciding whether to convert 2D poses to 3D beforehand or
to train a model to generate 2D gestures and then lift them to 3D
in post-processing, needs to be addressed. It remains unclear what
the impact of the dimensionality of the skeleton representation is
on the training of the generative model and the quality of the gen-
erated gestures. In this work, we compare two training settings to
evaluate the influence of data dimensionality on the performance of
two speech-to-gesture generative models by considering either 2D
or 3D joint coordinates, as illustrated in Figure 1. More particularly,
our contributions are the following:

•We propose an evaluation pipeline to investigate the impact of
the dimensionality of the pose representation on the performance
of two co-speech gesture generative models [20, 22]. We train both
models to generate sequences of body poses represented in 2D
coordinates which are then lifted to 3D using VideoPose3D [15].

• We empirically compare the quality of the gestures generated
in 2D lifted to 3D to the gestures directly generated in 3D using
evaluation metrics commonly used in co-speech gesture generation
tasks [12, 20, 22].

•We conducted a user study where participants were asked to
choose between gestures generated in 2D then lifted to 3D and
gestures directly generated in 3D, providing a direct comparison of
perceived quality. The code is provided at the following repository:
https://github.com/TGuichoux/2D-or-not-2D

2 METHODOLOGY
2.1 Pipeline
To evaluate the inductive bias caused by the dimensionality of the
gesture representation (2D or 3D) and the 2D-to-3D conversion, we
trained co-speech gesture generators in both 2D and 3D settings.
We employed a 3D lifter for post-processing the 2D generated se-
quences to be able to compare them to the 3D generated sequences.
The two gesture generators selected for this study are DiffGesture
[22] and Trimodal [20].
1) DiffGesture is defined as a DDPM that generates sequences of
poses out of noise, conditioned on raw speech audio.
2) Trimodal is an encoder-decoder model trained in an adversarial
scheme, that translates speech audio and text into 3D gestures,
conditioned on speaker identity.

DiffGesture and Trimodal are designed to generate 3D gestures.
We adapted these architectures to account for 2D body pose se-
quences by changing the input and output dimensions of the denois-
ing network and recurrent decoder network respectively. Specif-
ically, we removed the depth axis of the body pose coordinates.
We define DiffGesture 2D + VP3D and Trimodal 2D + VP3D as Dif-
fGesture and Trimodal trained on 2D motion data whose outputs

https://doi.org/10.1145/3652988.3673934
https://doi.org/10.1145/3652988.3673934
https://doi.org/10.1145/3652988.3673934
https://github.com/TGuichoux/2D-or-not-2D


IVA ’24, September 16–19, 2024, GLASGOW, United Kingdom T.Guichoux, L.Soulier, N.Obin, C.Pelachaud

Figure 1: The two considered training settings for co-speech gesture generation from online videos.

are then lifted to 3D using VideoPose3D and we compare them to
the original models, DiffGesture 3D and Trimodal 3D [20, 22]. Both
models are trained on the TED Gesture-3D dataset [20], which
is a dataset compiling 97h of paired speech-3D motion data. For
2D-to-3D conversion, we employed VideoPose3D [15], a Temporal
Convolutional Network that maps a sequence of 2D poses to its 3D
counterparts. We retrained VideoPose3D [15] on the TED Gesture-
3D dataset to be able to input body poses when only the upper part
of the body is considered.

2.2 Objective Evaluation metrics
We numerically evaluate our models with three commonly used
metrics in the co-speech gesture generation field.
The Fréchet Gesture Distance (FGD): The FGD defined by Yoon
et al. [20] computes the 2-Wasserstein distance between two distri-
butions leveraging latent features extracted with a pose encoder.
Similar distributions result in a high FGD value.
The Beat Consistency Score: The Beat Consistency Score (BC)
[10, 11] measures the temporal consistency between kinematic and
audio beats of a paired audio-motion sequence.
Diversity: The Diversity measure also leverages the latent fea-
tures extracted with a pose encoder [9]. Diversity is computed by
randomly selecting two sets of features from a distribution and
calculating the distance between the mean of both sets.

3 USER STUDY
3.1 Protocol
We created videos 1 showing the co-speech gestures animation of
the upper body of an articulated humanoid. Each video features
two stimuli for pairwise comparison as it has been shown to reduce
the cognitive load of the users [4, 17, 20]. The first animation is
displayed on the left side of the screen with the second animation
masked. The second animation is shown while the first one is
masked. In each video, both animations used the same model (either
1Supplementary videos used are provided at the following website:
https://sites.google.com/view/iva-2d-or-not-2d.

DiffGesture or Trimodal), one with direct 3D gestures and the other
with 2D gestures converted to 3D. We qualitatively evaluated the
impact of the 2D-to-3D lifting, by including baseline videos (referred
to as Human GT ). These videos paired 3D pseudo-ground-truth
gestures to those created by converting the 2D versions of these
gestures to 3D using the retrained version of VideoPose3D. The
pseudo-ground-truth gestures originate from the test set of the TED
Gesture-3D dataset.

After viewing each video, participants were asked to select the
animation they preferred in terms of human-likeness, aliveness,
and speech synchrony. For each question, there were four possible
answers: "Clearly left", "Fairly left", "Fairly right", and "Clearly right".
Each response is assigned an integer value: +2 and +1 for a clear
or slight preference for gestures directly generated in 3D, -2 and -1
for a clear or slight preference for lifted 3D gestures.

We recruited 67 participants on the Prolific platform [6, 8]. Among
the participants who took the test, 7 failed the attention checks.
The users were 36.7+/-11.8 years old and there were 37 females
and 30 males and the median completion time was 17 minutes. We
obtained 30 valid responses for each stimulus. The participants
were paid 3£ if they passed the attention checks.

4 EXPERIMENTAL RESULTS
4.1 Objective evaluation
The results of our objective experiments are reported in Table 1.
When comparing the results of DiffGesture 2D + VP3D and Trimodal
2D + VP3D to those ofDiffGesture 3D and Trimodal 3D, we can notice
that the models trained on 2D gestures perform worse than the
original 3D models in terms of FGD, and BC. There is also a slight
drop in diversity for Trimodal. We assume that the one-to-many
relationship between 2D and 3D keypoints is mostly responsible
for the performance drop of DiffGesture 2D + VP3D and Trimodal
2D + VP3D for the FGD. As VideoPose3D is deterministic, to one
2D pose it will systematically predict the same 3D pose although
there exists multiple possibilities. Hence, the distribution resulting
from lifting 2D sequences is tighter than the distribution directly
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Table 1: Objective results of the experiments on the TED
Gesture-3D dataset [20]. Up arrows indicate that a higher
result is better whereas down arrows indicate that a lower
result is better.

TED Gesture
Methods FGD ↓ BC ↑ Diversity ↑
Evaluation on the 3D gesture space
Ground Truth 3D 0 0.702 102.339
DiffGesture 3D [22] 1.947 0.678 101.436
DiffGesture 2D + VP3D 3.121 0.551 100.822
Trimodal 3D [20] 3.964 0.733 95.253
Trimodal 2D + VP3D 6.374 0.610 93.017

Figure 2: Evaluation study results. A positive score means
that gestures generated directly in 3D are preferred over 2D
gestures lifted to 3D. Reciprocally, a negative score means
that 2D gestures lifted to 3D are preferred over direct 3D ges-
tures. A score close to 0 means that the preference is unclear.

generated in 3D, explaining the high FGD of the gestures generated
in 2D lifted to 3D. There is a drop in BC between the 3D models and
their 2D counterparts. It can be that post-processing 2D gestures
using VideoPose3D tends to over-smooth the resulting 3D gestures
therefore reducing the number of kinematic beats.

4.2 Subjective evaluation
The results of our user study are presented in Figure 2, which
highlights pairwise preferences between gestures generated directly
in 3D or gestures generated in 2D lifted to 3D using VideoPose3D. A
score significantly greater than zero indicates that gestures created
directly in 3D are better perceived than those initially generated in
2D and subsequently converted to 3D using VideoPose3D. On the
other hand, a score near zero means that the preference is unclear.
We conducted a statistical analysis to determine the significance
of our user study results. We used Student t-tests to check if the
average scores for human likeness, aliveness, and speech synchrony
were significantly different from zero. We also conducted Welch
t-tests to determine the significance level of the model-wise mean

Figure 3: Statistical comparison of mean scores for each
model and each aspect. The lines represent a significant su-
periority between the two values. Dotted lines correspond
to Student t-tests and plain lines to Welch t-tests. * means
p-value < 0.05 while ** means p-value < 0.01

score comparisons. The results of the Student t-tests and Welch
tests are depicted in Figure 3.

First, for the DiffGesture and Trimodal models, all scores are
significantly higher than zero, with a p-value less than 0.01. This
suggests that gestures created directly in 3D by these methods are
more effective than those initially created in 2D and then converted
to 3D for all three aspects.

For the Human baseline (Human GT), converting 2D gestures
to 3D demonstrates a minimal yet statistically significant impact
on the perception of their human-likeness animation, with a score
above zero (p-value of 0.020) and a confidence interval of the mean
score close to zero. This suggests that while VideoPose3D influ-
ences the perceived human likeness, the effect is subtle. In contrast,
the conversion process significantly affects gesture quality in terms
of aliveness and speech synchrony, as evidenced by scores signifi-
cantly higher than zero (p-values of 0.001 and 0.004, respectively).
This indicates a notable degradation in these aspects due to the use
of VideoPose3D for lifting 2D gestures to 3D.

We can conclude that training a model to generate 2D gestures
and then converting these gestures to 3D deteriorates the overall
animation quality in terms of human likeness, aliveness, and speech
synchrony. The 2D-to-3D conversion of gestures has a small yet
significant impact on the perception of human-likeness. Hence, the
drop in human-likeness quality for gestures generated in 2D and
then lifted to 3D may come from the training of the generative
model itself since the 2D gesture representation may not allow the
generation of highly human-like gestures once converted to 3D.

5 CONCLUSION
We conducted a study to measure the impact of the gesture repre-
sentation dimensionality on the quality of 3D co-speech gesture
generation. We selected two baseline models trained in two dif-
ferent settings: generation of 3D gestures and generation of 2D
gestures with subsequent 2D-to-3D conversion. To evaluate the
different approaches, we performed an objective evaluation and a
large-scale user study involving 67 participants. From the results of
our objective and subjective studies, we can conclude that the 3D
representation of gestures during training is better for generating
high-quality 3D motion synchronized with speech.
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