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Abstract

Based on the seminal work by [1], we propose a simple recursive algorithm
for approximating the transition density of a stochastic differential equation
(SDE). We then introduce a new method for simulating SDEs. Unlike Euler’s
and other schemes, our discretization step is fixed and does not need to
approach zero. We apply our methods through simulations to some well-
known financial models, specifically the Vasicek and CIR models.
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1. Introduction

In recent decades, stochastic differential equations (see [15] for more de-
tails) have been extensively investigated and have proven invaluable across
diverse fields such as finance, population dynamics, biology, and telecom-
munications. While SDEs play a crucial role, their exact solutions are sel-
dom available in explicit form, posing a significant challenge for the applied
probability community. In the absence of explicit solutions, numerical ap-
proximations of the solutions become indispensable. Classical schemes like
Euler and its variants are sensitive to time steps, which makes it important
to develop more precise methods, such as exact methods.
Numerous contributions have been made in the literature, with pioneering
efforts by [4] and [3] employing a retrospective rejection sampling approach.
One can also refer to the work of [6] for improvements on the rejection sam-
pling method.

The objective of this work is twofold: to provide a simple approximation of
the transition density around the Gaussian distribution using Hermite poly-
nomials, and to employ this approximation to simulate trajectories of SDEs.
Various attempts have been made to approximate the transition density. [13]
proposed a numerical resolution of the Kolmogorov partial differential equa-
tion satisfied by the transition density. Alternatively, [14] and other authors
tackled the problem through finely sampled path simulations. [1] stood out
by deriving a closed-form Hermite expansion of the transition density and
demonstrating the numerical superiority of his method in terms of accuracy
compared to existing ones.

In the same vein as the idea of [1], we aim to achieve a high level of accu-
racy in approximating the transition density. Aït-Sahalia’s work involves de-
veloping the transition density of the stochastic differential equation around
the Gaussian distribution using Hermite polynomials. The expression for the
coefficients in this series expansion is in integral form, which incurs high com-
putational costs. Our main contribution is to address this issue by proposing
simple recursive formulas for computing these coefficients, significantly re-
ducing the computational cost.

The transition density is expressed as the product of a Gaussian distri-
bution and a linear combination of Hermite polynomials. Hence, it can be
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simulated by rejection from a double exponential distribution, for instance.
Consequently, by leveraging the Markovian nature of the stochastic differ-
ential equation, an accurate simulation of its trajectory becomes feasible.
Unlike classical schemes such as Euler and Milstein (see for example [10]),
which require a sufficiently small step to achieve the desired accuracy, our
method achieves higher precision with a fixed time step by adding only a few
terms in the transition density expansion. It is worth noting that only a few
terms are needed to achieve a low approximation error.

The structure of this paper unfolds as follows: Section 2 elucidates the
expansion of the transition density using Hermite polynomials and provides
the closed-form approximation. Section 3 illustrates the accuracy of our
method on two classical models, namely the Vasicek and CIR models. Section
4 is dedicated to the application of the transition density approximation in
the development of a new simulation scheme for SDEs.

2. Closed-form approximation of the transition density

Before proceeding further, we introduce the following notations which will
be used throughout the paper. Let Dx and Dk

x denote respectively ∂
∂x

and
∂k

∂xk
. Consider a stochastic differential equation of the form{

dXt = µ(Xt)dt+ σ(Xt)dWt, t ≥ 0,

X0 = x ∈ R,
(1)

where µ and σ are respectively the drift and the volatility functions. The
process (Wt)t≥0 stands for a standard Brownian motion.

The fundamental idea in the work of [1] is to develop the transition density
of the diffusion process in Equations (1) around the standard normal distri-
bution. Since this density can potentially differ from the standard Gaussian
one, a first transformation, known as Lamperti’s transformation, is employed
to make this possible. Let us be more precise. Define

Yt = γ(Xt),

where
γ(x) =

∫ x

x∗

1

σ(u)
du, (2)
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for some arbitrary x∗. Since σ > 0, the transformation γ is increasing.
Applying Itô’s Lemma, we get

dYt = µY (Yt)dt+ dWt, Y0 = y0, (3)

where
µY (y) :=

µ(γ−1(y))

σ(γ−1(y))
− 1

2
Dxσ(γ−1(y))

with γ−1 is the inverse function of γ given by (2). This transformation aims
to obtain the unitary diffusion (Yt)t.

The drift µ and diffusion σ are supposed to satisfy the following set of
assumptions:

Assumption 2.1. The functions µ and σ are infinitely differentiable.

Assumption 2.2. Let SX denote the domain of Xt.

1. If SX = (−∞,∞): there exists a positive constant C such that σ(x) >
C for all x ∈ SX .

2. If SX = (0,∞): near 0, if limx→0+ σ(x) = 0, there exists a constant K0,
α ≥ 0 and ρ ≥ 0 such that σ(x) ≥ αxρ for all 0 < x < K0; away from
0, for each K > 0, there exists a constant CK > 0 such that σ(x) ≥ CK
for all x ∈ [K,∞].

Assumption 2.3. Let λY (y) = −1
2
{µ2

Y (y) +DyµY (y)} and denote by SY =
(y, y) the domain of the transform diffusion Yt. The functions µY and DyµY
have at most polynomial growth near the boundaries and limy→∂SY λ(y) <∞.
Near y = ∞, µ(y) ≤ −κ1yβ for some β > 1 and κ1 > 0; near y = −∞,
µY (y) ≥ κ1|y|β for some β > 1 and κ1 > 0; near y = 0, µY (y) ≥ κ2y

−ζ for
some ζ > 1 and κ2 > 0; and near y = 0, µY (y) ≤ −κ2|y|−ζ for some ζ > 1
and κ2 > 0.

These conditions are similar to the ones of [1] and guarantee the existence
and uniqueness of a weak solution of (1) (one can refer to Propositions 1 and
2 in [1] for more details).

Let δ > 0. We further standardize Yδ by the following operation:

Zδ = δ−
1
2 (Yδ − y0).
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The previous transformations allow to express the transition density of Zδ
using the standard normal density and Hermite polynomials defined here-
after.

The generalized Hermite polynomials of degree n are defined, for t ≥ 0,
as follows:

Hn(x, t) =

{
(−t)nex2

2tDn
xe
−x2

2t if t > 0,

xn if t = 0.

In particular, for t = 1, we recover the classical Hermite polynomials, still
denoted Hn,

Hn(x, 1) = Hn(x) = (−1)n
Dn
zφ(z)

φ(z)
,

where Dn
zφ(z) is the n-th derivative of the standard Gaussian density φ(z) =

e−z
2/2/
√

2π. Moreover, the Hermite polynomials satisfy the following useful
properties:

DxHn(x, t) = nHn−1(x, t),

DtHn(x, t) = −1

2
D2
xHn(x, t). (4)

[1] has shown the following fundamental result for the development of the
transition density of Zδ using Hermite polynomials.

Theorem 2.4 ([1]). Let pZ(δ, z|y0) denotes the transition density of Zδ at z
conditionally on y0 and consider the following expansion:

pZ,K(δ, z|y0) := φ(z)
K∑
k=0

ηZ,k(δ, y0)Hk(z), (5)

where
ηZ,k(δ, y0) =

1

k!

∫
R
Hk(z)pZ(δ, z|y0)dz.

Under Assumptions 2.1-2.3, we have

pZ,K(δ, z|y0) −→ pZ(δ, z|y0), as K →∞.

The proposed approximation depends mainly on the coefficients (ηZ,k)k≥0.
The evaluation of these coefficients requires an integral calculation which
risks to be costly. A classical solution to get around this problem is to use
a Taylor expansion around 0 of ηZ,k. This is the subject of the following
proposition.
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Proposition 2.5. Under Assumptions 2.1-2.3, there exists δ∗ ∈ (0, δ) such
that

E [Hk (Yt+δ − y0, δ) |Yt = y0] =
J∑
j=0

δj

j!
BjHk (y − y0, δ)|y=y0, δ=0

+ E
[
BJ+1Hk (Yt+δ∗ − y0, δ∗) |Yt = y0

] δJ+1

(J + 1)!
,

where B is the infinitesimal operator given for a smooth function g := g(t, y)
by

Bg = Dtg + µYDyg +
1

2
D2
yg,

and Bkg is the operator applied k times to g.

Proof. We define Ψ: s 7−→ E [Hk (Yt+s − y0, s) |Yt = y0] . This function is
differentiable and we have

DsΨ(s) =

∫ +∞

−∞
Ds {Hk (y − y0, s) pY (s, y|y0)} dy

=

∫ +∞

−∞
{DsHk (y − y0, s) pY (s, y|y0) +Hk (y − y0, s)DspY (s, y|y0)} dy.

The diffusion (Yt)t satisfies the following forward Kolmogorov equation (see
[9]):

DspY =
1

2
D2
ypY −Dy (µY pY ) .

Therefore, one obtains

DsΨ(s) =

∫ +∞

−∞

{
DsHk (y − y0, s) pY (s, y|y0)

+Hk (y − y0, s)
(

1

2
D2
ypY (s, y|y0)−Dy (µY pY (s, y|y0))

)}
dy

=

∫ +∞

−∞

{
DsHk (y − y0, s) + µYDyHk(y − y0, s) +

1

2
D2
yHk(y − y0, s)

}
pY (s, y|y0)dy,

where the last equality follows from integration by parts. Consequently, we
get

DsΨ(s) = E [BHk (Yt+s − y0, s) |Yt = y0] . (6)
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By iterating the same steps as above, we have for all k ≥ 0,

Dk
sΨ(s) = E

[
BkHk (Yt+s − y0, s) |Yt = y0

]
.

The proposition follows from a Taylor development of the function Ψ at
s = 0.

Remark 2.6. We can also prove (6) using Itô’s Lemma. Indeed, for any
regular function f , we have

df(Yt, t) = Bf(Yt, t)dt+ µY (Yt)Dyf(Yt, t)dWt.

Therefore, writing the previous equation in an integral form and taking the
expectation gives

E [f(Yt, t)] = f(Y0, 0) +

∫ t

0

E [B f(Ys, s)] ds.

Differentiating both sides with respect to t ends the claim.

Now, we are in a position to state our main theoretical result.

Theorem 2.7. For n ≥ 1, the operator B applied n times to Hk can be
represented as

BnHk =
n∑
j=1

P n
j (µY )Dj

yHk, (7)

where the functions P n
j (µY ) satisfy

P n+1
1 (µY ) = µYDyP

n
1 (µY ) +

1

2
D2
yP

n
1 (µY ),

P n+1
j (µY ) = µY P

n
j−1(µY ) + µYDyP

n
j (µY ) +DyP

n
j−1(µY ) +

1

2
D2
yP

n
j (µY ), 2 ≤ j ≤ n,

P n+1
n+1 (µY ) = µY P

n
n (µY ) +DyP

n
n (µY ),

with the initial condition P 1
1 (µY ) = µY .

The above relations can be written in a matrix form as follows:

P n+1
1

P n+1
2

P n+1
3
...

P n+1
n

P n+1
n+1


=



B1 0 · · · · · · · · · 0
B2 B1 0 · · · · · · 0
0 B2 B1 0 · · · 0
... . . . . . . . . . . . . ...
0 · · · 0 B2 B1 0
0 · · · 0 0 B2 B1





P n
1

P n
2

P n
3
...
P n
n

0


,
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where
B1 := µYDy +

1

2
D2
y

and
B2 := µYD

0
y +Dy.

Proof. We proceed by induction on n. For n = 1, we have by definition

BHk = DtHk + µYDyHk +
1

2
D2
yHk.

In view of the identities in (4), one has DtHk + 1
2
D2
yHk = 0. It follows that

BHk = µYDyHk = P 1
1 (µY )DyHk.

Now we assume that the property (7) is true for some n and we shall deduce
that it remains valid for n+ 1.

Bn+1Hk = B(BnHk)

= B

(
n∑
j=1

P n
j (µY )Dj

yHk

)

=
n∑
j=1

P n
j (µY )DtD

j
yHk

+ µY

n∑
j=1

{
DyP

n
j (µY )Dj

yHk + P n
j (µY )Dj+1

y Hk

}
+

1

2

n∑
j=1

{
D2
yP

n
j (µY )Dj

yHk + 2DyP
n
j (µY )Dj+1

y Hk + P n
j (µY )Dj+2

y Hk

}
.
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Again, we use the properties in (4) to obtain

Bn+1Hk = µY

n∑
j=1

DyP
n
j (µY )Dj

yHk + P n
j (µY )Dj+1

y Hk

+
1

2

n∑
j=1

D2
yP

n
j (µY )Dj

yHk +
n∑
j=1

DyP
n
j (µY )Dj+1

y Hk

=
n∑
j=1

[
µYDyP

n
j (µY ) +

1

2
D2
yP

n
j (µY )

]
Dj
yHk

+
n+1∑
j=2

[
µY P

n
j−1(µY ) +DyP

n
j−1(µY )

]
Dj
yHk

=
n+1∑
j=1

P n+1
j (µY )Dj

yHk.

Therefore, for any n ≥ 1, we get

BnHk =
n∑
j=1

P n
j (µY )Dj

yHk,

where

P n+1
1 (µY ) = µYDyP

n
1 (µY ) +

1

2
D2
yP

n
1 (µY ) := B1P

n
1 (µY ),

P n+1
n+1 (µY ) = µY P

n
n (µY ) +DyP

n
n (µY ) := B2P

n
n (µY ),

P n+1
j (µY ) = B1P

n
j (µY ) +B2P

n
j−1(µY ), for j = 2, . . . , n.

In particular, for j = 1, one has

P n
1 (µY ) = B1P

n−1
1 (µY ) = · · · = Bn−1

1 (µY ).

Now, for j = 2 and n ≥ 2, we can express

P 2
2 (µY ) = B2P

1
1 (µY ) = B2(µY ),

P n+1
2 (µY ) = B1P

n
2 (µY ) +B2P

n
1 (µY ).
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Remark 2.8. The coefficients ηZ,k(δ, y0) are given by

ηZ,k(δ, y0) =
1

k!
E
[
Hk

(
Yt+δ − y0√

δ

)]
.

Since Hn(x, t) = tn/2Hn

(
x/
√
t
)
, we can write

ηZ,k(δ, y0) =
δ−k/2

k!
E [Hk (Yt+δ − y0, δ) |Yt = y0] .

The following corollary is a consequence of Proposition 2.5 and Theorem
2.7.

Corollary 2.9. For any j ≥ 1, we have

ηZ,k(δ, y0) =
J∑
n=k

P n
k (µY )

δn−k/2

j!
+RJ+1

k

δJ+1

(J + 1)!
, (8)

where
RJ+1
k = E

[
BJ+1Hk (Yθδ − y0, δ) |Y0 = y0

]
.

Proof. We apply Theorem 2.7 to Hk when y = y0 and t = 0 to deduce the
following. From Proposition 2.5 we have

ηZ,k(δ, y0) =
δ−k/2

k!

J∑
n=0

BnHk (y − y0, δ)|y=y0,δ=0

δn

n!
+RJ+1

k

δJ+1

(J + 1)!

=
δ−k/2

k!

k−1∑
n=0

BnHk (y − y0, δ)|y=y0,δ=0

δn

n!

+
δ−k/2

k!

J∑
n=k

BnHk (y − y0, δ)|y=y0,δ=0

δn

n!
+RJ+1

k

δJ+1

(J + 1)!
.

To simplify BnHk we use (7) and distinguish two cases:

� For n < k:. Since DyHk = kHk−1 and Hk(0, 0) = 0 for k ≥ 1, we have

BnHk(y − y0, t)|y=y0,t=0 =
n∑
j=1

P n
j (µY )Dj

yHk(y − y0, t)|y=y0,t=0

=
n∑
j=1

P n
j (µY )

k!

(k − j)!
Hk−j(0, 0) = 0.
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� For n ≥ k:. The polynomial Hk is of order k with respect to y. Then, it
follows

BnHk(y − y0, t)|y=y0,t=0 =
k∑
j=1

P n
j (µY )Dj

yHk(y − y0, t)|y=y0,t=0

= k!P n
k (µY ).

Hence, we only need to evaluate P n
k (µY ). Finally we conclude

ηZ,k(δ, y0) =
J∑
n=k

P n
k (µY )

δn−k/2

n!
+RJ+1

k

δJ+1

(J + 1)!
.

Remark 2.10. It is worth noting from the previous relation (8) that the
leading term in the development of ηZ,k(δ, y0) is of order δk/2. Finally, plugged
into Equation (5) we obtain the following approximation

pZ,K(δ, z|y0) = φ(z)
K∑
k=0

ηZ,k(δ, y0)Hk(z)

≈ φ(z)
K∑
k=0

J∑
n=k

P n
k (µY )

δn−k/2

n!
Hk(z). (9)

Example 2.11 (Ornstein–Uhlenbeck (O.-U.) process). Consider the follow-
ing SDE: dYt = −Ytdt + dWt, Y0 = y0. Itô’s Lemma applied to exp(t)Yt
yields: Yt = y0 exp(−t) +

∫ t
0

exp(s − t)dWs. Therefore Yt is Gaussian with
E [Yt] = y0 exp(−t) and Var (Yt) =

∫ t
0

exp(2(s−t))ds = 1
2
(1−exp(−2t)). The

evaluation of the first coefficient ηZ,1 corresponding to O.-U. process is given
by

ηZ,1(δ, y0) = δ−
1
2E [Yδ − y0|Y0 = y0] = y0δ

− 1
2 [exp(−δ)− 1] = δ−1/2y0

+∞∑
n=1

(−δ)n

n!
.

Now, simple calculation gives P n
1 (µY ) = (−1)ny and

ηZ,1(δ, y0) '
J∑
n=1

P n
1 (µY )

δn−1/2

n!
= δ−1/2y0

J∑
n=1

(−δ)n

n!
.

Regarding ηZ,2(δ, y0), we have
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ηZ,2(δ, y0) =
δ−1

2
E
[
(Yδ − y0)2 − δ

]
=

δ−1

2

{
Var (Yδ) + (E [Yδ]− y0)2 − δ

}
=

δ−1

4

{
1− exp(−2δ) + 2y20 (exp(−δ)− 1)2 − 2δ

}
=

2y20 − 1

4δ

∑
k≥2

(−2δ)k

k!
− y20

δ

∑
k≥2

(−δ)k

k!

= δ

(
1

2
y20 −

1

2

)
− δ2

(
1

2
y20 −

1

3

)
+ δ3

(
7

24
y20 −

1

6

)
+O

(
δ4
)
.

Similarly, the approximation of ηZ,2(δ, y0) provide the same previous devel-
opment.

3. Numerical approximation for transition densities

In this section, we illustrate the theoretical results obtained for the ap-
proximation of the transition density for the Vasicek and CIR models. These
densities are available in closed form. We assess the accuracy of the transi-
tion density approximation for various values of the time step δ and different
truncation thresholds in the approximation (9).

3.1. Vasicek model
The dynamics is given by the following SDE:

dXt = κ(α−Xt)dt+ σdWt, X0 = x0, (10)

where κ, α and σ are positive constants. In this model, an explicit formula
for Xt is given by

Xt = X0 exp(−κt) + α(1− exp(−κt)) + σ

∫ t

0

exp(−κ(t− s))dWs. (11)

Clearly, from (11), the process (Xt)t is Gaussian with the following transition
density:

pX(δ, x|x0) =

(
πσ2(1− e−2κδ)

κ

)− 1
2

exp

(
−κ(x− α− (x0 − α)e−κδ)2

σ2(1− e−2κδ)

)
.

(12)
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In this case, Lamperti’s transformation gives Yt = Xt/σ. This process sat-
isfies the following unitary diffusion dYt = µY (Yt)dt + dWt, Y0 = y0, with
µY (y) = σ−1κα− κy.

Figure 3.1 clearly shows that the absolute uniform error of the approxi-
mation decreases rapidly with δ for every truncation order K. For example,
for K = 3, the error ranges from 10−2 to 10−6 for δ between 0.5 and 0.01.
Even better, for a fixed δ, the error decreases exponentially with K. For
δ = 0.1, the error drops from 10−2 for K = 1 to 10−5 for K = 5.

log
10

(δ)

-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

lo
g

1
0
(s

u
p

x
|(

p
Z
(x

)-
p

Z
,K

(x
)|

))

-9

-8

-7

-6

-5

-4

-3

-2

-1

K=1

K=3

K=5

Figure 1: The evolution of the absolute uniform error between the transition density and
its approximation for the Vasicek model with (κ, α, σ) = (0.5, 0.05, 0.1).

3.2. Cox-Ingersoll-Ross (CIR) model
[5] have proposed a model for describing the evolution of interest rates

(one can refer to [2] and [8] for more details). The CIR model is given by

dXt = κ(α−Xt)dt+ σ
√
XtdWt, X0 = x0,

where κ, α and σ are positive constants. When q = 2κα/σ2 − 1 > 0, the
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solution Xt remains positive and its transition density can be expressed as

pX(δ, x|x0) = ce−u−v
(v
u

) q
2
Iq(2
√
uv),

where c = 2κ/
(
σ2(1− e−κδ)

)
, u = cx0e

−κδ, v = cx, and Iq is the modified
Bessel function of the first kind of order q. The first transformation Yt =
2
√
Xt/σ satisfies the unitary diffusion

dYt = µY (Yt)dt+ dWt, Y0 = y0,

with drift function µY (y) =
q+ 1

2

y
− κy

2
.
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Figure 2: The evolution of the absolute uniform error between the transition density and
its approximation for the CIR model with (κ, α, σ) = (0.1, 0.1, 0.1).

Figure 2 confirms the conclusions drawn regarding the behavior of the
error with respect to K and δ for the Vasicek model. It is clear that the
proposed approximation in (9) outperforms the Euler scheme in terms of
accuracy, which can be viewed as a zero-order expansion (K = 0) of the
density. Consequently, the proposed method can be used, for example, for
the pricing of European options, as was done in the work of [18].
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4. Simulation of SDEs

In this section, we present a new simulation scheme for trajectories of
SDEs of the form (1). The idea is to exploit the approximation of the tran-
sition density of the normalized process (Zt)t to simulate the different incre-
ments of (Yt)t. Starting from y0, we simulate Zδ by rejection sampling from
a double exponential distribution. We then set Yδ as y0 +

√
δZδ. We repeat

this process to simulate Y2δ, Y3δ and so on. Finally, we can use the inverse
transformation to go back to (Xt)t.

We recall that the transition density of Zδ at z conditionally to y0 is given
by

pZ(δ, z|y0) = lim
K→∞

pZ,K(δ, z|y0),

= φ(z)
+∞∑
k=0

ηZ,k(δ, y0)Hk(z),

= φ(z)
{

1 + ηZ,1(δ, y0)z + ηZ,2(δ, y0)(z
2 − 1) + · · ·

}
,

where ηZ,k(δ, y0) = 1
k!
E
[
Hk

(
δ−

1
2 (Yδ − y0)

)
|Y0 = y0

]
. The transition density

appears as a polynomial in z factor the standard normal one. Hence, it is
possible to sample by rejection from the double exponential distribution,
given by

qZ(z|z0) =
λ

2
exp(−λ|z − z0|),

where λ and z0 are chosen to minimize the rejection probability. We choose
z0 such that

∫
R zqZ(z|z0)dz =

∫
R zpZ(δ, z|y0)dz. That is z0 = ηZ,1(δ, y0) '√

δµY (y0).
We can summarize the simulation algorithm for (Yt)t as follows:
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Algorithm 1 The new algorithm for simulation of (Yt)t
Require: y0, µY , δ, N,K, J

Initialize Y0 to y0;
Approximate pZ(δ, z|y0) by pZ,K(δ, z|y0) as in (9);
Simulate Zδ from qZ(·|y0);
Set Yδ = y0 +

√
δZδ.

for k from 1 to N − 1 do
Simulate Zkδ from qZ(·|Y(k−1)δ);
Set Y(k+1)δ = Ykδ +

√
δZkδ.

end for
Return Ytk for tk = kδ, k = 0, . . . , N .

4.1. Comparative analysis
We will compare three simulation techniques for stochastic differential

equations: the Euler scheme, the Beskos and Robert method (BR) and the
new algorithm (NA). Beskos and Robert’s method is an exact scheme to
simulate unitary diffusions (see [4] for more details).

We choose the following SDE to achieve our comparative analysis:

dYt = sin(Yt)dt+ dWt, Y0 = 0. (13)

The drift function satisfies all the required conditions in [4] as well as in [1].
We fix the time step δ and the terminal time T . Then, for each method,

we simulate the trajectory of the solution at points kδ, k = 0, . . . , N =
bT/δc. We repeat this process 10,000 times to obtain samples of discretized
trajectories. Finally, we perform Kolmogorov-Smirnov tests to check the
equality of the empirical distributions for YT = YbNδc. The comparison of
distributions across all trajectories is presented in the following subsection
using an appropriate method.
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Figure 3: The QQ-plot comparison of NA, Euler and BR methods for simulation of YT , T =
2 and δ = 0.5 following the Sine model (13) with the associated Kolmogorov Smirnov p-
value test for equality of distributions.

Clearly, Figure 3 shows an excellent adequation between the two exact
methods (BR and NA) at δ = 0.5. However, the comparison of these two
methods with the Euler scheme yields a very low p-value, suggesting a poor
fit. This is due to error propagation in the Euler scheme when δ is large.

4.2. Energy distance
The Kolmogorov-Smirnov test allows for the comparison of one-dimensional

distributions. In order to take into account multidimensional distributions,
we will use the Energy distance and its associated test to compare our ap-
proach with the Euler’s scheme and Beskos & Robert’s exact algorithm.

Energy distance is a statistical measure that quantifies the discrepancy
or dissimilarity between two probability distributions. It provides a way
to compare and assess the similarity or difference between the underlying
distributions of two sets of observations or data samples. Computationally,
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the energy distance can be estimated using sample data by replacing the true
distributions with their empirical counterparts based on the observed data
samples. We will use this measure to test equality of distributions between
two discretized paths of an SDE.

The energy Distance was introduced by Székely and Rizzo (see [16] and
the references therein for further details). Given two samples S1 = (x1, x2, ..., xn)
and S2 = (y1, y2, ..., ym) from two distributions, the E-statistic for testing
equality in distributions, is defined as follows:

En,m(S1, S2) =
2

nm

n∑
i=1

m∑
j=1

‖xi − yj‖−
1

n2

n∑
i=1

n∑
k=1

‖xi − xk‖−
1

m2

n∑
l=1

m∑
j=1

‖yl − yj‖ .

The associated test uses a permutation test for checking the equality in dis-
tribution between the two samples.

For each of the three methods introduced above, we simulate 10, 000
trajectories of the Sine model (13) over [0, T ] for different discretization steps
δ. We test the equality of distributions between the trajectories generated by
the three methods using the test associated with the energy distance. More
precisely, for a fixed time T and δ, we generate n trajectories of (Yt)t∈[0,T ]
using the three methods. Thus, we obtain n i.i.d. vectors of size bT/δc for
each method. We perform pairwise tests between the samples and calculate
the p-values. This process is repeated M = 1, 000 times.

Figure 4 shows the average p-values as a function of δ for pairwise method
comparisons. It is clear that the p-values for the comparison of the two exact
methods are roughly centered around 0.5, regardless of δ. This confirms the
equality of the distributions of the trajectories of the two methods. How-
ever, the comparison test between one of the exact methods and the Euler
scheme returns average p-values that decrease drastically with δ, approaching
0. These results confirm the conclusions drawn from the comparison test on
the terminal time distribution.
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