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Abstract

Dense anisotropic carbons are praised materials for thermostructural applications, yet, so far, a detailed structure-property
relationship for these materials is still lacking, especially for the pyrocarbon (pyC) matrices in carbon/carbon composites.
Here we compute the full elastic tensors of 210 recently introduced nanoscale models of anisotropic carbons [Polewczyk
et al. Carbon 212 (2023) 118109], covering domain sizes (Lc and La) and orientation angles (OA, as a measure of
nanotexture) relevant to most as-prepared and moderately heat-treated pyC matrices: Lc ∈ [1.5:8 nm]; La ∈ [2:5.5 nm];
and OA ∈ [25:110◦]. Isothermal and adiabatic elastic tensors, corresponding to the slow quasi-static and ultra-fast loading
regimes, respectively, are considered. Analysing the database of computed elastic constants with a random forest regressor
supervised learning algorithm we show that all elastic constants can be predicted accurately using Lc , La and OA as
descriptors. Among the latter, OA is the one showing, by far, the strongest correlation with the elastic tensors. For such
dense, non porous carbons, 3 of the 6 isothermal and 5 of the 6 adiabatic constants can even be accurately predicted using
OA as the unique material descriptor. Calculation of the universal anisotropy index shows that isothermal tensors show
more anisotropy than adiabatic ones, indicating that stress relaxation favors elastic anisotropy. Eventually, the Young’s
moduli and Poisson coefficients of six models of actual pyCs are presented and their longitudinal moduli compared to
tensile measurements, showing relatively poor agreement. These results suggest that accounting for texture at a larger
scale is required to capture pyC matrices elasticity. The developed supervised learning model is available for online use at
https://web.ism.u-bordeaux.fr/rfr.

1. Introduction

Combining low weight and a high melting point [1],
as well as a high displacement threshold energy [2],
dense anisotropic carbons are key constituents in numer-
ous cutting-edge materials for applications under extreme
environments such as high temperature, high heat flux, high
stress, or high-energy particle fluxes conditions. The most
common example of such materials are certainly the so-
called carbon fiber reinforced carbon matrix composites, or
C/C composites [3, 4], finding numerous applications [5] in
the fields of aerospace [6, 7] and aeronautics [8].

These materials are generally manufactured by deposition
of a pyrolytic carbon (pyC) on the inner surfaces of a porous
carbon fiber fabric, via the chemical vapor infiltration (CVI)
technique[9, 10, 11]. Both the fibers and pyC matrices are
dense carbons with a varying degree of anisotropy, also re-
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ferred to as "texture", that correspond to a preferential ori-
entation of the graphene layers within the materials. The
anisotropy of the constituents confers them some important
mechanical and thermal anisotropy, allowing to fine tune
the composite materials to some prescribed mechanical and
thermal properties.

Aside from C/C composites, pyCs are also found as in-
terphases in C/SiC materials [12, 13] for the same types
of applications [14] or as interphases in SiC/SiC ceramic
matrix composites for GenIV nuclear reactors or nuclear fu-
sion reactors [15, 16, 17] or as nuclear fuel cell coatings
in the tristructural isotropic (TRISO) particles of the high
temperature reactor (HTR) technology [18]. They are also
considered as electrode materials [19]. Finally, thanks to
their excellent hemocompatibility, they are used in medical
implants and devices [20].

Common to pyC matrices and C fibers is the limited ex-
tent of the “crystalline” order within these graphene-based
materials and the turbostratic (i.e. disordered) stacking of
those layers in the 002 direction. With densities in the 1.9-
2.2 g/cm3 range [21, 22], pyC matrices contain very little
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to no porosity. C fibers are generally slightly less dense (i.e.
∼ 1.8 g/m3 for PAN-based fibers [23]), yet they can still be
considered as dense carbons. At the sub-micrometer scale
(or a few tens of nm), the structure of the pyC matrices can
be described by a few observables extracted from diffraction
experiments. The Lc and La lengths, extracted from the
width of the 002 peak and 10 asymmetric band in X-ray (or
neutron) diffraction patterns characterize the extent of co-
herent domains in the out-of-plane and in-plane directions,
respectively, and the position of the 002 peak allows extract-
ing the inter-layer distance d002, generally slightly larger, by
∼ 0.1 Å, than for crystalline graphite.

Another important parameter in characterizing the tex-
ture (or nanotexture) of these materials at the nanoscale
is the so-called orientation angle (OA), defined as the full
width at half maximum of the angular intensity profile of
the 002 arcs in selected area electron diffraction (SAED)
patterns [24]. As such, OA measures the distribution of the
002 direction with respect to the deposition direction (fiber
surface) and is thus an excellent measure of the anisotropy
at this scale. Several authors have proposed some nanotex-
ture classifications of pyCs based on OA values [24, 25].
Following Reznik and Hüttinger [25], pyCs with OA = 180◦,
180◦ > OA ≥ 80◦, 80◦ > OA ≥ 50◦ and OA < 50◦ are de-
fined as isotropic (ISO), low texture (LT), medium texture
(MT) and high texture (HT) pyCs, respectively. According
to this classification, the long-known rough laminar (RL)
and smooth laminar (SL) pyrocarbons belong to the HT
and MT categories, respectively. Although these concepts
also apply to fibers, the axial symmetry of the latter slightly
complicates the situation. Especially, the contributions of
in-plane order along, and normal to, the fiber axis have to
be distinguished with two independent La values [26].

While measurements of the full elastic tensors of carbon
fibers are frequently reported in the literature [27, 28, 29],
very limited data exist for the pyC matrices due to the diffi-
culty of measurements for such materials that are generally
obtained as thin deposits on complex substrates (i.e. fibrous
preforms). To our knowledge, only two sets of values have
been reported for HT pyCs [30, 31], based on ultrasonic
measurements. Noticeably, the values reported for the in-
plane elastic constant C11, 40-50 GPa, and the correspond-
ing Young’s modulus E1, 27-39 GPa, are more than an order
of magnitude lower than the values for graphite, 1060 and
1020 GPa for C11 and E1, respectively [32]. In order to ra-
tionalize these findings, Böhlke et al. [33] and Lin et al. [34]
have proposed micromechanical models based on the extrac-
tion of graphene planes and local domains – the so called
coherent domains – orientations from HRTEM images. Al-
though promising, the obtained effective elastic constants
remain considerably larger than those reported from ultra-
sonic measurements, close to one order of magnitude for
C11.

Tensile tests performed by Sauder et al. [35] using sin-

gle compliant fibers coated by thin pyC deposits (i.e. mi-
crocomposites) have allowed extracting the in-plane moduli
of various pyC textures, both as prepared and after several
heat treatments. It was found that the SL pyC (MT) has
a Young’s modulus E1 = 54 GPa, that does not change,
even after heat treatments as high as 2200◦C. E1 for the
RL pyC (HT) was found to be of 115 GPa, slightly decreas-
ing to 95 GPa after heat treatment at 2200◦C, which is
slightly counter-intuitive. Far more counter-intuitive were
the results obtained for the regenerative laminar (ReL) pyC,
another HT pyC with similar anisotropy and domain sizes
to the RL pyC. Although similar results to those for the RL
pyC should have been expected, a much larger E1 value,
205 GPa, was found for this pyC as prepared, and this value
increased to 245 GPa and above 360 GPa after heat treat-
ments at 1600 and 2200◦C, respectively.

Also, because of its convenience to investigate the me-
chanical properties of coatings, pyC matrices were also
subject to numerous indentation/nano-indentation tests
[36, 37, 28, 38], yet it is now agreed that the indentation
moduli are significantly affected by elastic instabilities, such
as buckling, when the tests are performed in the parallel di-
rection to the layers, such that it is not possible to recover
the elastic constants or Young’s modulus from these exper-
iments [36, 39, 38].

Modelling the relationship between the structure, the
texture and resulting elastic properties has proved to be
a real challenge that only a few studies have explored
[40, 41, 42, 43, 44]. Using the Image Guided Atomistic Re-
construction approach (IGAR) [45, 46], Farbos et al. have
proposed several structural models of high texture pyCs at
the nanoscale, including some as-prepared RL and ReL pyCs,
as well as some ReL pyCs after various heat treatments [22].
The full elastic tensors were then computed [40], unraveling
interesting structure-property relationships like, for instance,
the effect of interlayer crosslinks on interlayer shear (C44),
yet the computed in-plane modulus E1, of the order of 600
GPa, for all materials, is quite significantly larger than the
above discussed experimental reports by Sauder et al. [35].

However, the IGAR models did not allow for a full in-
vestigation of the structure-elasticity relationship at the
nanoscale. First, although very successful in capturing in-
plane order (like the La parameter), the obtained models
were suffering from a strong underestimation of the out-of-
plane coherence (Lc), and from a significant overestimation
of the interlayer distance d002. Moreover, by construction,
only high texture pyCs can be modelled with this technique,
and only a handful of IGAR models have been produced due
to the requirement of having at hand a complete character-
ization database including density measurement, hydrogen-
content and high quality high resolution transmission elec-
tron microscopy (HRTEM) images. Further, as structural
and (nano-) textural properties are often correlated in actual
pyCs (i.e. anisotropy, La and Lc), it is difficult to disentangle

2



Figure 1: Overview of the synthetic microstructures database. (a) Distribution of models with La as a function of Lc , colored by OA. 1 nm thick
slices of (b) a LT model with La = 2.8 nm, Lc = 2 nm and OA = 94◦ and (c) a HT model with La = 5.3 nm, Lc = 7.7 nm and OA = 25◦. (d)
close view of a screw dislocation in the HT model from (c). Colors assigned to atoms in (a)–(c) correspond to hexagonal like environments (gray)
and defects (orange).

the effects of structure and texture in a structure-property
relationship.

In a recent work, Polewczyk et al. have proposed a poly-
granular variant of the IGAR method: the PG-IGAR method,
in which atomistic models of dense textured carbons are
produced from a limited set of structural and textural pa-
rameters [47]. A large database of models, covering both
MT and HT pyCs have been produced, spanning wide – and
uncorrelated – ranges of La, Lc and OA values. In this re-
port, we first attempt to propose a machine-learning derived
structure-elasticity relationship based on the calculation of
the full elastic tensors for all these models, both in the lim-
its of high and low strain rates. Then, models identified
to experimental actual pyCs, namely smooth laminar (SL),
rough laminar (RL), regenerative laminar (ReL) as well as
heat-treated ReL, are compared to their experimental coun-
terparts.

2. Models and Methods

2.1. Database of atomistic models

We recall here the principles of the PG-IGAR method and
present briefly the model database. All the details can be
found in Ref. 47. The basic idea behind PG-IGAR is to
construct models from simple parameters that can be de-
rived from X-Ray diffraction (XRD) and SAED patterns.
The first step is the construction of 3D periodic cells with
grains of average size Lt , related to La and Lc parameters,
using the Voronoï tessellation technique. Then each grain
is decorated with HRTEM-like straight fringes with period-
icity given by the target d002 and a statistical distribution
of the 002 directions derived from a target OAt value. The
obtained 3D image is then converted into an external po-
tential and the cell filled in with carbon in the liquid state
at the target density. The latter is then cooled down to
room temperature using molecular dynamics, under the in-
fluence of a combination of the second-generation reactive

empirical bond order potential (REBO2) [48] and an exter-
nal 3D-image potential, according to a non-linear quenching
scheme with duration τQ, and finally relaxed at 300 K and
1 bar after removal of the image potential. Varying three
of the simulation parameters, Lt , OAt and τQ, the liquid
carbon density and the textured image d002 being fixed to
2.16 g/cm3 and 0.345 nm, respectively, 210 models were
obtained.

All the models, each containing a total of 206950 atoms
enclosed in nearly cubic periodic cells of side lengths ∼ 12.4
nm, have been thoroughly analysed[47]. The distributions
of local atomic environments (LAE) were computed as in
Refs 49 and 2, as well as the size statistics of sp2 bonded
rings. The pair distribution functions G(r) were also com-
puted and converted by Fourier transform into structure fac-
tors S(Q), from which values of La and Lc and d002 were
extracted. HRTEM images, simulated using Dr Probe soft-
ware [50], were also converted into diffraction patterns by
Fourier transform and the 002 arcs intensities analysed using
an in-house script to extract OAs.

The database is graphically presented in figure 1. As
shown in figure 1(a), it covers relatively scattered and un-
correlated values of Lc and La ranging from ∼ 1.5 to 7.5 nm
and 2 to 5.5 nm, respectively, while OA values, ranging from
25 to 110◦, covers characteristic values from HT to early LT
carbons. Further, figure 1(a) also shows that OA values are
mostly uncorrelated to Lc and La, even though, amongst
the database, the largest OAs correspond to rather small La
and Lc . The distribution of data points in the 3D (La, Lc ,
OA) space is not perfectly uniform, as these three param-
eters actually are outputs in the PG-IGAR simulations, and
their precise values depends in a complex way of the simula-
tions inputs (grain size, orientation distribution, interfringe
spacing, atomic density and quench rate). Nevertheless, we
assume here that the data points sampling is sufficient for
the purpose of the present work.

Snapshots of LT and HT models, given in figures 1(b) and
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1(c), respectively, highlight the fundamental difference be-
tween those microstructures. While the LT microstructure
shows marked coherent domains, with distinct grain orien-
tations and neat grain boundaries, the HT microstructure
almost appears as a well oriented anisotropic structure with
localized defects, even though some appear quite extended,
such as the screw dislocation shown in a close-up in figure
1(d). Finally, it is worth mentioning that the three adopted
descriptors of the structure and nanotexture of the models,
namely La, Lc and OA were correlated in Ref. 47 to the
distributions of local environments and ring statistics using
a machine-learning algorithm.

2.2. Elastic constants calculations

Considering that the cartesian axis system is chosen so
that the z axis correspond to the direction of anisotropy (i.e.
the center of the distribution of the 002 directions), and
assuming transverse isotropic symmetry, the second-order
elastic tensor in the Voigt contraction convention reads:

C =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66


(1)

with 5 independent elastic constants as C66 = (C11−C12)/2.
In this equation, indices 1, 2 and 3 correspond to x , y , and
z axes respectively, index 4 corresponds to shear in the xz
or yz planes, and index 6 to shear in the xy plane.

In this work, these constants are computed using
molecular dynamics (MD) simulations performed with the
STAMP [51] (Simulations Temporelles Atomistiques Mas-
sivement Parallélisées) code along with the LCBOPII po-
tential [52, 53]. MD trajectories are integrated using a
velocity-Verlet integrator [54] and a 0.25 fs timestep. Sim-
ulations are run in the canonical (NVT) ensemble, using a
Nosé-Hoover style thermostat [55, 56] with a 0.1 ps damp-
ing constant. The temperature is fixed to 300 K and the
simulation cells have been previously relaxed in the NPT en-
semble at this temperature and a pressure of 1 atm using an
additional coupling to a barostat [57] with a 1.0 ps damp-
ing constant. The diagonal components of the stress tensor
were controlled independently so that true hydrostatic con-
ditions were achieved, prior to any elastic constants calcu-
lations.

The elastic constants are obtained from stress-strain
curves obtained by applying pure tensile or shear strains and
the corresponding stresses computed using the virial stress:

σ = −
1

V
∑
α∈V
mαvα ⊗ vα −

1

V
∑
α∈V

∑
β∈Vα

rαβ ⊗ fαβ (2)

where α and β are indices running on the atoms, V is the
simulation cell volume, mα and vα are the mass and veloc-
ity of atom α, and rαβ, fαβ respectively stand for inter-
atomic distance and force vectors and ⊗ is the dyadic prod-
uct. Here, the minimum image convention is used and fαβ

stands for the total force on central atom α due to neigh-
boring atom β. In addition all velocities are re-centered on
the average velocity of the MD simulation cell.

According to Wallace [58] and Sutton [59], any given
thermo-elastic process must be associated with either adi-
abatic (S) or isothermal (T) elastic constants. However,
the choice of which type of elastic constant to use depends
directly on the rate of elastic deformation. For instance, adi-
abatic elastic constants are typically measured using ultra-
sonic pulse experiments, while their isothermal counterparts
are usually measured through direct quasi-static mechanical
tests at constant temperature. As in a recent investigation
on graphite [60], these two distinct sets of elastic constants
are computed in this work.

Isothermal (T) elastic constants, which are characterized
by low strain rates relative to all elastic relaxation modes of
the material, are computed as follows. Starting from the
equilibrated microstructure, a series of finite strains are uni-
formly applied to the simulation cell. The strain range con-
sidered in this study is given by ε ∈ [1, 3]%, with a 0.1 % in-
crement, for tensile deformations [40]. Compressive strains
were not considered to avoid the compression-induced buck-
ling elastic instabilities [61, 38]. For shear strains however,
the range considered is [−1.0,+1.0] % with the same incre-
ment. Following the application of strain, the simulation cell
undergoes equilibration in the NVT ensemble for a duration
of 100 ps to allow for stress relaxation via the reorganization
of atomic coordinates. The stress tensor is then obtained
by averaging stress components over the last 20 ps of the
trajectories.

Adiabatic (S) elastic constants, are representative of
the elastic response in the limit of instantaneous deforma-
tions, without any subsequent relaxation of atomic positions
[62, 60]. They are computed as follows. First, the system is
equilibrated for 100 ps in the NVT ensemble. Subsequently,
a total of 10 independent configurations are selected from
the last 20 ps of the NVT simulation, and these configu-
rations are subjected to finite homothetic strains spanning
the same values as those employed in the isothermal case,
resulting in 10 independent data points for (σ, ε). This pro-
cess is repeated for different amplitudes and types of strain,
yielding 10 stress-strain curves for each deformation type.
These curves are then averaged to obtain a single "master"
stress-strain curve.

Isothermal CT
ij

and adiabatic CS
ij

elastic constants are then
determined by performing linear fits of the stress vs. strain
curves. As in former work [60], C11 and C12 are averaged
from tensile tests performed in the x and y directions, C33 is
obtained from tensile tests in the z direction, C13 is averaged

4



from tensile tests performed in the x , y and z directions (2
independent evaluations along the z axis), C44 is averaged
from shear tests in the xz and yz planes and C66, explicitly
calculated from shear tests in the xy plane.

2.3. Machine Learning model

The Random Forest Regressor (RFR) [63] is used to de-
rive a relationship between the structural and textural ob-
servables La, Lc , OA and the adiabatic/isothermal elastic
properties. RFR is a non-parametric machine learning (ML)
algorithm used for predicting a specific property given a set
of input features commonly called descriptors. It generates
a large number of decision trees, each trained on a random
subset of descriptors, and combines their predictions to pro-
duce a final output. The combination of these predictions
from a given number of trees helps reducing overfitting and
improves the accuracy of the model. Given a set x of de-
scriptors, the final predicted properties y are averaged over
the individual intermediate predictions yi:

y(x) =
1

Nt

Nt∑
i=1

yi(x) (3)

with Nt the total number of decision trees.
In this work, the elastic properties are predicted while co-

herence lengths and orientation angle La, Lc , and OA re-
spectively, play the role of input features. The RFR imple-
mentation of the sklearn Python library [64] was used with
a number of decision trees Nt = 100, a tree depth Dt = 15
and a minimum number of samples N leaf

samples
= 5. The entire

dataset was split into two sub-datasets, namely the training
(80%) and test (20%) sets, in order to assess the predictive
capability of the model and two metrics were used for quan-
tifying the error of the prediction, namely, the Root Mean
Squared Error (RMSE) and the coefficient of determination
(R2), widely used together in ML techniques.

3. Results

3.1. Elastic constants within the database

We discuss here the relationship between the material pa-
rameters La, Lc and OA, and the computed elastic con-
stants. Figure 2 shows the entire database of isothermal
elastic constants CT

ij
, displayed as a function of the OA pa-

rameter, and color coded according to the La parameter (a
similar plot for the adiabatic elastic constants is provided in
figure S1. It appears clearly that at least four of the six
elastic constants are strongly correlated to OA. C11 indeed
shows a clear decreasing trend with increasing OA, while all
the constants involving the transverse direction , C33, C13
and C44, increase with increasing OA, in an almost perfectly
linear manner for C13 and C44. The correlation between OA
and the two other constants (C12 and C66) is weaker, yet

as for C11, both constants seem to decrease with increas-
ing OA at large OAs (> 40◦). For these constants, there
seems to exist some positive correlation with the coherence
lengths, especially La, at least at low OAs (see figure S2 in
the supplementary material). This is also slightly the case
for C11 and C33 which seem to increase slightly with La for
strongly anisotropic models.

Overall, as shown in figure S1, the same observations ap-
ply to adiabatic constants, although in this case, C12 shows
less variation, and hence, C66 – which is a combination of
C11 and C12 – follows the same trend as C11. Quantita-
tively speaking, one observes that adiabatic constants are
generally slightly larger than their isothermal counterparts,
asides from C12 for which adiabatic values are in the lower
side of isothermal values. This result is somehow consis-
tent with our former investigation on graphite where it was
found that the room temperature isothermal elastic con-
stants were lower than adiabatic ones for all constants but
C12 and C13 [60]. The larger compliance of elastic tensors
in the isothermal case stems from the relaxation of atomic
positions leading to a decrease in macroscopic stresses.

Despite significant quantitative variations, the hierarchy
of elastic constants – C11 > C66 > C12 > C33 ∼ C13 > C44
– (figure 2) remains independent of OA in the isother-
mal case. Although this hierarchy also applies to adiabatic
constants at low OAs, some inversions occur at interme-
diate values, leading to the following order at large OAs:
C11 > C66 > C44 ∼ C33 > C13 > C12 (figure S1).

Table 1: Comparison of the isothermal (Ci jT ) elastic constants in GPa
of the most ordered (A) and the most disordered (B) models with the
values computed for hexagonal graphite in Polewczyk et al. [60]. A:
OA = 24.8◦, Lc = 7.7 nm and La = 5.3 nm; B: OA = 109.6◦, Lc = 2.1
nm and La = 2.1 nm.

Specimen CT11 CT33 CT12 CT13 CT44 CT66
Graphite 943 28 160 6.3 0.2 389
A 712 11.5 83 11.3 1.0 170
B 289 57 54 48 41 101

It is interesting to describe the properties of the models
with highest and lowest degrees of texture and structure in
the database, noted A and B, respectively. The isothermal
elastic constants of these two models are compared to those
computed previously for graphite [60] in Table 1. The longi-
tudinal elastic constants are divided by a factor of ∼ 3, from
graphite to model B, yet the latter retains a high degree of
longitudinal stiffness, despite having small domain sizes (La
= Lc = 2.1 nm) and low anisotropy (OA = 109.6◦). Con-
versely, transverse elastic constants significantly increase by
factors going from ∼ 2 for CT33 to ∼ 200 for CT44 due to
the presence of a covalent bond network in the anisotropy
direction. Model A, as expected, shows intermediate values
between graphite and model B for most constants except
CT33. The CT33 value of model A, which is the lowest of the
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Figure 2: Evolution with OA of the isothermal elastic constants within the database. The data points are color-coded by increasing value of
La from 2 nm (blue) to 5.5 nm (yellow). Dashed vertical lines indicate the separation between high-texture (HT), medium-texture (MT) and
low-texture (LT) domains.

three systems, can be explained by a combination of two
phenomena [40]: the decrease in stiffness due to weakened
van der Waals interactions, when going from graphite (d002
= 0.341 nm) to model A (d002 = 0.345 nm), and the in-
crease in stiffness due to an increase in the number, and
alignement, of covalent bonds along the anisotropy direc-
tion when going from model A to model B. Although some
quantitative differences exist, the same observations apply
to the adiabatic elastic constants given in table S1.

3.2. Supervised-Learning Model
Figure 3 shows the elastic constants, both adiabatic and

isothermal, predicted using the RFR method, using La, Lc
and OA as descriptors (or features), for the entire database,
split into training and test (or validation) sets. As can be
confirmed with the R2 and RMSE error metrics, given for
each type of Ci j in tables S2 and S3, RFR predictions are
rather accurate, for all constants, despite the very limited set
of descriptors. For these predictions using the RFR method,
12 independent models were created to independently pre-
dict the 12 adiabatic and isothermal elastic constants from
La, Lc and OA. We carefully checked that doing so was
not affecting the calculations of homogenized data such as
bulk/shear moduli and universal anisotropy index.

A common practice when using RFR consists in investi-
gating the sensitivity of the prediction to the descriptor set in
order to reduce the number of input features. In the present
work, the RFR feature importance standardized method was
used to extract each features’ importance. The importance
of the three features in predicting the 12 sets of elastic con-
stants (6 isothermal and 6 adiabatic) is shown in table S6.
Considering that features with importance less than 0.05 can
be neglected, one observes that three isothermal constants

(CT11, CT33 and CT44) and five adiabatic constants (CS11, CS66,
CS33, CS13 and CS44) can be accurately predicted using OA as
the unique descriptor. The prediction of CS12 requires the
full set of features (Lc , OA and La with relatively balanced
weights). Prediction of CT12 requires, by order of importance,
La, then OA and Lc . Predictions of CT66 is based on OA, Lc
and La, and CT13 mostly on OA with a little Lc .

This feature reduction strategy (feature importance built
in the RFR algorithm) was applied to the prediction of both
adiabatic and isothermal elastic constants and the equivalent
of figure 3 obtained with the reduced feature sets is show
in figure S3. The overall quality of the predictions remains
close to the one of the full feature model (see also the error
metrics R2 and RMSE in tables S4 and S5). We show in
figure 4 the evolutions with OA of the eight elastic constants
that mostly do not depend on La and Lc . The comparison
of the RFR predictions and MD simulation results shows an
excellent agreement.

3.3. Elastic anisotropy

The universal anisotropy index [65], which measures
the level of anisotropy of any material from its elastic
constants[66], is defined as:

Au = 5
GV

GR
+
KV

KR
− 6 (4)

where G and K indicate estimates of the shear and bulk
moduli, respectively, according to the Voigt (V superscript)
and Reuss (R superscript) models. The expressions for these
terms are given in the supplementary material. The Voigt
bound relates to the behavior of a material under an isotropic
deformation-imposed process while the Reuss bound is re-
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Figure 3: Comparison of RFR predicted and MD computed elastic constants. Training and validation sets are shown with light and dark symbols,
respectively; adiabatic (S) and isothermal (T) constants are shown in red and blue, respectively. 12 distinct models were created for prediction of
adiabatic and isothermal elastic constants.

Figure 4: Evolution with OA of eight elastic constants that merely
depend on OA. Symbols: MD data; lines RFR model with OA as unique
feature; red: adiabatic; blue: isothermal. Dashed vertical lines are as
in Fig. 2.

lated to the behavior of a material under an imposed hydro-
static pressure. It is obvious that an isotropic material will
behave in the same way under both conditions and hence
that Au = 0 for a perfectly isotropic material.

Figure 5 shows the evolution of Au with OA along the 1
atm isobaric pathway for the isothermal and adiabatic ap-
proaches. As expected, the elastic anisotropy, as measured
by the Au parameter, is negatively correlated to OA. Stated
otherwise, the elastic anisotropy correlates perfectly well
with the textural anisotropy, whatever adiabatic or isother-
mal elasticity is considered. Under standard conditions of
pressure and temperature, the anisotropy indices of the most
textured models can reach values of ∼ 35 and 280 for the
adiabatic and isothermal cases, respectively. These very high
values place these materials amongst the list of the known
materials with the largest elastic anisotropy, despite their
low crystallinity [66].

The values presented in figure 5(a,b), are also consistent
with the values obtained for graphite – 93 and 2169 for adi-
abatic and isothermal conditions, respectively [60] – which
is the limit at OA = 0 and infinite values of La and Lc . As
shown by the RFR predictions obtained with different values
of Lc and La (see the colored lines in figure 5), Au is mostly
independent of these coherence lengths when OA > 50◦.
However, for lower OA values, Au increases with increasing
Lc and La. Interestingly, as shown in figure 5(c), the ra-
tio of isothermal to adiabatic universal anisotropy indices,
ATu /A

S
u , is mostly constant (∼ 2.5) for OA values above ∼

40◦, while this ratio significantly increases when decreas-
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ing OA and increasing coherence lengths for lower OA val-
ues. Whatever the OA, the elastic anisotropy is larger under
isothermal conditions, which indicates that isothermal stress
relaxation favors anisotropy.

3.4. Elastic properties of actual pyCs
In Ref. 47, a series of models were identified from the

entire database as best matching the properties of a set of
actual materials, extensively characterized in previous works
[21, 22]. This set comprises a series of high textured pyCs,
including an as-prepared rough laminar (RL) pyC, an as pre-
pared regenerative laminar (ReL) pyC and the ReL pyC af-
ter heat-treatment at 1300 (ReL1300), 1500 (ReL1500) and
1700◦C (ReL1700). For all these materials, the PG-IGAR
models were found to be in much better agreement with
experimental characterization data than the previously pro-
posed IGAR models [22], especially regarding c-axis stacking
coherence. Furthermore, the database also contains a model
of the as-prepared smooth laminar (SL) pyC, which, to our
knowledge, is the first ever atomistic model of a medium
textured pyC.

Table 2 gathers the longitudinal (E1) and transverse (E3)
Young’s moduli, and the three Poisson coefficients (ν12, ν13

Figure 5: Evolution of (a) ASu , (b) ATu and (c) ASu /ATu as a function
of OA. Symbols: MD data; lines: RFR models with different {Lc ,La}
couples in nm. Dashed vertical lines are as in Fig. 2.

Table 2: Isothermal Young’s moduli (in GPa), Poisson coefficients
and universal anisotropy of pyrocarbon models. Data for hexagonal
graphite, by Polewczyk et al. [60] are given for comparison.

Specimen E1 E3 ν12 ν13 ν31 Au
Graphite 915 28 0.16 0.48 0.01 2169
SL 385 22 0.43 0.47 0.03 13.9
RL 663 11 0.20 0.49 0.01 101
ReL 530 12 0.35 0.49 0.01 49.6
ReL1300 575 12 0.24 0.49 0.01 49.9
ReL1500 554 12 0.25 0.49 0.01 64.5
ReL1700 683 9 0.18 0.49 0.01 263

and ν31) computed for these models from the isothermal
elastic tensors according to :

E1 =
(C33(C11 + C12)− 2C213)(C11 − C12)

C11C33 − C213
(5)

E3 =
C33(C11 + C12)− 2C213

C11 + C12
(6)

ν13 =
1

2
−
3

4

C33(C11 + C12)− 2C213
(C11 + C12 + 2C13 +

C33
2 )(C11 + C12)

(7)

ν31 =
E3ν13
E1

(8)

ν12 =
C11 − E1 − ν13C13

C12
(9)

We observe that the SL pyC model has the lowest value for
E1 (385 GPa), the largest value for E3 (22 GPa) aside from
graphite, and the largest Poisson coefficients ν12 and ν31,
compared to the other pyCs. Amongst the high textured
pyC models, we observe that E1 and Au, also given in table 2,
increase with heat treatment temperature for the ReL pyC,
while, conversely, E3 and ν12 decrease. As for the structural
parameters (see Ref. 47), the elastic properties of the ReL
pyCs become similar to those of the as-prepared RL pyC,
after heat treatment of the former to values between 1500
and 1700◦C.

The results presented here in table 2 are relatively similar
to those obtained with the IGAR models for the HT pyCs
[40], especially for E1 values. For the other constants, some
quantitative differences exist, at least in part due to the use
of different interatomic potentials for computing the elastic
tensors. Yet, for instance, the decrease in E3 with increasing
heat treatment temperature for the ReL pyC is consistent
in the two sets of data. However, as in Ref. 40, the values
obtained for E1 are not consistent with the experimental
results of Sauder et al. [35], who reported values of 54, 115,
205 and 245 GPa for the SL, RL, ReL and the ReL pyC heat
treated at 1600◦C, respectively. Although the pyC matrices
investigated by Sauder et al. may differ slightly from those
characterized by Weisbecker et al. [21] and Farbos et al.
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[22], from which the data were later used to identify the
pyC models, the much lower moduli measured by Sauder et
al. [35] indicate that something is lacking in the current
models. This cannot be the absence of hydrogen as Farbos
et al. have shown that accounting for hydrogen would, at
best, lead to a 12 % decrease of E1. Also, it is worth noting
that while the results by Sauder et al. agree in finding that
the SL pyC has the lowest E1, they observed that the ReL
pyC has a modulus twice as large as the SL pyC, which, as
mentioned in the introduction, seems counter-intuitive with
respect to the characterization data. All of this suggests
that tensile moduli of the pyC matrices are dominated by
structural/textural features at a larger scale. It is indeed
well-known that pyC matrices show texture effects at much
larger scales. This is particularly well illustrated in the case
of ReL in the dark-field or Lattice-fringe TEM micrographs
of Bourrat et al. [67] and of various pyrocarbons in the TEM
micrographs of Ozcan et al. [68]

4. Conclusion

In this report, we have used MD simulations to compute
the elastic tensors of a large database of dense anisotropic
carbons, from high to low texture, under both isothermal and
adiabatic conditions. These properties were compared with
computed nanostructural (Lc , La) and nanotextural (OA)
parameters, allowing to disentangle for the first time the
respective effects of texture and structure, for this class of
materials. Although both approaches lead to very different
ranges of values for the elastic constants due to the lack of
relaxation of atomic positions in the adiabatic approach, we
show that, in both cases, the texture parameter OA has, by
far, the strongest influence on the elastic constants. A ran-
dom forest regressor algorithm was trained on the database
and it was shown that all the elastic constants can be accu-
rately predicted from OA, Lc and La. A feature reduction
process has allowed to show that 5 adiabatic and 3 isother-
mal constants can be accurately predicted using OA as
sole descriptor. Data regarding the entire database (struc-
tural and textural parameters, isothermal and adiabatic con-
stants) is provided as supporting material. The RFR model,
that allows for the first time the quantitative prediction of
all elastic constants from OA, La and Lc , is available online
at https://web.ism.u-bordeaux.fr/rfr.

Calculation of the universal anisotropy (Au) index has
shown that elastic anisotropy increases with textural
anisotropy. Also it was shown that Au is larger for isother-
mal tensors with respect to adiabatic tensors, with a factor
of ∼ 2.5 for medium to low texture carbons (OA > 50◦),
a factor that significantly increases with decreasing OA at
lower OA values (i.e. for HT pyCs). This indicates that
high texture carbons exhibit very different elastic behaviors
depending on the loading conditions, as for graphite.

Finally, the isothermal Young moduli and Poisson coeffi-
cients of six models of actual pyCs were described and the

longitudinal moduli compared to tensile test results from
Sauder et al. [35]. While the elasticity of the nanoscale
models identified in this work seems reasonable, the obtained
longitudinal moduli are significantly larger than the experi-
mental data. This suggests that the latter may result from
textural patterns at a larger scale, possibly at the scale of the
growth cones in pyC deposits. Future work will aim at builing
a meso-scale model of the matrices, informed by orientation
data derived from characterization techniques operating at
the µm scale like polarized light optical microscopy, and in
which the model presented in this work will provide the local
elasticity tensors.
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