Estimation of missing ordinal data: A comment on Wissler et al. (2022) - Archive ouverte HAL
Article Dans Une Revue American Journal of Biological Anthropology Année : 2023

Estimation of missing ordinal data: A comment on Wissler et al. (2022)

Résumé

In their recent article published in the AJBA, Wissler et al. (2022) presented an in-depth review of several methods of multiple imputation for missing ordinal or continuous data, and provided detailed and useful guidelines to handle missing data efficiently, a crucial issue in our disciplinary field. Their study showed 1) that imputation of continuous data leads to a substantially lower error than with ordinal data, and 2) that imputation errors (especially when assessed using the normalized root mean square error (NRMSE) are strongly related the amount of missing values. Their article also invited the community to evaluate these methods in other contexts. In particular, they acknowledged that the sample sizes might be considerably smaller in practical applications; and also advocated for further investigation of the performance of these methods on ordinal paleopathology data (p. 358).
Fichier principal
Vignette du fichier
main.pdf (188.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04758737 , version 1 (29-10-2024)

Identifiants

Citer

Sébastien Villotte, Frédéric Santos. Estimation of missing ordinal data: A comment on Wissler et al. (2022). American Journal of Biological Anthropology, 2023, 184 (2), pp.e24860. ⟨10.1002/ajpa.24860⟩. ⟨hal-04758737⟩
61 Consultations
5 Téléchargements

Altmetric

Partager

More