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Generalization emerges from local optimization in a self-organized learning network

S. Barland, L. Gil
Université Côte d’Azur, Institut de Physique de Nice (INPHYNI), France

(Dated: October 11, 2024)

We design and analyze a new paradigm for building supervised learning networks, driven only by
local optimization rules without relying on a global error function. Traditional neural networks with
a fixed topology are made up of identical nodes and derive their expressiveness from an appropriate
adjustment of connection weights. In contrast, our network stores new knowledge in the nodes
accurately and instantaneously, in the form of a lookup table. Only then is some of this information
structured and incorporated into the network geometry. The training error is initially zero by
construction and remains so throughout the network topology transformation phase. The latter
involves a small number of local topological transformations, such as splitting or merging of nodes
and adding binary connections between them. The choice of operations to be carried out is only
driven by optimization of expressivity at the local scale. What we’re primarily looking for in a
learning network is its ability to generalize, i.e. its capacity to correctly answer questions for which
it has never learned the answers. We show on numerous examples of classification tasks that the
networks generated by our algorithm systematically reach such a state of perfect generalization
when the number of learned examples becomes sufficiently large. We report on the dynamics of the
change of state and show that it is abrupt and has the distinctive characteristics of a first order phase
transition, a phenomenon already observed for traditional learning networks and known as grokking.
In addition to proposing a non-potential approach for the construction of learning networks, our
algorithm makes it possible to rethink the grokking transition in a new light, under which acquisition
of training data and topological structuring of data are completely decoupled phenomena.

PACS numbers: Self organized systems, Phase transitions, Physics of computation, Machine Learning Models

I. INTRODUCTION

The computational properties of complex systems have
long been a topic of fundamental interest for the physics
community, from early examples of neural networks and
cellular automata [1, 2] to very recent approaches of
physics-based neuromorphic computing [3]. A common
task for such systems is that of supervised learning, in
which a neural network is trained to realize a partic-
ular function based on many examples of input-output
couples. In this context, a surprising yet often observed
property of neural networks is their capacity to provide
statistically correct outputs even for unknown inputs. In
spite of the ubiquity of this phenomenon known as gener-
alization it is still far from being completely understood
and the principles and tools of physics can certainly help
in this quest [4–7]. In particular, early studies of shal-
low neural networks have shown that a phase transition
to error-free generalization can take place for perfectly
learnable rules [8–10]. This phenomenon has recently
received the name of grokking as it was re-observed in
deep neural networks [11] and subsequently analyzed as
a phase transition in a shallow network [12]. Grokking,
understood as a phase transition of a network towards a
perfect generalization state, therefore emerges as a very
general phenomenon in learning, neither limited to algo-
rithmic data [13] nor to specific architectures or training
processes [14–16]. It is however well established that the
generalization property of neural networks comes at the
cost of their propension to forget older inputs, a phe-
nomenon known as catastrophic forgetting [17, 18]. Far
from an implementation detail, this situation results from

a fundamental compromise to be found in the stability-
sensitivity dilemma [19].

In the following, we demonstrate that a local optimiza-
tion rule (as opposed to a global minimization procedure)
can drive the error-free evolution of a network towards a
perfect generalization state. Correspondingly, the learn-
ing dynamics shows distinctive features of a phase tran-
sition.

With this approach, we strike a new balance in the
stability-sensitivity spectrum [20]: lookup tables (LUT)
are perfect memories which lack any generalization capa-
bility and at the other end deep neural networks can gen-
eralize extremely complex problems but may catastroph-
ically forget older data. Instead, our network evolves un-
der a constraint of error free operation (thus ruling out
forgetting) and dynamically transfers complexity from
the nodes to the network topology, which provides gen-
eralization capability.

Our approach strongly differs from standard artificial
neural networks in several ways. First, there is no global
cost function such as the training losses of statistical
learning. On the contrary, our network dynamics is ruled
by a local minimization principle, as each node evolves
based only on locally available information. Besides the
long-questioned biological plausibility of a global min-
imization procedure (see eg [21, 22]), this is a funda-
mental difference since the dynamics we propose is not
variational, as opposed to the usual training by gradient
descent. Second, we do not update continuously tun-
able weights since our network evolves via the addition,
merger or deletion of nodes and binary edges. Therefore,
we do not fit an existing network to training data. In-
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stead, the topology of our network evolves dynamically
upon arrival of new data. Self-organized networks whose
topology may evolve (see eg [23–26]) are often consid-
ered in the context of continual learning [27]. In this
context, the focus is less on grokking than on adapta-
tion to new data while avoiding catastrophic forgetting.
Here instead, the network evolution involves first per-
fectly storing new data by adapting a node (which consist
of a LUT) and then transferring the complexity from the
individual nodes to the network, the evolution of each
node being driven by greedy optimization.

The paper is organized as follows. In section II we de-
scribe the nature of our proposed network and the pro-
cesses which drive its evolution during learning. In III
we illustrate the resulting dynamics with the example of
a network learning to solve the N-bit parity problem to-
wards the final state of perfect generalization. In IV, we
analyze the statistics of the generalization error with re-
spect to the dimension of the problem and discuss it in
relation with a phase transition. Finally, in section V we
show that the proposed algorithm can generate learning
networks capable of grokking many binary classification
tasks, including the primality problem. We discuss the
implications of our results in VI and conclude in VII.

II. MODELISATION AND ALGORITHM

In deep learning algorithms, a distinction is made be-
tween the training phase, where the network is asked to
reproduce the set of data provided as examples (train-
ing data samples or TDS), and the generalization phase,
where the network is able to correctly predict the result
on data it has not yet learned. The training threshold
precedes the generalization threshold, but both are ob-
tained by increasing the number of iterations of the same
global error minimization procedure [11], wrongly sug-
gesting that the generalization threshold is concomitant
with better accuracy in the learning phase.

Here we design a learning network model in which the
training phase is simplified to the extreme, as it simply
disappears: Each new TDS is automatically, instanta-
neously and perfectly acquired on the fly. On the other
hand, each new learning phase is followed by a network
remodeling phase, during which the information learned
is judiciously redistributed between the nodes and the in-
formation flow restructured by the topology of the con-
nections. All the organization rules are local: local in
time, as they act after each new TDS, and local in space,
as they involve a single node or pair of nodes.

Our algorithm calls on multiple interdependent con-
cepts, whose respective roles can only be understood
through the input and output of the other concepts. A se-
quential presentation is not well adapted to this recurrent
structure and we have therefore decided to present our
algorithm in two complementary, if slightly redundant,
stages. First, we give a synthetic description: we briefly
introduce the various basic concepts (what the network

is made of, the dynamics of information on this network,
the network’s own dynamics with the notions of splitting
and merging, learning a new rule, conflict resolution and
cleaning) and we describe the syntactic structure of the
algorithm i.e. how these basic concepts relate to each
other. The second stage takes up each of the concepts
introduced in the first part and describes them in de-
tail. Particular emphasis is placed on the node splitting
mechanism and how it underpins the local generalization
process at the heart of our algorithm. This second step
may be omitted by the impatient reader on first reading.

FIG. 1. Network before (a) and after (b) topological evolution
for the N−bits parity problem with N = 3. There are 4
interface nodes (3 input, 1 output), 1 hidden node for (a)
and 2 for (b). There are 5 TDS, each associated with a line
of the various tables involved. The notation ipA is used to
designate the p th input connection to A, oqA for its q th
outgoing connection. As an example of how to read figure (a),
we consider the case of the first (resp. 2nd) training sample:
the top left node sends 0 (resp. 1) , the middle left node 0
(resp. 0) and the bottom left node 1 (resp. 0). The central
node then receives the code 0, 0, 1 (resp. 1, 0, 0). According
to the node’s LUT, the corresponding output code is 1 (resp.
1), which is retrieved by the last node. Figure (b) reads the
same way, from left to right, layer by layer. It is important to
note that networks (a) and (b) are strictly equivalent for all
5 training samples, but that network (b) is able to provide a
correct answer to all the 2N cases, including the three which
are not part of the training samples (cf. text).

A. Synthetic description

1. What the network is made of

The network is a directed graph made up of nodes and
links. The nodes are arranged on layers. The Ne nodes
on the first layer and the single node on the last layer
have a special role: The former (left side) have only one
outgoing connection, the latter (right side) only one in-
coming connection. We’ll call them interface nodes. The
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N nodes between these two layers form the hidden nodes.
During the network dynamics phase, the number, connec-
tions and behavior of the hidden nodes change. Interface
nodes, on the other hand, are immutable in the sense
that network dynamics preserve the uniqueness of outgo-
ing and incoming connections respectively. We’ll call last
hidden node and note (LHN), the only hidden node con-
nected to the output interface node. The similarity with
neural systems ends here. The dynamics of a true numer-
ical neuron (and, to a lesser extent, a biological neuron)
are quite straightforward. A single action potential is cal-
culated, and the same response is sent to all output links.
Action potential and response are linked by a R −→ R
activation function. All the informations associated with
the training data are stored in the network in the form
of connection weights. In contrast, in our network, the
informations associated with the TDS are stored partly
in the network in the form of the topology of connections,
but also partly in each node (i) in the form of a multi-
dimensional response function {0, 1}nil(i) −→ {0, 1}nol(i)
specific to each node, where nil(i) denotes its number of
incoming links and nol(i) its number of outgoing links.

2. Dynamics on the network

Fig.1 deals with an elementary well known machine
learning playground consisting in determining the odd
or even nature of the sum of the Ne = 3 components of
a binary vector. The figure shows the situation after 5
TDS (hence the stack of 5 horizontal lines). The boxes
associated with the input interface nodes correspond to
the output codes of these nodes during each of the 5 TDS.
The box for the output interface node lists the input
codes for this node for all 5 TDS.

Each node in the network behaves like a LUT, match-
ing any input code with a single output code. For ex-
ample the node A in fig.1b has 2 incoming links i1A and
i2A from nodes (1, 3) on its left as inputs, and 1 outgoing
link o1A = i1B to nodes (B) on its right (nol can be greater
than 1, but it is not the case here due to the extreme sim-
plicity of the elementary problem under consideration).
Any input code of A consists of an ordered list of bits (0
or 1), one bit for each input connection. The A node rec-
ognizes the current input code as one of the input codes
in its LUT and transmits through its output connections
the information bits of the output code corresponding to
the identified input code. For example for the 1st TDS
(resp. 2nd), the current input code is [0, 1] (resp. [1, 0]),
it is identified as the learning 1 (resp. 2) in the LUT
and then A transmits the code [0] (resp. 0) to B. In
fig.1b, when node A have transmitted its output code,
then node B is in possession of the complete input code
[0, 0] (resp. [0, 0]) and can then transmit the output code
[1] (resp. [1]) corresponding to its own LUT. Informa-
tion thus flows from left to right, and all the nodes form
a feed-forward network.

A TDS for the network consists of a set of output codes

for the interface nodes. A learning for a hidden node con-
sists of a pair of input and output codes for its connec-
tions. Despite the similarities between the two concepts,
we’ll use 2 distinct words to emphasize the difference in
scale, but above all in data origin. The network receives
unchanging data from outside, while the data accessible
to a node has been processed by upstream nodes. The
tricky part is mapping each network TDS to the multi-
ple hidden nodes learning (going from (a) to (b) in fig.1),
but later (in IIA 3) we’ll discuss an algorithm that does
this without loss of information. But now, the result is
that each hidden node ends up storing information in the
form [ learning number, input code, output code] . The
length of the node LUT therefore increases by 1 unit with
each new network TDS, and the same pair [entry code,
output code] may be repeated several times. As a re-
sult, the learning process is straightforward: there are
no connection weights to adjust, there is no non-linear
thresholding function, there is no global minimization of
error. All that is needed is to add a new item to the LUTs
such that every new learning is exactly and immediately
acquired.

3. Network’s own dynamics

Once the new information has been rapidly acquired,
the network topology may change through mechanisms,
splitting and merging, that are both local ( i.e. they only
involve processes associated with one node or a pair of
nodes) and conservative (the training error is exactly zero
throughout the processes).
Splitting and merging are illustrated in fig.1. Split-

ting is the conservative process whereby a hidden node
C splits into 2 nodes A and B, sharing incoming and out-
going links and possibly creating links between A and B.
Merging is the opposite conservative process, in which the
two hidden nodes A and B merge to form a single node
C. Both elementary processes can be chained together
at will to profoundly modify the network topology, again
with no effect on the training error. We discuss later on
how these mechanisms can lead to a much more complex
topology for more complex problems (see fig.5)
Splitting and merging are the basic antagonistic tools

of topological transformations. When and how should
they be used? Splitting is associated with data analy-
sis and is responsible for proposing a coherent syntactic
structure through inductive reasoning. It enables the net-
work to propose a coherent (but not necessarily correct)
interpretation of the local data. Merging occurs when
a new TDS to be learned turns out to conflict with the
previously coherent interpretation of the data. It allows
us to backtrack.
The splitting action replaces the central node C in (a)

with 2 hidden nodes A and B in (b), positioned on 2
distinct layers (fig.1). Local network dynamics are obvi-
ously modified, but the reader is strongly encouraged to
check that (b) faithfully reproduce the 5 TDS described
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in (a). Absolutely no training information was lost dur-
ing the splitting operation. Now it’s crucial to note that
since the central node C has 3 incoming links, its LUT
will only be complete after 23 independent learnings. In-
deed, node C in fig.1a doesn’t know any of the codes
[0, 1, 0], [0, 1, 1] and [1, 0, 1]. Not only has it never en-
countered them before, but it’s also unable of coming up
with a plausible answer. On the contrary, we can check
point by point that nodes A and B in the new topology
(fig.1b) are really able to propose an answer. We empha-
size that the proposed answer could have been wrong.
Instead, the network provides here a correct answer for
all the 23 possible codes, including the 3 unknown ones.
Finally, note that splitting can be chained. However, in

this example, splitting one or both hidden nodes doesn’t
add anything.

4. New training sample and conflict

Consider a network with Ne input interface nodes,
which has already been taught m TDS. When we mea-
sure a non-zero generalization error, we deduce that we
must continue to feed the network with new TDS. We
therefore supply the left interface nodes with the output
codes corresponding to the new training sample to be
learned, and observe their evolution according to the dy-
namics described in IIA 2. The input code seen by the
nodes during this propagation is referred to as “current”.

For values of m smaller than 2Ne , it often happens that
one of the hidden nodes receives a current input code that
is unknown to it, i.e. that doesn’t correspond to any of
the entries in its LUT. This current input code is then
simply learned by integration into the LUT. In the case
of LHN, the output code to be learned is the output code
of the new network TDS. In the case of a hidden node
other than LHN, an additional connection is created to
each outgoing node to inform them of the presence of an
unknown code. It transmits a bit 0 for old codes and 1
for the current input code, the other output bits remain
unchanged in the first case, or are completed by analogy
with the nearest known example in the second case. This
procedure is then chained, from the first hidden node to
receive an unknown code to all its downstream nodes.

For larger values of m, it may happen that the new
TDS input propagates until the network output, with all
current input codes known, but the current output code
of LHN does not match the network TDS output to be
learned. This causes a conflict. By construction, the
conflict is not between the new network TDS and the
previous m network TDS already learned, but rather be-
tween the new TDS and the coherent interpretation of
the structure of the previous m achieved by successive
splitting. This is where the 2-nodes merging procedure
comes into play. Thanks to merging, we then progres-
sively unravel the splitting procedure, starting with the
ascending nodes closest to the conflicting one. The merg-
ing procedure continues until the new current entry code,

now fully fleshed out, becomes unknown.

5. Cleaning

A node may have incoming connections that carry no
relevant information. These redundant connections are
useless, but they do add to the computational burden.
Each node must therefore detect and eliminate them.
Also this pruning may lead to the creation of hidden
nodes with no outgoing connections. When these nodes
are not connected to the interface nodes, they must self-
destruct.

6. Algorithm

Learning the network up to the transition to grokking
is then a dynamic process involving the various concepts
previously introduced in a recurrent loop :

1. We measure the generalization error Eg of a net-
work that has learned m TDS. If this error is zero,
nothing more needs to be done. Otherwise, an ad-
ditional training sample m −→ m + 1 must be
learned. Any conflicts are resolved as described in
IIA 4. The number of nodes and layers can be re-
duced during this phase.

2. Then, as long as this leads to a local improvement
in generalization, a splitting procedure is applied
to one of the network’s hidden nodes taken at ran-
dom. This phase increases the number of nodes and
layers.

3. Clean up the network.

4. Return to point 1.

In section V we’ll give a number of examples of suc-
cessful applications of this algorithm. The problems ad-
dressed and their algorithmic complexity are very varied.

B. Detailed Description

1. 2-nodes merging

The mechanism for merging two nodes is fairly intu-
itive and easy to understand. It is illustrated in fig.2 for
the topology and tab.I for the LUTs. In fig.2 top, be-
fore merging, node A has input connections i1A, i

2
A and

i3A and output connections o1A, o
2
A and o3A. B has inputs

connections ipB , p ∈ [1, 3] and outputs connections oqB ,
q ∈ [1, 2]. After merging (fig.2 bottom), the resulting
node (A,B) −→ C has inputs codes constructed simply
by concatenating the input codes of the initial nodes A
and B, as shown in tab.I. The same mechanism applies
to output codes.
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Two remarks are now in order. First in the example in
fig.2 and tab.I, nodes A and B are not directly connected.
But the merging procedure can easily be generalized to
cases where A and B are connected, as in the example
in fig.3 and tab.II (provided you start from fig.3b and go
to fig.3a). In this case, the internal links between A and
B disappear, and the information bits associated with
them are not taken into account when the codes are con-
catenated. Second, it is important to realize that not all
node pairs can be merged. This is the case, for exam-
ple, with nodes B and E in fig.2. In this configuration,
node D is both an output of B and an input of E, and
therefore should appear as both an input and an output
of their merger. This would be possible only in a recur-
rent network and we choose to restrict our analysis to a
feedforward network.

FIG. 2. Network configuration before (top) and after (bot-
tom) the merging (A,B) −→ C. For node A, the left-hand p
and right-hand q numbers overlapping the connections, label
the incoming and outgoing links noted ipA and respectively oqA
in the text. For the sake of clarity, we have used here a sim-
plified notation. It is also important to note that all the pairs
of nodes can not be grouped. This is the case, for example,
of nodes B and E in the top figure.

2. 2-nodes splitting

The 2-nodes splitting procedure is illustrated in fig.3
for the topology and tab.II for the LUTs: it’s an opera-
tion that allows you to switch from configuration (a) with
a single node (C) to configuration (b) with 2 nodes (A and
B), while maintaining the training error at exactly zero
(tab.II). The transformation leaves the inputs and out-
puts (connections and nodes) invariant, such that it can
be performed locally without any major changes to the
surrounding nodes. During the procedure, every incom-
ing connection to C becomes an incoming connection to
A or (exclusive) B. The same applies to outgoing connec-
tions. Possible additional connections from A to B may
appear, giving nodes A and B different roles. Finally,
the operation can be completely cancelled by applying
the 2-nodes merging procedure.

Learning: A Input codes Output codes

1 1 1 1 0 0 1

2 0 0 1 0 1 0

3 1 0 0 0 0 0

4 0 1 0 1 0 0

5 0 0 0 1 1 0

Learning: B Input codes Output codes

1 1 1 1 1 0

2 0 0 0 1 0

3 0 1 0 0 1

4 1 0 0 1 0

5 0 1 0 0 1

Learning: C Input codes Output codes

1 1 1 1 1 1 1 0 0 1 1 0

2 0 0 1 0 0 0 0 1 0 1 0

3 1 0 0 0 1 0 0 0 0 0 1

4 0 1 0 1 0 0 1 0 0 1 0

5 0 0 0 0 1 0 1 1 0 0 1

TABLE I. Input and output codes associated with nodes A,
B and C in fig.2.

Learning: C Input codes Output codes

1 1 0 0 1 0 0 1 1 0 0

2 0 1 1 0 1 0 1 0 0 1

3 0 1 0 1 1 1 0 0 0 1

4 1 1 1 1 0 0 1 1 1 0

5 0 0 1 0 1 0 0 1 0 0

Learning: A Input codes Output codes

1 1 0 0 1 1 1 0 0

2 0 1 1 0 1 0 1 0

3 0 1 0 1 0 0 1 0

4 1 1 1 1 1 1 0 1

5 0 0 1 0 0 1 0 0

Learning: B Input codes Output codes

1 0 0 0 0

2 0 1 0 0

3 0 1 1 0

4 1 0 0 1

5 0 1 0 0

TABLE II. Input and output codes associated with nodes
A, B and C in fig.3. The bits on a blue background are
associated with the additional connection between A and B.
They disappear in the C merger codes.

The advantage of 2-nodes splitting lies in the fact
that there are multiple ways of dividing the incoming
(resp. outgoing) connections of C into 2 disjoint sets, and
that we can therefore make a ”judicious” choice among
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FIG. 3. Schematic representation of the splitting procedure C −→ (A,B). The diagram (a) shows the initial node C surrounded
by its 6 inputs (ipC , p ∈ [1, 6]) and 4 outputs (oqC , q ∈ [1, 4]) connections. Plot (b) display the configuration after the splitting
procedure. Note the extra link between A and B on the blue background, labeled i1B or o4A depending on whether it’s considered
as an ingoing or outcoming connection. This link carries the extra bits shown on the blue background in tab.II

.

FIG. 4. Table of input codes for nodes A and B after m = 5 training data learnings. (a): Numbers from 1 to 5 correspond to
the projection on A and B of the C input codes for the 5 training data. Because of 1 and 4 (in red on (a)), the LUT of B does
not define an application. We correct this by introducing an additional link o4A = i1B (elements involved on a gray background
in (b)). Numbers from 6 to 13 then correspond to consistent (although perhaps incorrect) responses from the pair (A,B) for
input codes unknown to C.

the available configurations (A,B) without incurring any change in the training error.

Let’s start by identifying the possible configurations.
Note that in the configuration fig.3a, the output codes of
node A do not depend at all on the responses of node B.
This means that A’s LUT is an application in the math-
ematical sense of the term, i.e. each input code of A has
one and only one output image. This imposes a very
strong constraint on the choice of input and output con-
nections for A. For example, let’s suppose we’ve selected

for A the input connection i1A and i2A, and the output
connection o1A. The LUT for A would then be given by
tab.III. Clearly, the same input code [0, 1] would then
have been associated with two distinct output codes, de-
pending on whether we had considered the 2 or 3 learn-
ings. As this configuration was not an application, it had
to be rejected.

Once we’ve identified a set of valid inputs and outputs
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Learning: A Input codes Output codes

1 1 0 1

2 0 1 1

3 0 1 0

4 1 1 1

5 0 0 0

TABLE III. Example of an impossible splitting choice. LUT
of A for the configuration in fig.3, when A’entries are limited
to i1A and i2A, while A’s exit to o1A.

connections for A, we can naturally consider a first def-
inition of inputs and outputs for B: those for C minus
those for A. At this point, the various LUTs are then
described by tab.II, deprived of the 2 columns on a blue
background and located respectively in the “Learning:
A, Output codes, last column” and “Learning: B, input
codes, first column” areas. But it turns out that the LUT
of B thus constructed is not an application: the same in-
put code [0,0] appears 2 times, for learning 1 and 4, but
associated with distinct output codes. As the LUT of C
is an application, it should be enough to retrieve some of
the information stored in A to be able to distinguish the
2 input codes of B. This is the role assigned to the ad-
ditional connection between A and B (blue background
columns in tab.II). It transmits 0 for all learnings except
4, for which it transmits 1, thus lifting the degeneracy.

We’ve just seen how to perform the 2-nodes splitting
procedure. Now we come to the fundamental question:
what’s in it for us? As the gain is not to be found in the
training error, since splitting does not modify it in any
way, we focus on the generalization error. To do this,
we’ll compare the responses of the pair (A,B) and those
of C to the presentation of an unknown current input
code. We begin by constructing the table in fig.4(a) of
cross-referenced input codes for A and B. Until now,
we’ve been working with lists of length m of input codes,
where m is the number of training data. Here, we use the
notation {input codes of A} to refer to the set of input
codes of A (idem for B). The difference is that in a set,
unlike a list, an element is not allowed to repeat itself.
The m = 5 input codes of C break down into the input
codes of A and B as described in tab.II and correspond to
the intersections in fig.4a marked by the digits 1 to m. It
is important to note that the [0, 0] and [1, 0] entry codes of
B appear 2 times, respectively for learnings 1, 4 and 2, 5.
For the 2 and 5 learnings, the B output codes associated
with [1, 0] are identical (tab.II) and therefore present no
difficulties. On the other hand, learnings 1 and 4 are
problematic because the output codes associated with
[0, 0] are not identical, and the LUT of B defined by fig.4a
is not an application. The solution, as described in tab.II,
is to create an additional link from A to B to remove the
degeneracy. In fig.4b, this corresponds to the column i1B .
Now consider the current code [1, 0, 0, 1, 1, 0], unknown to
C. Decomposed on the pair (A,B), it corresponds to the

input code [1, 0, 0, 1] of A and [i2B , i
3
B ] = [1, 0] identified

by number 6 in fig.4b. The input code [1, 0, 0, 1] of A is
associated with the output code [1, 1, 0, 0] (tab.II). Since
o4A = 0 = i1B , we know how to give a value to the output
code of B associated with the input code [0, 1, 0], the one
associated with m = 2 (i.e. [0]). On the other hand,
consider the current code [1, 1, 1, 1, 1, 0] unknown to C.
Decomposed on the pair (A,B), it corresponds to the
input code [1, 1, 1, 1] of A and [i2B , i

3
B ] = [1, 0] marked

with “?” in table (b). For this input code of A, the
answer is [1, 1, 0, 1] (tab.II) and so we have o4A = 1 = i1B .
But the current code [1, 1, 0] thus constructed is not an
input code of B. So we don’t know how to assign it a
value.

We’ve just shown that the pair (A,B) is sometimes
able to provide coherent answers, whereas the initial node
C is unable to do so. These answers are not necessarily
accurate in the sense that a future network TDS may
disavow them, but they have the merit of existing and
proposing a coherent generalization.

In fact, in the particular case of fig.3, the pair (A,B)
can provide a consistent answer in 13 input cases, 5 of
which are exact (fig.4). As this number will play an im-
portant role in our algorithm, we’ll call it the number of
consistent responses of the (A,B) pair and will denote
it NCR(A,B) = 13 (note that NCR(C) = 5). For the
same initial node C, NCR(A,B) depends on the inputs
and outputs repartition between A and B. With the idea
of maximizing generalization, the algorithm tests several
possible repartitions between A and B and selects the
one that gives the highest value of NCR(A,B). As the
number of possible repartitions grows extremely quickly
with the number of connections, we won’t perform an
exhaustive exploration, but rather a random sampling.

Finally 2-nodes splitting operations can be chained to-
gether in a cascade process:

A1 −→ (A11, A12)

A11 −→ (A111, A112)

A12 −→ (A121, A122)

A111 −→ (A1111, A1112)

....

(1)

which goes on as long as NCR(A,B) >NCR(C), i.e. as
long as splitting improves generalization.

3. New learning and unknown codes

Let’s suppose the network is in the configuration shown
in fig.5 and has learned a number m = 5 of TDS. We’re
now trying to teach it a new TDS. The nodes of the
first layer grab the bits of the new input code and pass
them on to the nodes of the second layer. Each node of
the second layer then receives an input code, its current
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FIG. 5. A typical network configuration obtained after net-
work topology evolution (a). The insert (b) corresponds to
the initial configuration. Node A: The dotted red arrows
represent the additional connections created by node A on
receiving an unknown CIC. Nodes B, C and D: examples of
configurations to be removed during the cleaning operation.

input code, which it may or may not already know. For
the sake of argument, let’s assume that all nodes in the
second layer know their current input code. We then
move on to the third layer. In this layer, let’s assume
that only node A receives a current input code (CIC(A))
that it doesn’t know. The situation is summarized in
tab.IV.

A little nomenclature is useful. We have already in-
troduced noc(i) and nic(i) the number of outgoing and
incoming connections of node i. Let non(i) and nin(i)
be the number of outgoing and incoming nodes for node
i. We have non(i) ≤ noc(i) and nin(i) ≤ nic(i).

In order to deals with the CIC(A), node A and its
outputs are then going to perform 3 operations:

1. Node A will add an extra connection for each of its
outgoing nodes and inform them that they need to
increment their nic by one. In our example (fig.5a):{

non(A) −→ non(A)

noc(A) −→ noc(A) + non(A)

{
nin(4) −→ nin(4)

nic(4) −→ nic(4) + 1

{
nin(5) −→ nin(5)

nic(5) −→ nic(5) + 1

(2)

2. Node A will modify its LUT: all its old output codes
are completed by a length non(A) list of bits 0.
A’s output nodes modify their old input codes by
adding 0 (tab.IV).

3. Node A constructs a new current output code
(COC(A)): the first part of COC(A) is an approx-
imation obtained by i) identifying the known in-
put code of A closest to CIC(A) ii) then matching

its image through the LUT. The second part is a
length non(A) list of bit 1 (tab.IV).

Tab.IV summarize the changes made to the LUTs, while
the dotted red lines in fig.5 summarize the changes made
to the network. We can check that the transformations
made leave the old LUTs invariant, while taking into ac-
count the new information.

Learning: A Input codes Output codes

1 1 0 0 1 0 0 0

2 0 1 1 0 1 0 0

3 0 1 0 1 1 0 0

4 1 1 1 0 0 0 0

5 0 0 1 1 1 0 0

Current Current input code . . 1 1

Learning: 4 Input codes Output codes

1 . 1 . 0 . . .

2 . 0 . 0 . . .

3 . 1 . 0 . . .

4 . 0 . 0 . . .

5 . 1 . 0 . . .

Current input code . . . 1 ? ? ?

Learning: 5 Input codes Output codes

1 . 0 . 0 . . .

2 . 1 . 0 . . .

3 . 1 . 0 . . .

4 . 0 . 0 . . .

5 . 1 . 0 . . .

Current input code . . . 1 ? ? ?

TABLE IV. LUTs of nodes A,4 and 5 before and after adding
the additional links described by dotted red lines in fig.5. The
corresponding additional bits are on gray background, light
for 4 and dark for 5. Dots (.) denote known values whose value
does not need to be specified to understand the presentation.
”?” stand for unknown ones.

Now it’s the turn of the nodes in the fourth layer.
By construction, nodes 4 and 5 of this layer receive a
CIC that is unknown to them (uncertainty transmitted
to them by A). We then repeat on these nodes the treat-
ment just applied to A. We then pass from one layer to
the next, propagating the lack of knowledge. If we reach
LHN with an unknown CIC, then we just have to as-
sign it the output code required by the current network
learning operation.

Note that a node that has already been informed by
one of its inputs that it is about to receive an unknown
CIC, does not need to be informed again by another of
its inputs. Hence node 7 on the fifth layer doesn’t need
to be informed by both 4 and 5 that its CIC is unknown.
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4. Conflicts

During the learning phase, and especially when the
number of TDS starts to grow, it can happen that the
LHN receives a CIC that it identifies as known, with-
out the COC associated with it being equal to what the
network should be learning. This is a conflict situation
which clearly indicates that the up to now generaliza-
tion choices made during the 2-nodes splittings and the
consequent network topology are no longer compatible
with the last TDS learned. This conflict is resolved by
a cascade of 2-nodes merging propagating from the last
to the first layer. The idea is to make as few changes
as possible and therefore focus first on the latest gener-
alizations. We start by merging LHN with one of the
nodes of the previous layers. Then the current learning
procedure is repeated until the CIC of the last node is
computed. Either the conflict has disappeared, and the
CICs and COCs can be saved in the LUT of each network
node, or it hasn’t, and the last node’s merging procedure
is repeated. Since the application of the 2-nodes merging
procedure, repeated a sufficient number of times, trans-
forms the topology of fig.5a into that of its insert fig.5b,
and since in the latter configuration there is no possible
conflict, since a new TDS process for the network boils
down to simply increasing the LUT of the central node,
we can be sure that the conflict resolution procedure de-
scribed above converges.

5. Cleaning

Learning, even when limited to a small number of in-
put interface nodes (Ne), is a computationally intensive
process. This is particularly true of the current version
of the algorithm, which is not parallelized. We therefore
take great care to remove all local configurations which
are clearly irrelevant and unnecessarily burden calcula-
tions. In addition to deleting redundant connections and
hidden nodes (already discussed in IIA 5), we can also
delete gateway nodes. In fig.5a, node C only acts as a
gateway between nodes 10 and 11, and node D between
1, 2 and E. They can be replaced by direct connections
between 10 and 11 (respectively between 1, 2 and E) and
an adequate redefinition of LUTs through composition.

6. Generalisation test and no-fail mode

Recall that a network TDS is characterized by the out-
put codes of the interface nodes of the first layer and the
corresponding input codes of the last node. Let m be
the number of independent TDS the network has already
learned. If Ne denotes the number of nodes in the first
layer, then the total number of possible network input
codes is 2Ne ≥ m. The generalization error is defined as
the average error the network makes when responding to
any of the 2Ne possible input codes.

New learning, unknown codes, conflicts and 2-nodes
mergings and splittings, as described above, have been
used to impress training information in the network. But
when it comes to measure the generalization error, these
learning mechanisms are no longer relevant. Faced with
an unknown input code, the aim is no longer to learn it,
but to always provide an answer, possibly approximate,
to the outgoing nodes.
The no-fail mode corresponds to the node operating

behavior during the generalization error measurement
phase. A COC is injected at the output of each interface
node in the first layer, and the information is propagated
from layer to layer. In the presence of a known CIC, the
answer is simply given by the LUT. On the other hand,
in the presence of an unknown CIC, the node compares
it with each entries in its LUT, selects the known input
code closest to the CIC (Euclidean distance) and trans-
mits the corresponding output code as a COC. Finally
the network response in no-fail mode is then the CIC of
the last-layer node. The error is 0 if the CIC is indeed the
one expected, 1 otherwise. We emphasize that by con-
struction, no-fail mode provides an exact response for
any network input codes that have already been learned.
When m = 2Ne , the generalisation error is trivially

vanishing. But what we’re really interested in, and what
we’ll call the “grokking transition”, is getting the gener-
alization error to cancel out for values of r = m

2Ne
well

below 1.

III. LEARNING DYNAMICS

We investigate the dynamics of the algorithm, taking
as an example the special case of the parity problem: for
any input code consisting of Ne bits 0 or 1, the network
is expected to return 0 if the number of input bits equal
to 1 is even, and 0 otherwise.
There are 2Ne possible network entry codes and there-

fore (2Ne )!
(2Ne−m)!

ways of choosing m codes from 2Ne , the

order of choice being relevant. Such an ordered list of
m input codes is called a training set. Fig.6 is associ-
ated with a single, randomly generated training set. The
top figure shows the evolution of the number of hidden
nodes as a function of r = m

2Ne
, while the bottom shows

the evolution of the generalization error Eg(r).
The first thing to notice is that the algorithm really

works: we can clearly see (fig.6 bottom) that Eg even-
tually cancels out for a value of r greater than ≃ 0.13.
In other words, although it has only been provided with
13% of possible TDS, the network is able to generalize to
the remaining 87% of cases, those it has never learned.
The second observation is that this convergence is far

from uniform: we observe fluctuations in the generaliza-
tion error (fig.6 bottom) whose amplitude is large, being
of the order of magnitude of Eg averaged over the du-
ration of the measurement. Similarly, the evolution of
the number N of hidden nodes with r (fig.6 top) shows
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FIG. 6. Dynamics of the algorithm in the case of the parity
problem with Ne = 10. The figures show the evolution of the
hidden nodes number N (top) and the generalisation error
Eg (bottom) versus the relative size of the training set r.
The dots are the numerical measurements while the solid line
connecting them is merely a visual aid.

the same kind of fluctuations, with a start at 1, several
intermediate peaks including one at 34 and a stabiliza-
tion at 4 after the grokking transition. A priori, the
non-uniformity of convergence is not really a surprise for
a greedy algorithm, since it is generally impossible to
demonstrate that local optimization (of the generaliza-
tion) at one node is not at the expense of optimization
at another node. But the high amplitude of the fluctua-
tions is indicative of an avalanche dynamic, characterized
by the existence of pitfalls into which the entire network
plunges, and which it abruptly leaves only when it learns
a new lesson.

IV. STATISTICS OF GROKKING

In the following we discuss (always on the parity prob-
lem) the statistical aspects of learning.

A. Grokking as a statistical phenomenon

As in fig.6 bottom, the top of fig.7 shows the evolu-
tion of the generalization error Eg as a function of r for
the parity problem. The difference is that here we have

superimposed the trajectories of 20 independent train-
ing sets. Clearly, Eg always cancels out for a sufficiently
large value of r > rg, whatever the trajectory considered.
On the other hand, rg undoubtedly depends on the tra-
jectory considered. This is because the learning process,
and therefore the value of the grokking threshold r > rg,
are stochastic phenomena in more ways than one. First,
there are 2Ne possible network entry codes and therefore

(2Ne )!
(2Ne−m)!

ways of choosing m codes from 2Ne , the order

of choice being relevant. Some of these training sets are
particularly un-pedagogical. For example, a bad teacher
trying to explain the parity problem might start by pre-
senting all the entry codes that will give a 0 answer, then
all the others that will give a 1. He will obtain a “eureka”
with difficulty from his pupil only for r much greater than
1/2. Fortunately, the number of training sets is gigantic
(> 10300 forNe = 10 andm = 102) and the probability of
randomly drawing a wrong training set is very low. Sec-
ond, even for a single training set, the algorithm includes
many arbitrary choices: during the splitting cascade, the
order of nodes splitting in two is stochastic. Also during
conflict resolution, the choice of which pairs of nodes will
merge is also random.
The threshold rg is therefore a stochastic variable. The

bottom of fig.7 is a numerical measure of its probability
density function (PDF), performed on a (small) sample
of 220 independent training sets. The sample size is lim-
ited by the length of the calculation times. Nevertheless,
in view of the narrowness of the probability distribution,
it seems reasonable to define a mean value. At the top of
Fig.7, the continuous blue curve represents the mean gen-
eralization error as a function of r, < Eg(r) >, averaged
over the 20 independent learning trajectories represented
by the points.

B. Finite size effects

Simple statistical physics models, such as single-layer
perceptrons, predict cancellation of the generalization er-
ror Eg with the number m of TDS, when m >= αNp

where α ≃ 1.39 and Np is the number of independent ad-
justable parameters. Eg tends gently towards 0 when the
adjustable parameters evolve continuously, and abruptly
when they take only discrete values [8–10]. Since our
algorithm involves several layers, with a constantly vary-
ing number of nodes and connections (and for which Np

remains to be defined), these theoretical results are not
necessarily relevant. Nevertheless, we do observe a rapid
fall in the generalization error with r, as expected for
discrete models. Also, numerous recent numerical obser-
vations on a heterogeneous set of algorithmic data report
that the grokking threshold value rg decreases with the
number of input interface nodes Ne [11]. In [15, 28], this
same dependency is derived analytically for simple, solv-
able models.
Here, we’re interested in the effect of the network input

size on the grokking transition, but for networks which
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FIG. 7. Parity problem with Ne = 10. Top: Evolution of the
generalization error Eg as a function of r for 20 independent
training sets. The dots are the numerical measurements and
the solid blue line represents the mean generalization error
averaged over these 20 training sets. Bottom: PDF of rg
based on a sample of 220 independent training sets.

have been generated by our algorithm. Fig.8 top plots
the evolution of the generalization error as a function of
r, for several sizes Ne of the number of input interface
nodes. Each curve is obtained by averaging over 20 in-
dependent training sets. The problem studied is always
that of parity because it is a non-trivial example for which
rg is small and allows reasonably large values of Ne to
be investigated, but the observations are identical for the
other problems studied. We therefore observe not only
that rg decreases with Ne, but also that the size of the
zone over which Eg falls seems to decrease with Ne. To
quantify these observations, we fit the curves in fig.8 top
with an ansatz of the form:

Eg(r) =
1

4
[1− erf (λ (r − rg))] (3)

where λ−1 has the dimension of an interval of r and erf
denotes the error function. Fig.8 bottom plots rg and λ as
a function of Ne and confirms the previous observation:
larger Ne brings a sharper transition, which is reached
for smaller values of rg. Unfortunately, the asymptotic
behavior at large Ne, potentially highly informative, is
not accessible with our current computational resources.

FIG. 8. Top: Plots of Eg versus r for several values of Ne.
From right to left, we have Ne = 5, 6, 7, 8, 9, 10, 11, 12. Each
curve is obtained by averaging over 20 training sets; the points
are the numerical measurements, the solid lines linking them
are merely a visual aid. Note the logarithmic scale of the
abscissa. Bottom: Plots of rg and λ defined in eq.3 versus
Ne. We were only able to estimate the error bars correctly
for the case Ne = 10, for which the number of training sets
is sufficiently large (because of the bottom of fig.7). We then
measure a relative error of 3% for rg and 16% for λ.

V. EXAMPLES OF APPLICATION

Finally, we show that the proposed algorithm can in-
deed generate networks capable of performing a variety
of simple or complex classification tasks.
These tasks have been chosen to be as heterogeneous

as possible. Some are related to arithmetic operations.
The Ne input interface nodes are divided into 2 groups
of respective sizes Ne1 and Ne2, with Ne1 + Ne2 = Ne.
Each set of bits is then interpreted as the binary code of
an integer n1 (resp n2). We then define 3 operations:

1. ADD: A priori, the binary encoding of the integer
n1 + n2 requires L = max(Ne1, Ne2) + 1 bits. The
ADD function returns the most significant bit, i.e.
the one associated with 2L−1.

2. MUL: Binary encoding of the integer n1 ∗ n2 re-
quires at most L = Ne1 + Ne2 bits. MUL returns
the most significant bit, i.e. the one associated with
2L−1.

3. SUP: returns 1 if n1 >= n2, and 0 otherwise.
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FIG. 9. Evolution of the generalization error Eg as a function of r for different problems with Ne = 9. The title of the figure
refers to the problem considered (see text). For RAN, the continuous straight line is the theoretical prediction of eq.4.

Other tasks are associated with the presence of a partic-
ular pattern in the binary code entered:

1. PAR: returns 0 if the number of input interface bits
equal to 1 is even, and 1 otherwise.

2. TRI: returns 1 if there are at least 3 equal succes-
sive input interface bits in the binary code, and 0
otherwise.

Finally, some tasks correspond to more complicated op-
erations. Let n be the integer associated with the binary
coding provided by the Ne input interface bits. Then:

1. FIB: returns 1 if n is part of the Fibonacci sequence
1, 1, 2, 3, 5, 8, 13..., and 0 otherwise.

2. PRI: returns 1 if n is a prime number, and 0 oth-
erwise.

Alongside these examples, we also tested our algorithm
on a stochastic classifier, RAN, returning 0 or 1 ran-
domly, with probability 1/2. For this problem, the train-
ing set can be learnt as perfectly as for the other prob-
lems but generalization is by construction impossible. We
therefore expect a generalization error Eg of the form

Eg(r) =
1

2
(1− r) (4)

Fig. 9 shows the results for all the examples studied.
The first observation is that our algorithm provides a
network capable of generalizing in all cases where there
is a rule to grok and only in those cases. There are nei-
ther false negatives nor false positives. Another point
to note is that the threshold of the grokking transition
is highly dependent on the problem under consideration.
So, alongside the theoretical classification of problem dif-
ficulty in terms of the size of the computing resources re-
quired (memory and number of instructions in a Turing
machine), the numerical value of rg could be considered
as an “experimental” value.

VI. DISCUSSION

As we have shown above on several examples, the pro-
posed learning approach can bring a network to grokking
a variety of tasks. Beyond demonstrating that learning
and generalizing can take place without a global cost
function, these results may also have strong implications
about generalization itself. Indeed, in order to answer
the question of what distinguishes a neural network that
generalizes well from one that generalizes poorly, a num-
ber of statistical learning theories have proposed mea-
sures of complexity capable of controlling generalization

error [29–32]. Nevertheless in [33], the authors report
on numerical results that ”rule out the above complexity
measures as possible explanations for the generalization
performance of state-of-the-art neural networks”. Our
study doesn’t answer the question of the origin of the
ability to generalize either, but it highlights 2 impor-
tant points: 1) it provides a theoretical framework for
designing learning networks in which learning and gener-
alization are completely decoupled. Whatever complex-
ity measure is used to control the generalization error, it
can now be studied without concern for learning mecha-
nisms. 2) The network’s ability to generalize occurs as an
emergent property, i.e. as the collective result of a local
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dynamic of expressiveness optimization at node level.
The key features of our approach can be summarized

as follows:

1. Standard neural networks (and also KAN networks
[34]) optimize the edges of a fixed-topology net-
work to minimize global error function, while our
network stores information in LUTs and achieves
generalization via dynamically evolving topology,
distributing complexity both in nodes and edges.

2. There is no global cost function to minimize, nor
any gradient calculation. All operations are per-
formed locally: (i) spatial locality, as the evolution
rules involve only a single node or a pair of nodes,
and (ii) temporal locality, as the temporal evolution
takes place after each new learning. Our algorithm
is therefore naturally parallelizable.

3. In a classic deep learning approach, the choice
of meta-parameters (number of layers, number of
nodes, number of connections) is more a matter
of know-how than technique. Our algorithm solves
this problem in an elegant way: all these choices are
made naturally by the network itself as it evolves.

4. Being able to decouple the problem of training data
learning from that of seeking generalization greatly

extends the range of possible ways of solving the
later problems. The greedy algorithm is a simple
solution, but more original (and certainly more ef-
ficient) procedures are conceivable.

VII. CONCLUSION

We have proposed and analyzed a new framework for
neural computation based on dynamically evolving bi-
nary connections between dynamically evolving lookup
tables. The learning phase does not rely on global min-
imization but instead on storing examples in LUTs be-
fore dynamically reconfiguring the network topology via
a greedy algorithm which maximizes local expressivity.
We have shown that such an evolved network can gener-
alize many binary classification example tasks and that
grokking shows distinctive features of a phase transtion.
Beyond getting rid of a global cost function, our results
also shed a different light on generalization, which can be
sought independently from example learning, an observa-
tion which may contribute to rethinking generalization.
The present study is only a proof of concept, limited

to very small input codes (Ne ≤ 12), several orders of
magnitude smaller than those commonly used by current
learning machines. We are currently working on increas-
ing this size by parallelizing the algorithm.
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[6] L. Zdeborová, Understanding deep learning is also a job
for physicists, Nature Physics 16, 602 (2020).
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