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Abstract This work deals with forced vibration of no-
nlinear rotating anisotropic beams with uniform cross-
sections. Coupling the Galerkin method with the bal-
ance harmonic method, the nonlinear intrinsic and ge-
ometrically exact equations of motion for anisotropic
beams subjected to large displacements, are converted
into a static formulation. This latter is treated with two
continuation methods. The first one is the asymptotic
numerical method, where power series expansions and
Padé approximants are used to represent the general-
ized vector of displacement and the frequency. The sec-
ond one is the pseudo-arclength continuation method.
Numerical tests dealing with isotropic and anisotropic

beams are considered. The natural frequencies obtained
for prismatic beams are compared with the literature.
Response curves are obtained and the nonlinearity is in-
vestigated for various geometrical conditions, excitation
amplitudes and kinematical conditions. The nonlinear-
ity related to the angular speed for prismatic isotropic
beam is thus identified. The stability of the solution

branch is examined, in the frequency domain using the
Floquet theory.
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List of symbols

A The number of angels per unit area
Aki, Ā Matrices used after Galerkin and harmonic

balance approximations
Bi Unit vectors in cross-sectional frame of de-

formed state

bi Unit vectors in cross-sectional frame of unde-
formed state

e1 r1 0 0sT

F Cross-sectional resultant internal force vector
f Distributed applied force per unit length vec-

tor
H Cross-sectional angular momentum vector

✐2, ✐3, ✐23 Cross-sectional mass moments and product of
inertia

●,❑, ■ Component of the Cross-sectional inertia ma-
trix

K Deformed beam curvature vector
k Initial curvature vector
L Length of the beam
M Cross-sectional internal moment vector
m Distributed applied moment per unit length

vector
P Cross-sectional linear momentum vector
❘,❙,❚ Component of the Cross-sectional flexibility

matrix
❯,❱,❲ Cross-sectional stiffness matrix components
t Time
V Velocity vector of the reference line
x, x2, x3 Cross-sectional reference frame of the unde-

formed beam
x̄2, x̄3 Offsets from the reference line of the cross-

sectional mass center in (bi)

γ rγ11 2γ12 2γ13sT

∆ Identity matrix

1



A
c
c
e
p
te

d
 M

a
n
u
s
c
ri
p
t2 F. Bekhoucha et al.

κ1, κ2, κ3 Twist and bending curvatures (κi “ Ki ´ki)
µ Mass per unit length
ρ Mass density
Ω Angular velocity vector
p‚1q Bp‚q{Bx1

p 9‚q Bp‚q{Bt
p‚̃q ´eijkp‚qk
ANM Asymptotic Numerical Method
PAL Pseudo-arclength method

1 Introduction

Many studies have been performed for modeling the
rotating flexible beams. The earlier linear analytical
model to calculate the natural frequencies, based on
the Rayleigh energy theorem, is attributed to Southwell
and Gough [1] and has been extended by many stud-
ies based on different analytical methods, Putter and
Manor [2], Wright et al. [3]. Later, complex models were
developed to obtain accurate natural frequencies, in-
troducing effects, such as the cross-sectional variation,
Klein [4], and the pretwist Swaminathan and Rao [5].
Recently, other models have been developed for the vi-
bration analysis of Timoshenko beams, including effects

such as non-uniformity, pretwist and offset root [6,7,9].
In these models, the nonlinear terms are truncated and
thus are valid for only linear vibration.

A number of geometrically exact formulations for
the nonlinear dynamics of beams were developed, that
can be used for nonlinear vibrations of beams; Borri
and Mantegazza 1985 [10] Bauchau and Kang 1993 [11].
Gemetrically exact means that there is no approxima-
tion made to the geometrie of the large deformation
which concerne the deformed beam reference line and
the orientation of the cross-section frame. These the-
ories are displacement-based formulations; the govern-
ing equations must contain displacements and finite ro-
tations variables and the solution needs at the most
a finite-element method (FEM) formulation against a
large number of variables.

The present study is based on the intrinsic formu-
lation developed by Hodges [12, 13]. This formulation

covers a beam undergoing large deformation and small
strain. It takes advantage of the one dimensional char-
acteristic of a beam, does not require definitions for dis-
placement and rotation variables and it is less expen-
sive than using three dimensional (3D) finite-element
meth- od (FEM). A Galerkin approach is applied to
this model, where the weighting functions are chosen
to be the assumed modes themselves. This leads to an

energy balance and consequently, provides a better nu-

merical approximation of the solution of the nonlinear
beam equations [14–16]. Using this discretization and
the harmonic balance method, the set of initial differ-
ential equations are reduced to one algebraic equation,
where the beam is subjected to harmonic excitation at
the tip.

The Asymptotic Numerical Method (ANM) which
uses power series expansion of the unknowns associ-
ated with Padé approximants [17, 18], and the pseudo-
arclength method (PAL) [28] are used to provide dy-
namic response of the excited beam. The ANM has been
successfully applied to solve nonlinear problems, such
as nonlinear elasticity [17], nonlinear vibrations [19–21]
or in fluid mechanics [22], it is often introduced in the
elementary step of discretization using FEM [17–23].
In our study, these two continuation methods are intro-
duced after a discretization with a Galerkin approach
and harmonic balance methods leading to an algebraic
equation.

The aim of this paper is to explore the nonlinearities
of the isotropic prismatic beams excited harmonically,

associated with various conditions: initial pretwist, uni-
form angular speed and offset root. Furthermore, a com-
posite beam that presents a nonhomogenous material is
examined. The numerical examples presented deal with
cases already treated in the literature, in the manner of
a classical linear study. The stability of the solution is
studied by using the Floquet exponents.

2 Mathematical formulation

2.1 Nonlinear intrinsic equations

Based on a Timoshenko beammodel, the Euler-Lagrange
nonlinear equations of motion derived from Hamilton’s
principle are [12]:

F 1 ` p❦̃ ` κ̃qF ` f “ 9P ` Ω̃P (1)

M 1`pk̃ ` κ̃qM`pẽ1 ` γ̃qF ` m “ 9H ` Ω̃H ` Ṽ P (2)

where, as mentioned in the nomenclature, (́ ) denotes

the derivative with respect to the undeformed beam
reference line defined by the curvilinear coordinate x

as illustrated in Fig. 1, (9) denotes the absolute time
derivative and (ṽ) is the antisymmetric matrix associ-
ated with a vector v “ rv1 v2 v3sT . A local coordi-
nate system pbipxq, i “ 1, 2, 3q, is defined on each point
(i.e. cross-section), along the undeformed reference line,

which transforms into a deformed frame Bipxq. A global
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Fig. 1 Schematic of beam model, frames and
reference line

reference frame aipxq is also defined, used for the dis-
cription of displacement fields.

F is the internal force vector, composed of an axial
force and two shear forces; M is the internal moment,
composed of a twisting moment and two bending mo-
ments. They are related to generalized strains γ and
(κ “ K ´ ❦), with the assumption of small strain, by
the constitutive equation,

"

F

M

*

“

ˆ

❯ ❱

❱T ❲

˙ "

γ

κ

*

“ S

"

γ

κ

*

(3)

In Eqs. (1) and (2), P and H are the linear and
angular momentums vectors, related to V and Ω, the
linear and angular velocities vectors by the equation,

"

P

H

*

“

ˆ

µ∆ ´µ˜̄x
µ˜̄x ■

˙ "

V

Ω

*

“

ˆ

● ❑

❑T ■

˙ "

V

Ω

*

(4)

where µ is the mass per unit length, ˜̄x is the antisym-
metric matrix associated with x̄ “ r0 x̄2 x̄3sT , the off-
set from the reference line of the cross-sectional mass
center, and ■ is composed of cross-sectional mass mo-
ments and the product of inertia as,

■ “

»

–

✐2 ` ✐3 0 0

0 ✐2 ✐23

0 ✐23 ✐3

fi

fl (5)

where ❯, ❱ and ❲ are matrices (3 ˆ 3) and repre-
sent the components of the stiffness matrix Sp6 ˆ 6q,
γ and κ are the generalized strains (beam strains and

curvatures) and k is the initial curvature vector. For
prismatic isotropic beams, the stiffness matrix S is di-
agonal and can be calculated in closed form, in which
the reference line is chosen to be the one formed by the
locus of the cross-sectional centroids and the centroidal
axis are along x2 and x3. But, for complex cross section
and anisotropic beams, a 2-D FEM analysis is required
to determine the stiffness matrix S, as in [24], in which
the results are obtained by using VABS code based on
the variational asymptotic method (VAM) developed
by Berdichevsky (1976) [24,25]. Moreover, the stiffness
matrix for prismatic and isotropic beams with an initial
curvature is not diagonal i.e. the component ❱ is not
zero.
The nonlinear intrinsic equations of motion of a beam,
Eqs. (1) and (2), are solved along with two other non-
linear kinematical equations [13]:

V 1 ` p❦̃` κ̃qV ` pẽ1 ` γ̃qΩ “ 9γ (6)

Ω1 ` p❦̃` κ̃qΩ “ 9κ (7)

The partial differential equations (1), (2), (6) and (7)
with the algebraic equations (3) and (4) represent the
system of nonlinear intrinsic equations for the dynam-
ics of a general beam undergoing small local strains
and large deformations. The associated boundary con-
ditions for a given fixed-free beam with a length L are:

"

x “ 0, (fixed end) : V p0, tq “ V 0, Ωp0, tq “ Ω0

x “ L, (free end) : F pL, tq “ FL, MpL, tq “ ML (8)

To solve the above system in the frequency domain
with these boundary conditions, the Galerkin approx-
imation will be used to transform this system to one
differential equation, after which it will be converted to
one algebraic equation by using the harmonic balance
method.

2.2 Energy-consitent weighting

Consider the following weighting of all governing equa-
tions (1) , (2), (6) and (7) as well as the boundary

conditions (8) :
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ż L

0

!

V T
”

9P ` Ω̃P ´ F 1 ´ pk̃ ` κ̃qF ´ f
ı

`ΩT
”

9H`Ω̃H`Ṽ P ´M 1´pk̃`κ̃qM´pẽ1`γ̃qF ´m
ı

`FT
”

9γ ´ V 1 ´ pk̃ ` κ̃qV ´ pẽ1`γ̃qΩ
ı

`MT
”

9κ ´ Ω1 ´ pk̃ ` κ̃qΩ
ı )

dx

´FT p0, tq
”

V p0, tq ´ V 0

ı

´ MT p0, tq
”

Ωp0, tq ´ Ω0

ı

`V T pL, tq
”

F pL, tq´FL
ı

` ΩT pL, tq
”

MpL, tq´ML
ı

“ 0 (9)

After integrating by parts of terms V TF 1 andMTΩ1

and simplifying Eq.(9), we obtain:

ż L

0

”

V T 9P ` ΩT 9H
ı

dx `

ż L

0

”

FT
9ω ` MT

9κ
ı

dx

“

ż L

0

”

V T f ` ΩTm
ı

dx `
”

V T pL, tqFL ` ΩT pL, tqML

´FT p0, tqV 0 ´ MT p0, tqΩ0

ı

(10)

where the left terms of this equality are the rates of
change of kinetic energy and potential energy respec-
tively, and the right terms are the rates of works due to
the external forces in the interior of the beam and the
applied forces at the boundaries. This stipulates the en-

ergy conservation and motivates the use of Eq.(9) to de-
rive a Galerkin approach to solve the governing partial
differential equations, in which the weighting functions
were also used as the trial functions.

2.3 Galerkin approximation

Using the shifted Legendre polynomials as trial func-
tions, the primary variables V px, tq, Ωpx, tq, F px, tq and
Mpx, tq are approximated as follows:

V px, tq“
nf
ÿ

i“1

Φipxqviptq, Ωpx, tq“
nf
ÿ

i“1

Φipxqω̄iptq

F px, tq“
nf
ÿ

i“1

Φipxqfiptq, Mpx, tq“
nf
ÿ

i“1

Φipxqmiptq

(11)

where (nf ) is the number of trial functions used, viptq,
ω̄iptq, fiptq and miptq are three component vectors and,

Φipxq “

»

–

Pi´1pxq 0 0
0 Pi´1pxq 0
0 0 Pi´1pxq

fi

fl (12)

where Pipxq are the shifted Legendre functions [26] used
as trial functions. P px, tq,Hpx, tq, γpx, tq and κpx, tq are
the secondary variables, related to the primary variable
by the constitutive equations (3) and (4).

A new generalized vector (q) is defined:

q “ rq1 q2 ¨ ¨ ¨ qnf sT

with qi “ rviptq ω̄iptq fiptq miptqsT (13)

With the assumption of a constant cross-section, con-
stant curvature and constant distributed bending, Eq.(9)
is transformed into one differential equation in time
as [16]:

Aki 9q ` Bkiq ` Ckijq.q ` Dk ` fk ` mk “ 0 (14)

where the coefficient of the nonlinear term, matrix Ckij ,
is function only of stiffness and mass matrices of the
beam’s cross-section [15].

The natural frequencies are obtained from a lineariza-
tion of Eq.(14) around a steady state solution ( 9q “
0, q “ q0), with no distributed force and moment (fk “
0, mk “0), and inserting a solution q “ Xeωt [14].

Âki 9q ` B̂kiq “ 0 (15)

where X is the eigenvector, ω is the natural frequency
and

Âki “ Aki and B̂ki “ Bki ` pCkij ` Ckjiqq0 (16)

2.4 Harmonic balance method

In the following, a fixed-free beam harmonically excited

at the tip is considered. No distributed forces or mo-

ments are present. The excitation force FLptq is com-
puted in the vector Dk, thus Eq.(14) is reduced to:

Aki 9q ` Bkiq ` Ckijq.q ` Dk “ 0 (17)

The harmonic excitation is given by:

FLptq “ F0cosωt (18)

It is assumed that the response of the beam is harmonic
and can be given as follows:

qptq “
H´1
ÿ

j“0

pqcjcosjωt ` qsjsinjωtq (19)

4
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New vector (q̄) is introduced, containing all the har-
monics and defined by:

q̄ “ rqc
0

T
qc
1

T
qs
1

T ¨ ¨ ¨ qcj
T
qsj

T ¨ ¨ ¨ qcH´1

T
qsH´1

T sT (20)

By inserting series Eq.(19) and using the harmonic bal-
ance method, the governing equation (17) is rewritten
in the frequency domain as:

Fpq̄, ωq “ ωĀq̄ ` B̄q̄ ` C̄q̄.q̄ ` D̄ “ 0 (21)

where matrices Ā, B̄, C̄ and D̄ are derived from matrices
Aki, Bki, Ckij et Dk. For example, for three harmonics,

qptq “ qc
0

` qc
1
cosωt ` qs

1
sinωt `

qc
2
cos2ωt ` qs

2
sin2ωt (22)

In matrix format:

q̄ “ rqc
0

T
qc
1

T
qs
1

T
qc
2

T
qs
2

T sT (23)

The product Bkiq is rewritten as:

Bkiq ” B̄q̄ “

»

—

—

—

—

–

Bki 0 0 0 0
0 Bki 0 0 0

0 0 Bki 0 0
0 0 0 Bki 0
0 0 0 0 Bki

fi

ffi

ffi

ffi

ffi

fl

.

»

—

—

—

—

–

qc0
qc1
qs1
qc2
qs2

fi

ffi

ffi

ffi

ffi

fl

(24)

Ā is obtained after derivation of Eq.(22) with re-
spect to time, where the first term is constant and has
a null derivative, the product Aki 9q will have another
disposition that:

Ā “

»

—

—

—

—

–

0 0 0 0 0
0 0 Aki 0 0
0 ´Aki 0 0 0
0 0 0 0 2Aki

0 0 0 ´2Aki 0

fi

ffi

ffi

ffi

ffi

fl

(25)

Because Ckijq.q is quadratic, one has to determine
first the matrix representation of C̄q̄, that can be ob-
tained by a harmonic balance of the product of two

vectors with the same order of harmonics:

C̄q̄“

»

—

—

—

—

—

—

—

—

—

–

Ckijpqc
0

q Ckijp
qc

1

2
q Ckijp

qs

1

2
q Ckijp

qc

2

2
q Ckijp

qs

2

2
q

Ckijpqc
1

q Ckijpqc
0
`

qc

2

2
q Ckijp

qs

2

2
q Ckijp

qc

1

2
q Ckijp

qs

1

2
q

Ckijpqs
1

q Ckijp
qs

2

2
q Ckijpqc

0
´

qc

2

2
q Ckijp´

qs

1

2
q Ckijp

qc

1

2
q

Ckijpqc
2

q Ckijp
qc

1

2
q Ckijp´

qs

1

2
q Ckijpqc

0
q 0

Ckijpqs
2

q Ckijp
qs

1

2
q Ckijp

qc

1

2
q 0 Ckijpqc

0
q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(26)

The first component of vector D̄ concerns the con-
stant part of Dk given by the boundary conditions. The
second component deals with the amplitude F0 of the
harmonic excitation FLptq “ F0cosωt , and the rest
of the components are zeros. Our objective is to solve
equation (21), which is quadratic with respect to q̄ and
has a parameter ω, with a continuation method. In this
paper, we use both the asymptotic numerical method
and pseudo-arclength method.

2.5 Asymptotic numerical method

In this section, an algorithm based on the asymptotic
numerical method (ANM) is developed to solve the
forced vibration problem Eq.(21) and obtain the re-
sponse curves. The ANM has been successfully used
to study many nonlinear problems [17,19–21].
The unknowns in Eq.(21) are the vector q̄ and the fre-
quency ω that can be developed in a power series with
respect to path parameter ‘a’ in the vicinity of a regu-
lar solution (q̄0, ω0), which is known except for the first
step of the computation:

$

’

’

’

’

&

’

’

’

’

%

q̄paq “ q̄0 `
n

ÿ

j“1

aj q̄j

ωpaq “ ω0 `
n

ÿ

j“1

ajωj

(27)

in which q̄j and ωj are the new unknowns which have

to be computed. The path parameter ‘a’ can be defined
as the projection of the increments of q̄ and ω on the
tangent vector (q̄1, ω1):

a “ pq̄ ´ q̄0qT q̄1 ` pω ´ ω0qω1 (28)

Introducing the polynomial developements Eqs.(27)
into Eqs.(21) and (28) and equating like powers of ‘a’,

one obtains the following set of linear systems except
the zeroth order is nonlinear:

Order 0

Fpq̄0, ω0q “ ωĀq̄0 ` B̄q̄0 ` C̄q̄0.q̄0 ` D̄ “ 0 (29)

The zeroth order is related to the first point of the
branch. Generally ω0 is taken zero, thus q̄0 corresponds
to the steady state solution and can be obtained by a
Newton-Raphson method. This is only carried out for

5
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the initial step of the continuation method

Order 1
"

Fq̄ q̄1 “ ´ω1Āq̄0
q̄T
1
.q̄1 ` ω2

1
“ 1

(30)

Order p
"

Fq̄ q̄p “ Dp

q̄T
1
.q̄p ` ω1ωp “ 0

(31)

with Dp “ ´ωpĀq̄0 ´
p´i
ÿ

i“1

ωp´1Āq̄i ` C̄q̄i.q̄p´i

where the Jacobian, considered regular at q̄0 , is defined
by:

Fq̄ “ ω0Ā ` B̄ ` 2C̄q̄0 (32)

The polynomial solutions Eq.(27) agree well in the
zone of validity r0 amss and diverge out of this zone.
The limit ams can be computed automatically using a
simple criterion proposed in [18]:

ams “

˜

ηs
}q̄1}

}q̄n}

¸1{pn´1q

(33)

where ηs is a small given parameter.

This algorithm can be improved by replacing the
polynomial representation Eq.(27) by rational fractions
named Padé approximants [17]:

$

’

’

’

’

&

’

’

’

’

%

q̄npaq “ q̄0 `
n´1
ÿ

j“1

fjpaqaj q̄j

ωnpaq “ ω0 `
n´1
ÿ

j“1

fjpaqajωj

(34)

in which fjpaq are rational fractions with the same de-
nominator. The zone of validity of this rational repre-
sentation r0 amps is defined by the maximal value of
‘a’ that can verify the condition [17]:

}q̄npampq ´ q̄n´1pampq}

}q̄npampq ´ q̄0}
ď ηs (35)

i.e., the relative difference between the displacements
at two consecutive orders must be smaller than a given
number ηp .at the end of the step

Iteratively reapplying this algorithm by taking a
new starting point in the zone of validity of the bre-
vious step makes it possible to determine the entire of
the response curve.

2.6 Pseudo arc-length method

Another algorithm based on the pseudo-arclength me-
thod (PAL) [28] is presented in order to validate the
obtained results. This method is a predictor-corrector’s
scheme and is based on two steps:

Step 1: Prediction

The differentiation of Eq.(21) with respect to the path
parameter at (q̄0, ω0) yields:

Fq̄ q̄
1
0

` Fωω0
1 “ 0 (36)

where Fq̄ is defined in Eq.(29) and

Fω “
BF

Bω
“ Āq̄ (37)

For a normalized tangent vector pq̄1
0

T
.q̄1

0
` ω1

0

2
“ 1q

yields:

ω1
0

“ ˘p1 ` zT .zq´1{2 (38)

where from Eq.(36),

q̄1
0

“ ω1
0
z , with z “ ´F

´1

q̄ Fω (39)

The sign in Eq.(36) determines the direction of con-
tinuation. Thus, the predicted point is defined by:

"

q̄1 “ q̄0 ` q̄1
0
∆s

ω1 “ ω0 ` ω0
1∆s

(40)

Step 2: Correction

This point is corrected along the normal of the tangent
vector pq̄1

0

T
, ω1

0
qT . One gets another equation:

Gpq̄, ωq “ pq̄ ´ q̄0qT q̄1
0

` pω ´ ω0qω1
0

´ ∆s “ 0 (41)

Eqs.(21) and (41) define the nonlinear system to be
solved by the Newton method. The unknowns at the
iteration (k ` 1) are defined by:

"

q̄k`1 “ q̄k ` ∆q̄

ωk`1 “ ωk ` ∆ω
(42)

By introducing these two increments into the non-
linear Eqs. (21) and (41) and by neglecting second order
terms in ∆q̄ and ∆ω, one obtains the following linear

system to be solved at each Newton iteration:

$

&

%

Fq̄∆q̄ ` Fω∆ω “ ´Fpq̄, ωq

q̄1T∆q̄ ` ω1∆ω “ ´Gpq̄, ωq

(43)

6
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2.7 Stability of the solutions

The study of the local stability is crucial to state within
the obtained solution, if it is physically feasible or not.
This stability is studied by adding a small disturbance
to a considered solution q0 at ω0:

qptq “ q0ptq ` Qptq (44)

The stability of q0 is related to the behavior of the dis-

turbance Q. If this disturbance disappears with time,
then q0 is stable, if it increases then q0 is unstable.
This disturbance is first studied in the time domain and
then by applying the HBM, we return to the frequency
domain, which will be suitable for both continuation
methods ANM and pseudo-arclength. Substituting Eq.
(44) into Eq. (17), expanding the result in a Taylor se-
ries in the vicinity of q0 and keeping only the linear
terms in the disturbance, one obtains:

Aki
9Q ` BkiQ ` 2Ckijq0.Q “ 0 (45)

Using the Floquet form, the disturbance can be ex-
pressed as a product of periodic and exponent com-
ponents

Qptq “ eµt
H̄´1
ÿ

j“0

pQc
jcosjωt ` Qs

jsinjωtq (46)

where µ are the Floquet exponents to be determined.
Inserting Eq. (46) into Eq. (45) and using the HBM,
the following eigenvalue problem is obtained

!

p´M̄K̄q ´ µI
)

Q̄ “ 0 (47)

where, Q̄ “ rQc
0

T Qc
1

T Qs
1

T ... Qc
H̄

T

´1
Qs

H̄

T

´1
sT , I is the

identity matrix, H̄ is the number of harmonics used
in the study of stability. As stated in [35], it can be
different from the number of harmonics H used in the
continuation step,

K̄ “ ω0Ā ` B̄ ` 2C̄q̄0 (48)

and for H̄ = 3,

M̄ “

»

—

—

—

—

–

Aki 0 0 0 0
0 Aki 0 0 0
0 0 Aki 0 0
0 0 0 Aki 0
0 0 0 0 Aki

fi

ffi

ffi

ffi

ffi

fl

. (49)

The number of Floquet exponents necessary to deter-
mine the stability of the solution is (12 nf ) and will
be selected among all the eigenvalues of the system Eq.
(47). We adopt the method of selection used in [36],

based on the comparison of median eigenvectors.

By definition, if xj is the jth component of a vector
x, the median is

ř

j j|xj |{
ř

j |xj |.

The eigenvalues selected correspond to the eigenvectors
having medians closest to the value r12 nf p2H̄ ´ 1qs{2.
These Floquet exponents µi, i “ 1, ...12 nf are used to
states on the stability of the solution.

If Rpµiq ă 0 for all i, the solution is asymptotically
stable. If Rpµiq ą 0 for any i “ 1, ...12 nf , the solution
is unstable.

2.8 Dimensionless parameters

To be able to compare with results in the literature,
several dimensionless parameters are introduced [6, 7]:

Ω˚ “ Ω3T, ω˚ “ ωT, T “

d

µL4

EI2

δh “
r

L
, δI “

I2

I3
, β “

d

AL2

I2

(50)

where, r is the rayon of the hub, µ is the mass per
unit length, I2 and I3 are the second area moments of
inertia of the cross-section about the x2 and x3 axes
respectively. The variables Ω˚ , ω˚, δh, δI and β rep-
resent the angular speed ratio, the frequency ratio, the
hub radius ratio, the second area moments of inertia
ratio and the slenderness ratio, respectively.

3 Numerical results

In this part, numerical simulations for forced vibrations
of fixed-free uniform isotropic and anisotropic beams
were performed. Various conditions which concern the
angular speed of the fixed end, the hub radius are taken
in the analysis. The codes used for the calculus of the
natural frequencies and branches of continuations are
implemented using the Matlab environment, whereas

the cross-sectional properties of the particular beams
studied herein are obtained from the literature [6, 15,
16,24,31]. Based on previous studies, the number of as-

sumed modes in Galerkin approximation is taken nf “
10, shown optimal and used for all cases presented in
[14]. The number of harmonics H “ 3 is adopted for an
optimal computational time [21, 23] and H̄ “ 6 for the
stability study [35]. The adopted parameters for ANM

7
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are: the truncation order n “ 15 [22], the accuracy pa-
rameter is taken ηs “ 10´4 for series-continuation and
ηp “ 10´4 for Padé-continuation [20, 21], against ac-
curacy parameters ǫ “ 10´7 for the Newton-Raphson
method. For the PAL continuation method the step is
taken ∆s “ 1.5 in order to obtain a smooth curve.

3.1 Isotropic beam

At first, it is important to validate this approach for
classical beams before dealing with composite beams.
Homogenous, isotropic and prismatic beams are exam-
ined in free and forced vibration. Table 1 shows the vari-
ation of the first and second chordwise bending natural
frequencies of uniform beam with respect to the slender-
ness ratio β and the dimensionless angular speed Ω˚.
The natural frequencies are obtained from Eq.(15), us-
ing the Matlab function (eig) applied to matrices of

size (120 x 120). The results obtained from the present
approach show a perfect coherence with the references
[6,7], in both cases of Euler-Bernoulli beam (EB), corre-
sponding to pβ ě 1000q and Timoshenko beam without
angular speed. For a Timoshenko beam pβ “ 50 ˜ 10q
with a non-zero angular speed, frequencies obtained are
smaller than those of [6, 7] with significant differences.
The reason is that the energy expressions used in these
works are approximated while the one used in this ap-
proach is without approximation since the equations of
motion and the kinematical equations are exact. Similar
results were obtained in [8], where the shear and rotary
inertia effects are neglected. In this work, it is concluded
that the gyroscopic coupling between the stretching and
bending motions significantly decreases the natural fre-
quencies and that this coupling effect becomes negligi-
ble as the slenderness ratio of the beam increases.

Indeed, in [7], the governing equations of motion are
derived using Lagrange’s equations from the kinetic and
potential energy expressions which are obtained from a
set of hybrid deformation variables. These equations
are simplified by neglecting the gyroscopic coupling be-
tween stretching and bending. A similar simplification
is explained in [30]. These coupling terms do not ap-
pear in the equations of motion derived in [6], using the
Hamilton’s principle, where the kinetic and potential

energies are based on a truncation scheme. The latter
kind of theory is addressed in [25], Chapter 1. Hence,
the natural frequencies obtained in [6] and [7] are rela-
tively close.

Table 2 shows the four lowest non-dimensional natural
frequencies of a pretwisted non-rotating Euler-Bernoulli

beam for different values of the total angle of pre-twist

Table 2

Comparison of the four lowest natural frequencies for a

non-rotating beam according to the angle of pre-twist
α, (β “ 1000, γ “ 0, δh “ 0, δI “ 0.25, ksG{E “ 0.25)

αo Present [30] [9]

1rst

30 1.7623 1.7622 1.7623
60 1.7748 1.7748 1.7748
90 1.7950 1.7950 1.7950

2nd

30 3.4793 3.4793 3.4793
60 3.3798 3.3798 3.3799
90 3.2425 3.2426 3.2425

3rd

30 11.1691 11.1691 11.1693
60 11.6044 11.6040 11.6046
90 12.2646 12.2644 12.2649

4th

30 21.4475 21.4470 21.4489
60 20.1533 20.1531 20.1545
90 18.7295 18.7301 18.7307

pαq. It can be observed that there is a perfect accor-
dance between the present results and those given in
[9, 30]. In order to compare results with the literature,
these non-dimensional frequencies are calculated using
I3 instead of I2 in Eq.(50). The values corresponding to
the second and the fourth modes are close to those in
Table 1. In both studies [9,30], the potential energy ex-

pressions are derived from a set of hybrid deformation
variables and the coupling effect between the stretching
and the bending motions is ignored. It is also observed
that the non-zero terms submerged in ❱, component of
the stiffness matrix S, have less influence on the natu-
ral frequencies.

These four lowest non-dimensional frequencies cor-
respond to bending modes as: ω1z, ω1y, ω2z and ω2y,
respectively. Due to the pretwist, exciting the beam
with either of these modes called driven mode will in-
duce a compagnon mode in the transverse direction.
In Fig. 5, the mode shapes of these frequencies with
their compagnion modes corresponding to α “ 30o are
shown. It can be seen that the compagnion modes are of
the same order of the excited ones. Furthermore, these
modes are not coupled with the stretching and torsion
modes, which explain the accordance between results
given in Table 2.

Fig. 2 shows the response curve of a fixed-free isotro-
pic beam under a concentrated harmonic excitation at
the tip, with dimensionless frequencies on the horizon-
tal axis. The beam used here is the one treated in [31]
for the modeling of an articulated rotor blades. The

8
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Table 1

Comparison of the first two non-dimensional natural frequencies of rotating beam . Case of Timoshenko beam,
except for the first line where EB stands for an Euler beam (δh “ 0, ksG{E “ 0.25)

β
Ω˚ “ 0 Ω˚ “ 4 Ω˚ “ 8

Present [6] [7] Present [6] [7] Present [6] [7]

EB 3.5160 3.5160 3.5059 5.5850 5.5850 5.5850 9.2568 9.2568 9.2568
22.0345 22.0345 22.0296 24.2733 24.2733 24.2726 29.9954 29.9954 29.9950

50 3.4998 3.4998 3.5000 5.5564 5.5616 5.5623 9.1947 9.2096 9.2132
21.3547 21.3547 21.3692 23.5630 23.6061 23.6240 29.1908 29.3215 29.3501

25 3.4527 3.4527 3.4534 5.4730 5.4951 5.4980 9.0113 9.0854 9.0975
19.6497 19.6497 19.6965 21.5680 21.9557 22.0126 27.3632 27.7082 27.7933

16.67 3.3787 3.3787 3.3803 5.3408 5.3954 5.4013 8.7107 8.9209 8.9423
17.547 17.547 17.6251 19.6555 19.9662 20.0593 24.8949 25.8362 25.9651

12.5 3.2837 3.2837 3.2863 5.1680 5.2749 5.2840 8.2793 8.7456 8.7746
15.4883 15.4883 15.5873 17.5032 18.0628 18.1781 22.4037 24.0479 24.1961

10 3.1738 3.1738 3.1774 4.9635 5.1448 5.1570 7.8468 8.5735 8.6077
13.6607 13.6607 13.7694 15.6020 16.3946 16.5184 20.8700 22.3506 22.4979

0 10 20 30 40 50 60 70

0

1

2

3

4

point

Z t
ip
/h

 

2nd

3rd 4th

1st
initial

x10-2

Fig. 2 Response curve of fixed-free isotropic and

prismatic beam excited harmonically at the tip.
(F0 “ 10´3N, L “ 10 m) – This curve is obtained by
three steps using a Padé continuation version of ANM.
( ‚ series, and ‚ Padé)

numerical values are: A “ 0.2 ˆ 0.1 “ 0.02 m2, E “
1.792 1013N{m2, ν “ 0.3, ρ “ 1770 kg{m3, L “ 1 m.
Three modes are obtained by four initial points; i.e.
three steps, using a Padé continuation version of ANM.
The same result is obtained by series version of ANM
and the PAL method but with four discontinuous seg-
ments. Those frequency values correspond to Euler-
Bernoulli beam with zero angular speed presented in
Table 1.

Fig. 3 shows the angular speed effect on the response
curves of a beam harmonically excited at the tip. It
can be observed that the natural frequency, which rep-
resents the first flap bending mode, increases with the

101 102 103 104 105 106 107 108 109

0,0

0,5

1,0

1,5

2,0

2,5

3
= 0 rad/s

3
= 

30
 ra

d/
s

Z tip
/c

ho
rd

 (rad/s)

x 10

3
= 

20
 ra

d/
s

Fig. 3 Response curve of fixed-free isotropic and
prismatic beam excited harmonically at the tip.
(F0 “ 102N, L “ 10m) – angular speed effect

increase of the angular speed and the response curve
becomes nonlinear. Fig. 4 shows that this nonlinearity

depends on the angular speed’s value, and the beam ex-
hibits hardening behavior. It is mentioned in [37] that a
rotating beam may exhibit hardening or softening be-
havior depending on the geometrical and kinematical
conditions.

We focus now on the effects of the parameters: the
hub radius and the pretwist on the linear frequencies.
Even for these parameters changed, the nonlinearity is
still low and has not been influenced. Fig. 6 illustrates
the influence of the hub radius and the pre-twist applied
on the dynamic characteristics of the same beam with
angular speed. It can be observed, that the response

9
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Fig. 5 First four mode shapes with their compagnon modes, α “ 300 and L “ 10 m, continued line (—): driven
mode, dashed line (---): compagnon mode on the tranversal direction

curve moves to the right and the natural frequency in-
creases with these parameters.

Thus, for isotropic prismatic beams having a diag-
onal stiffness and mass matrices, the principal cause of
nonlinearity is the angular speed. The nonlinear term in
Eq. (21) i.e. C̄ matrix desappears in zero angular speed
case.

3.2 Composite beam

The model of composite beam used in this study is the
Active Twist Rotor (ATR) blade presented in [15, 27,
32]. This blade was developed for an articulated ro-
tor, it is made from E-glass, S-glass and Active Fiber
Composite (AFC) with an airfoil section NACA 0012
as illustrated in Fig. 7, and a span L “ 1.397m. De-
tails of the ATR blade can be found in [27,32] and the
structure parameters are given in Table 4. These pa-
rameters are determined using the area centroid of the
cross-section as the reference line, the axis x2 and x3

are principal, i.e. ✐23 “ 0 and the mass centroid is lo-
calized at px̄2 “ ´6.9240ˆ 10´4 m, x̄3 “ 0 mq. In these
previous papers [15, 27, 32], only the angular speed ef-
fect on the linear frequencies is reached. Here we study
the nonlinearity of the response curve for this hinge-

0,98 0,99 1,00 1,01 1,02 1,03

0

1

2

3

4

5
 =  0 rad/s
 =10 rad/s
 =20 rad/s
 =30 rad/s

Z t
ip
/h

/
L

x10

Fig. 4 Response curve of fixed-free rotating isotropic
and prismatic beam excited harmonically at the tip

(F0 “ 5 ¨ 102 N, Ω3 “ 0 ˜ 30 rad{s, --- unstable
solution)

less blade. For generality and simplicity, the actuation
forces characterized with their coupling forces-moments
are not considered.

Table 3 presents the first four natural frequencies
(bending modes) with and without the angular speed.

10
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Fig. 7 Profile of the ATR blade and Ply-up [27]
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ip
/h

 (rad/s)

Fig. 6 Response curve of fixed-free isotropic and
prismatic beam excited harmonically at the tip.
(F0 “ 102N, L “ 10m) – hub radius and pretwist
angle effects

It can be observed that all modes increase with increas-
ing angular speed and for these cases ω2{z « ω1{z`ω1{y,
which is defined as an internal resonance which in-
volves more than two frequencies of flexural-flexural
type [28, 38, 39, 41]. This phenomenon desappears for
angular speed Ω3 ą 20 rad{s. In [38],the interaction be-
tween these modes and the exchange of energy are dis-
cussed in both cases, with and without angular speed.

Fig. 8 shows the response curve, obtained with two
methods of continuation; the ANM and the PAL contin-
uation methods. It represents the first flapwise bending
mode, where the magnitude of concentrated harmonic
excitation applied at the tip is F0 “ 20N with zero
angular speed Ω3 “ 0 rad{s. It can be observed that
the nonlinearity is more noticeable for this anisotropic

Table 3

The lowest four natural frequencies of the ATR, for a
static and rotating cases

Mode
Ω3 “0rad{s Ω3 “10rad{s Ω3 “20rad{s

[15] Present Present Present

1st{z 13.68 13.64 17.44 25.53
1st{y 70.76 70.60 70.73 71.10
2nd{z 86.71 84.40 88.13 98.47
3rd{z 248.8 232.0 235.5 246.5

beam and the perfect coherence between both meth-
ods of continuation. The stability is studied by using
the method presented in section 2.7, the unstable solu-
tions are presented by the dashed lines. Although there
is no damping introduced in either the mathematical
model nor in the numerical procedures, the curve has
a damping behavior, this is due to internal resonance
between the in-plane and out-of-plane displacements,
which makes apparent the gyroscopic effect, and thus
the pseudo-damping phenomenon [40]. This explains,
the natural frequency shift in downward when the force
amplitude is increased, as it is shown in Fig. 11

Fig. 9(a, b), show the accuracy evaluation of these
two methods of continuation around the first mode p0 ď
ω ď 25 rad{sq, the residual is obtained from the norm
of the vector Fpq̄, ωq Eq. (21) and based on the param-
eters of convergence fixed above. The truncation order
is taken n “ 15 in Fig. 9a, and n “ 20 in Fig. 9b. It
can be observed that the PAL is more accurate than
the ANM in spite of increasing the order of truncation,
but as it is depicted in Table 4, the ANM is generally
less expensive in CPU time than PAL for the lower val-
ues of tolerance pηs “ 10´7q. ). This is mainly due to
the number of the Jacobian matrix inversion, which is

11
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Table 4

Structure parameters of the ATR blade [15,22]

L “ 1.3970 m µ “ 6.9310 ˆ 10´1 kgm´1

x̄2 “ ´6.9240 ˆ 10´4 m x̄3 “ 0. m

✐2 “ 6.4630 ˆ 10´6 kgm ✐3 “ 3.7018 ˆ 10´4 kgm ✐23 “ 0. kgm

❯ “

»

–

❯11 0 0
0 ❯22 0
0 0 ❯33

fi

fl ❱ “

»

–

0 0 ❱13

0 0 0
❱31 0 0

fi

fl ❲ “

»

–

❲11 0 0
0 ❲22 0
0 0 ❲33

fi

fl

❯11 “ 1.6377 ˆ 106 N ❯22 “ 2.0300 ˆ 105 N ❯33 “ 2.3150 ˆ 104 N

❱13 “ ´9.7975 ˆ 103 Nm ❱31 “ ´1.4820 ˆ 102 Nm

❲11 “ 3.5330 ˆ 101 Nm2
❲22 “ 3.9868 ˆ 101 Nm2

❲33 “ 1.1381 ˆ 103 Nm2
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Fig. 9 Accuracy of ANM series-continuation VS. PAL (Case of ATR blade excited harmonically at the tip,
F0 “ 20N and Ω3 “ 0 rad{s )

lower with ANM than with PAL. Another advantage
of using ANM lies in the analytic form of the solutions
due to the polynomial approximations or Padé approx-
imants, and the step which is automatically adjusted
and adapted to the difficulty of the branch, instead of
the point by point solution obtained with the iterative
method PAL, with a step (∆s) Eq.(40).

Furthermore, Table 5 shows that the computational
time increases with the order of truncation, whereas
the number of steps (i.e. the number of matrix inver-
sions) decreases. This is due to the time to build the
right-hand-side Dp Eq. (31) which is greater, for the

considered number of unknowns q̄i, than the time to
inverse the Jacobian matrix. In classical ANM applica-
tions, where the spatial discretization is realized with
the finite element method, the longest amount of CPU
time is spent in the triangulation of the Jacobian ma-
trix when the number of unknowns is significant.

Fig. 11 shows the excitation magnitude effect for
non-rotating blade. For this case, the response curve of
the free vibration bifurcates from the point (q̄ “ 0, ω1 “
13.64 rad{s). If an angular speed is applied, another
point of bifurcation can be defined by pω ą ω1, q̄ ‰ 0q,
corresponding to steady state equilibrium. It can be ob-
served that the maximum amplitude of these response
curves is insensitive to the excitation strength, which
is directly related to the existence of the internal res-
onance [39], defined as saturation phenomenon which
occurs in the forced response of a dynamical system
with quadratic nonlinearities in presence of internal res-
onance [29]. Fig.10 shows these two transverse displace-
ments, the driven mode is along z and the compagnion
mode is along y. It can be seen that there no tongue
or secondary branches and thus the compagnion mode
curve is due to both coupling and internal resonnance.

Fig. 12 illustrates the new shape of the response curve
caused by a non-zero angular speed Ω3 “ 20 rad{s, ob-
tained by the two versions of ANM series/Padé and by

12
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Table 5

Step number, CPU times and residual for ω “ r0, 25s rad{s. Case of ATR blade excited harmonically at the tip,
(F0 “ 20N and Ω3 “ 0 rad{s )

Asyptotic Numerical Method (ANM - series) Pseudo-arclength

Truncation order n=15 Truncation order n=20 PAL

Tolerance ηs “10´4 ηs “10´7 ηs “10´9 ηs “10´4 ηs “10´7 ηs “10´9 ǫ“10´7

Step number 14 24 34 13 19 24 284
CPU time (s) 117 198 288 185 271 340 224
|Log10(Residual)|
at ω “ 25rad{s

0.815 3.92 5.17 0.89 4.18 5.72 13.22

Table 6

Step number, CPU times and residual for ω “ r0, 30s rad{s. Case of ATR blade excited harmonically at the tip,
(F0 “ 20N and Ω3 “ 20 rad{s )

Asyptotic Numerical Method (ANM - series) Pseudo-arclength

Truncation order n=15 Truncation order n=20 PAL

Tolerance ηs “10´4 ηs “10´7 ηs “10´9 ηs “10´4 ηs “10´7 ηs “10´9 ǫ“10´7

Step number 25 45 63 20 34 45 837
CPU time (s) 217 387 540 310 473 624 671
|Log10(Residual)|
at ω “ 30 rad{s

3.25 0.46 0.57 3.90 0.76 0.88 9.22
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Fig. 8 Response curve of ATR blade excited
harmonically at the tip. (F0 “ 20N, Ω3 “ 0 rad{s)
Point symbols indicate the initial points of ANMs; △

series, and ˝ Padé. Dashed zone: unstable sloution

PAL. The frequency of the first mode increases from
13.64 to 25.53 rad{s as it is presented in Table 3. The
jump at (ω « 19 rad{s) is due to an intermittent ex-
change of energy; As it is explained in [38, 39], when
the beam is excited at the vicinity of the out-of-plane
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Fig. 10 In-plane and out-off-plane response curves of

ATR blade excited harmonically at the tip.
(F0 “ 20N, Ω3 “ 0 rad{s). Dashed zone: unstable
sloution

mode ω1{z in the presence of such internal resonance,
there will be an interaction and an exchange of energy
with the in-plane mode ω1{y.
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Fig. 11 Response curves of ATR blade excited
harmonically at the tip– Force amplitude effect
(F0 “ 10N, 20N , 30N with Ω3 “ 0 rad{s)
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Fig. 12 Response curve of ATR blade excited
harmonically at the tip– Angular speed effect
(F0 “ 20N , and Ω3 “ 20 rad{s), △ and ‚ are the
initial point of ANM(series)

The new response curve has an unstable zone that
begins from the first turning point, from when a jump
can happen and the amplitude of resonance is less than
in the dotted response curve, with zero angular speed,
which provides some kind of dumping to the blade. One
can also observe the decrease in the response of the
static state i.e. the initial point of the curve. A singular
point is also observed at ω “ 18.986 rad{s, which can-
not be reached because of jumps at turning points.

In terms of convergence, as is shown in Table 6, the
best final residual for the ANM (series) is obtained with
tolerance ηs “ 10´4. The PAL method of continuation
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Fig. 13 Response curve of ATR blade excited
harmonically at the tip.(F0 “ 20N ) – Different values
of the angular speed

is more accurate, with maximum of 3 to 4 iterations in
the correction part of calculus.

The loss of ANM’s accuracy, detected even for higher
order of truncation, has also been observed in the frame-

work of vibrations of plates [33]. It can be improved by
introducing a correction in the ANM calculations, such
methods proposed in [34] which have the advantage of
improving the quality of the ANM solution, without in-
creasing the CPU times.

Fig. 13 illustrates the response curves of this blade

for two values of angular speed; 10 and 20 rad{s. The
natural frequency changes but the general behavior of
the curves is the same. This behavior, which has even
been observed even for other angular speed values, leads
us to conclude that angular speed transform the system
from hard to soft.

4 Conclusion

In this paper, dynamic nonlinearities of a composite
beam subjected to harmonic excitations are treated.
The mathematical model is based on the intrinsic equa-
tions for the dynamic of beams undergoing small strains
and large global deformations. The asymptotic numer-
ical methods with series-continuation, Padé continua-
tion and the pseudo-arclength continuation method are
elaborated for numerical solutions. Hence, algorithms
for those two continuation methods have been devel-
oped. For both ANM techniques, the final nonlinear
solution is obtained by solving a sequence of linear sys-
tems having the same matrix to be inverted. A compar-
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ative study dealing with composite blade shows that,
as far as the optimal computational parameters is con-
cerned, the pseudo-arclength continuation method is
expensive, but more accurate. Firstly, numerical exper-
iments are conducted on homogenous isotropic beams.
Natural frequencies for various values of angular speed,
hub radius and pretwist angles are obtained. Compared

with those of the literature, the obtained results are in
good agreement for Euler-Bernoulli beam and Timo-
shenko beam with zero angular speed. They deviate
considerably for the case of Timoshenko beam with
nonzero angular speed. This is explained by the fact
that the gyroscopic coupling terms are not neglected in
this approach. Continuation methods are tested for re-
sponse curves of isotropic prismatic beams revealing a
weak nonlinearity resulting from the presence of the an-
gular speed. Secondly, composite beams are analyzed.
Both continuation methods show the presence of non-
linearities. The results show that the response curves
become distorted and complexe by increasing the an-
gular speed, especially with the presence of an internal
resonance

The present study only deals with the fixed-free

beams with moderate angular speeds. The obtained
results are not relative to the evaluation of the fre-
quencies (i.e., eigenvalues), but also analyzed nonlin-
earities through response curves, which is a crucial sub-
ject. Present approach can be extended for other types
of structures with different geometrical and dynamical
conditions.

Acknowledgment

The authors are grateful for the encouragement and
useful comments of two anonymous reviewers.

References

1. Southwell, R., Gough, F.: The transverse vibration of
airscrew blades. British A. R. C. Reports and Memo-
randa 766 (1921)

2. Putter, S., Manor, H.: Natural frequencies of radial ro-
tating beams. J. Sound Vib. 56, 175–85 (1978)

3. Wright, A., Smith, C., Thresher, R., Wang, J.: Vibration
modes of centrifugally stiffened beams. J. App. Mech.
49, 197–202 (1982)

4. Klein, L.: Transverse vibrations of non-uniform beam. J.
Sound Vib. 37, 491–505 (1974)

5. Swaminathan, M., Rao, J.: Vibrations of rotating
pretwisted and tapered blades. Mech. Mach. Theory 12,
331–337 (1977)

6. Ozdemir, O.O., Kaya, M.O.: Flapwise bending vibration
analysis of rotating double-tapered timoshenko beam.
Arch. Appl. Mech. 78, 379–392 (2008)

7. Zhu, T.L.: Free flapwise vibration analysis of rotating
double-tapered timoshenko beams. Arch. Appl. Mech.
82, 479–249 (2012)

8. Yoo, H.H., Shin, S.H.: Vibration analysis of rotating can-
tilever beams. J. Sound Vib. 212, 807–828 (1998)

9. Yoo, H.H., Park, J.H., Park, J.: Vibration analysis of ro-
tating pre-twisted blades. Comput. Struct. 79, 1811–1819
(2001)

10. Borri, M., Mantegazza, P.: Some contributions on struc-
tural and dynamic modeling of helicopter rotor blades.
l’aerotecnica Missili e Spazio 64, 143–154 (1985)

11. Bauchau, O.A., Kang, N.K.: A multibody formulation for
helicopter structural dynamic analysis. J. Am. Helicopter
Soc. 38, 3–14 (1993)

12. Hodges, D.H.: A mixed variational formulation based on
exact intrinsic equations for dynamics of moving beams.
Int. J. Solids Struct. 26, 1253–1273 (1990)

13. Hodges, D.H.: Geometrically exact, intrinsic theory for
dynamics of curved and twisted anisotropic beams. AIAA
41, 1131–1137 (2003)

14. Patil, M.J., Althoff, M.: Energy-consistent, galerkin ap-
proach for the nonlinear dynamics of beams using intrin-
sic equations. J. Vib. and Control 17, 1748–1758 (2010)

15. Althoff, M., Patil, M.J., Traugott, J.P.: Nonlinear mod-
eling and control design of active helicopter blades. In
proceeding of the 14th adaptive structures conference.
Newport, Rhode Island, AIAA-2006-2040 (2006)

16. Althoff, M., Patil, M.J., Traugott, J.P.: Nonlinear mod-
eling and control design of active helicopter blades. J.
Am. Helicopter Soc. 57, 1–11 (2012)

17. Elhage-Hussein, A., Potier-Ferry, M., Damil, N.: A nu-
merical continuation method based on padé approxi-
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non-linéaire. Ph.D. thesis, Université Aix-Marseille II
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