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Abstract

We present a novel framework for topological shape optimization of curved thick-shells
subjected to external loads. Our method integrates the level set method (LSM) with
a diffuse interface, a Hadamard shape derivative, and multi-patch isogeometric analysis
(IGA) into a gradient descent algorithm to systematically capture the evolution of the
shape. This integration enables us to directly manipulate CAD-compatible geometries
and analysis techniques and to obtain the results as a CAD surface. The novelty lies in
the utilization of multi-patch IGA models based on NURBS functions, which allows us to
simultaneously maximize the stiffness and minimize the volume of the shell by searching
for an optimal material distribution within its middle surface. The material is modeled
under a small strain assumption in linear elasticity using a Reissner-Mindlin kinematic
shell model in plane stress. The effectiveness of our approach is demonstrated on several
curved conforming and non-conforming multi-patch geometries in 3D.

Keywords: Topology optimization, Isogeometric analysis, Level set method,
Reissner-Mindlin shells, multi-patch

1. Introduction

The recent convergence of advanced shape optimization methods with innovative
manufacturing technologies has opened up a new era for designing complex shapes that
can simultaneously meet diverse mechanical constraints. However, despite this remark-
able progress, there remain significant hurdles to the widespread adoption of these meth-
ods, namely, excessive computational time and incompatibilities between geometrical,
computational, and design models.

Isogeometric analysis (IGA) is commonly used for defining a physical domain by
means of parameterized curves called NURBS [1]. In optimization, however, it is un-
known how the domain will evolve during the course of the iterations, which means that
this explicit description of the physical domain will change as well. This could lead to
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poor representation of the geometry, compromising the quality of the solution. To over-
come this problem, this paper proposes to use the level set method (LSM) while still
being able to benefit from key properties of IGA: parametric description of geometries
and CAD compatibility. We will consider a fixed optimization domain, defined by the
mid-surface (a NURBS surface) of a shell, and optimize the material distribution, which
is defined implicitly by a level set function (LSF). The latter will also be numerically
modeled as a NURBS, ensuring that the output of the method is a CAD model and that
the boundaries of the domain are precisely defined. LSM has been vastly used for topol-
ogy optimization, as known from some classic papers as [2, 3]. In the context of classic
finite element method (FEM), some authors proposed frameworks to perform topology
optimization under the shell model. For example, [4] used a density based method to
minimize the compliance of a shell structure. Additionally, [5] proposed a comparison
between the designs obtained from a compliance minimization and that of the maxi-
mum stress minimization in 2D plates. Similarly, an optimization using LSM was used
by [6] to minimize the maximum stress, while taking into account the curvature of the
geometry in three dimensional shells, also in the context of FEM. In [7], optimal micro-
structure for accounting simultaneously in-plane stiffness, out-of-plane stiffness and the
extension–bending coupling effects in panels obtained by inverse homogenization, the
Hadamard shape derivative and the level set method. In IGA, many authors have stud-
ied how to combine IGA and LSM for 2D linear elasticity, as in [8, 9, 10, 11, 12]. We
believe, however, that a contribution for non-conforming multi-patch thick-shells and
LSM is yet to be done. Out of the context of the LSM, [13] used IGA to optimize a
spherical thin-shell using the phase-field method and [14] used trimmed IGA to per-
form parametric optimization on shells and used nucleation techniques to allow topology
changes.

This paper is structured as follows: Section 2 defines the framework of a Reissner-
Mindlin shell using IGA and explains how to express the strain and stress operators using
the curvature of the geometry. Section 3 adapts the level set method to the setting of
a parameterized non-conforming multi-patch geometry. Afterwards, Section 4 combines
IGA and LSM approach for thick shells. Then, Section 5 presents the setting of the
optimization problem. Finally, the numerical results are presented in Section 6.

2. Reissner-Mindlin shells with IGA

Let us consider the problem of the linear elastic thick shell under Reissner-Mindlin
kinematic hypothesis solved using isogeometric analysis. This shell modeling approach
will be employed to define an optimization domain D, which will remain fixed throughout
the optimization process and wherein the admissible shapes will be defined. It will be
initially introduced as a single-patch geometry and subsequently extended to conforming
and non-conforming multi-patch geometries. We refer to [15, 16] for further details on
the development of an IGA solver for a linear elastic Reissner-Mindlin shell, and to [17],
for the underlying principles of differential geometry and shell modeling.

Notation. Throughout the paper, Greek indices and exponents α, β, µ, λ range in
{1, 2}, whereas latin lowercase indices i, j, r, s vary in {1, 2, 3}, as well as the Einstein
summation convention over repeated indices. Moreover, the symbol (ˆ) is used to em-
phasize the parametric nature of a mathematical entity.
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Let us now define mathematically the shell of mid-surface D embedded in R3 with
constant thickness ϵ > 0. A parameter domain D̂ ⊂ R2 is introduced, over which the
map S : D̂ → R3 is defined through a NURBS parametrization. For simply connected
domains, the parametric domain can be identified with the unit square in R2. The
mid-surface D is then defined with D = S(D̂) and will also be referred to as patch.

In each point (ξ1, ξ2) ∈ D̂, we define a local covariant vector basis {ai} with a =

(∂̂ξ1S, ∂̂ξ2S,n)
T , where n =

∂̂ξ1S× ∂̂ξ2S

|∂̂ξ1S× ∂̂ξ2S|
and | · | designates the Euclidean norm. More-

over, the covariant basis of the mid-surface naturally defines a local orthonormal basis
denoted as (t1, t2, t3) by normalizing the vectors {ai}, i.e.:

(t1, t2, t3) =

(
a1
|a1|

,
a2
|a2|

,n

)
(1)

Based on the covariant vector basis in each point of the mid-surface, and provided the
thickness is sufficiently small with respect of the local curvature, one can construct the
thick shell as the image of the parametric volume map V given by:

V : V̂ → R3 V((ξ1, ξ2), ξ3) = S(ξ1, ξ2) + ξ3n(ξ1, ξ2), (2)

where V̂ := D̂ ×
[
− ϵ

2 ,
ϵ
2

]
designates the three-dimensional parameter domain.

Under the assumptions of C3 regularity of the map S and a sufficiently small ϵ, the
map V is a 2-diffeomorphism between V̂ and V := V(V̂ ), as proven in [17]. Hence,
the domains V̂ and V are linked in a one-to-one fashion by the map V , meaning that
a material point x = (xi) ∈ V in the physical space has an unique representative in
the parametric domain, i.e. ∃!ξ ∈ V̂ such that x = V(ξ). Moreover, to facilitate the
readability of the equations, we will notate the derivatives with respect to the coordinates
ξ by:

∂̂α :=
∂

∂ξα
(3)
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Figure 1: The construction of the thick shell: (top panel) The mid-surface map S : D̂ → D transforms

each point of the parametric domain D̂ into a point in the physical mid-surface D. (bottom panel) The

parametric volume map V : V̂ → V transforms each point of the parametric volume V̂ = D̂ ×
[
− ϵ

2
, ϵ
2

]
into a point in the physical volume V .

The Jacobian matrix of the transformation S for points on the mid-surface is derived
from the covariant basis vectors and is defined as the 3×3 matrix A = [a1,a2,a3]. Addi-
tionally, the 3× 3 matrix T = [t1, t2, t3] represents a rotation matrix, which transforms
a vector in the global physical coordinate system (x1, x2, x3) into a vector aligned with
the local physical coordinate system (l1, l2, l3).

The covariant vector basis of the mid-surface {ai} can be extended to a covariant
vector basis in gi in each point ξ of the volume V̂ as follows:

gα = ∂̂αV = aα + ξ3∂̂αa3 and g3 = ∂̂3V = a3 = n (4)

Note that the two covariant vector basis coincide for points of the the mid-surface, i.e.
ai = gi when ξ3 = 0.

Furthermore, the covariant basis gi naturally defines the contravariant basis, or dual
basis, by gj ·gi = δji , where δ

j
i is the Kronecker symbol. These basis define the covariant

and contravariant components of the metric tensor, which are computed in a similar
fashion by gij = gi · gj and gij = gi · gj , respectively.

Moreover, the set of vectors tangent to D at any given point x ∈ D span the tangent
space TxD:

TxD = {v ∈ R3 : v · a3 = 0 at x ∈ D} (5)

The set of all vectors tangent to the manifold D, define the tangent bundle:

T (D) =
⋃
x∈D

TxD (6)
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Mechanics: The prior geometric description of the thick shell allows for the intro-
duction of vector and tensor fields representing the mechanical variables. For instance,
the displacement vector field u : V̂ → R3 can be expressed using its covariant (ui) or
contravariant (ui) components as:

u = uig
i = uigi. (7)

The small strain tensor, defined by the symmetrical part of the displacement gradient
with respect to the physical coordinate system, can now be rewritten in terms of the
curvature of the shell as:

εij(u) =
1

2

(
gi · ∂̂ju+ gj · ∂̂iu

)
(8)

Remark 1. Note that if the shell was defined by the map S = id, then the covariant
basis {gi} is equal to the canonical basis of R3 and one regains the classic formula

εij =
1
2 (∂̂iuj + ∂̂jui).

In a similar fashion, the balance equation of stresses, expressed using the divergence
operator will equally be written taking into account the curvature of the geometry.

Let us also consider a classical problem of linear elasticity under the assumption of
small strains with using the generalized Hooke’s law:

σij = Aijrsεrs, (9)

where Aijrs is the constitutive tensor for the given elastic, isotropic and homogeneous
material. An additional hypothesis of this model is the plane stress state, i.e. σ33 = 0.

Under these assumptions, let us consider the shell to be composed of a linear isotropic
elastic material with Young’s modulus E and Poisson’s ratio ν. Then, the constitutive
relation can be expressed [18] in terms of the geometry as:

σαβ = Hαβλµελµ, Hαβλµ =
E

2(1 + ν)

(
gαλgβµ + gαµgβλ +

2ν

1− ν
gαβgλµ

)
σα3 =

1

2
Gαλελ3, Gαλ =

2E

1 + ν
gαλ.

(10)

Consequently, the virtual internal work of stress, depending on the displacement field
u and the virtual displacement v, is transformed by the preceding constitutive relation
in equation (10). It is then expressed as the following bilinear form:∫

V

σ(u) : ε(v) dV =

∫
V

Hαβλµελµ(u)εαβ(v) +Gαβεα3(u)εβ3(v) dV (11)

Let us now introduce the kinematic assumption of the Reissner-Mindlin shell model,
wherein the displacement field u within the thick shell is characterized by the displace-
ment and rotation of a point in the mid-surface:

u(ξ1, ξ2, ξ3) = uD(ξ1, ξ2) + ξ3r(ξ1, ξ2)× n(ξ1, ξ2) (12)

where uD : D̂ → R3 is the displacements field and r : D̂ → R3 is the field of rotations at
the corresponding point along the normal of the mid-surface D.
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This decomposition induces the following functional space of the admissible displace-
ment functions:

H1
D(D) = {v = (vU ,vR) ∈ H1(D)×H1(D) : vU |∂DU

D
= 0, vR|∂DR

D
= 0}, (13)

where ∂DU
D and ∂DR

D represent two covering subsets of the Dirichlet boundary ∂DD

where zero displacement and rotation boundary conditions are enforced, respectively.
The variational problem of an elastic Reissner-Mindlin thick-shell is stated as:

Find the displacement field u ∈ H1
D(D) such that:

∫
V

σ(u) : ε(v) dV =

∫
V

fV · v dV +

∫
D
fS · v dD +

∫
∂DN

(
vU · g + vR ·m

)
ds (14)

for any test function v ∈ H1
D(D).

In the preceding problem, fV denotes a volumetric force, fS denotes a surface tension
applied only on the mid-section D, g denotes the lateral traction applied to ∂DN and m
is the moment applied to ∂DN . It is important to note that, for the sake of simplicity,
we have introduced some abuse of notation regarding the variable u. In this context, u
serves as both a displacement field, as defined in equation (12), and as a tuple of H1

functions when used as an element of H1
D(D).

Multi-patch in IGA. The definitions of the concepts and the construction of the
equations are at this point only defined for a single parametric shell, called patch. We
now aim to extend these definitions to multi-patch systems, where the entire domain is
split into a set of distinct patches.

Let us consider a collection of K distinct and non-overlapping NURBS parameteriza-
tions {Sk}Kk=1. Each individual patch is characterized by its mid-surface denoted as Dk,

which is obtained from Dk = Sk(D̂k). This collection {Dk}Kk=1 defines a partition of the
mid-surface D with:

D =

K⋃
k=1

Dk where Dk ∩ Dl = ∅ if k ̸= l (15)

The interface γkl between two patches is defined as the closure of the intersection of
their boundaries:

γkl = ∂Dk ∩ ∂Dl with 1 ≤ k < l ≤ K (16)

Moreover, let Akl be the edge of the patch k that interfaces the patch l, as depicted
in Figure 2. Then, a interface is said to be geometrically conforming when γkl = Akl =
Alk. Similarly, the term matching discretization designates interfaces where the elements
overlap in a one-to-one fashion with elements of the neighbour patch.
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Figure 2: Illustration of three distinct simple multi-patch systems (for K = 2). In all cases, the patches
k and l are images of the NURBS parameterization Sk and Sl and share a common interface γkl =
∂Dk ∩ ∂Dl. However, they are classified differently according their interface γkl: (a) geometrically
conforming and matching discretization (b) geometrically conforming and non-matching discretization
and (c) geometrically non-confomring and non-matching discretization.

By adding contributions of each individual patch, functions defined on patches can
be naturally extended over the entire domain D. For instance, consider a collection of
functions {fk}Kk=1 where fk : D̂k → U , with U representing a generic target space. In this
context, it is possible to create a global function f : D → U such that f |Dk

= fk ◦S−1
k for

∀k. It is worth to observe that this principle applies to many of the mathematical entities
defined earlier, such as ai, gi, g

i, εij , σij and others. However, for the sake of clarity, we
will refrain from using indices to reference patches in these quantities. Additionally, we
will considered only continuous functions over the interfaces γkl between the patches.

3. Level set representation of the material domain

Modeling the shape within the shell using the level set method: Let us
consider employing the level set technique to implicitly define a multi-patch shape Ω ⊂ D
using a level set function (LSF). For a specific patch k, let Sk denote its parameterization,
resulting in a mid-surface Dk = Sk(D̂k). We introduce a level set function ϕk : Dk → R,
which will be numerically modeled using NURBS. This representation enables precise
delineation of shape boundaries and facilitates the generation of a NURBS output directly
compatible with CAD software.

The material phase, i.e. the shape Ωk, is as a subset of the mid-surface Dk defined
as:

Ωk = {x ∈ Dk : ϕk(x) < 0} (17)

Since the mid-surface Dk is parametric by construction, one can also define the pull-
back operator of ϕk by Sk as the function ϕ̂k : D̂k → R expressed by the following
composition:

ϕ̂k(ξ) = ϕk(Sk(ξ)) (18)

One can also introduce the parametric material phase Ω̂k as being the parametric
counterpart of the shape Ωk. By using the pullback operator, it is defined as:

Ω̂k = {ξ ∈ D̂k : ϕ̂k(ξ) < 0} = S−1
k (Ωk) (19)
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Since the parameterization Sk is a diffeomorphism between D̂k and Dk, it follows
that for every x ∈ Dk:

ϕk(x) = ϕ̂k(S
−1
k (x)) (20)

As a direct consequence, one can remark that the level set function ϕk is character-
ized solely by the pull-back operator ϕ̂k. This concept is of utmost importance for the
numerical modeling, as it highlights that a three-dimensional geometrical shape of the
shell is completely defined by two parameters.

The general idea of the level set method is therefore to divide the physical domain into
two subsets with distinct material properties. The material phase Ωk has the material
properties of the component that is being optimized, while the void phase Dk \Ωk (also
called weak phase or ersatz material) has weaker material properties, to simulate as if
there is no material in Dk \Ωk. This whole setting can be summarized by the sketch on
Figure 3. Moreover, this approach can equally be extended using n-NURBS surfaces to
define 2n material domains as in [19].

Figure 3: Schematic view of the level set representation in IGA. The material phase Ωk (in blue) is
defined as the set of points in the mid-surface Dk where the level set function ϕk is negative. The set
Dk \ Ωk is called the void phase which, because of its weak material properties, acts as a void region.

Similarly, the parametric material phase Ω̂k is the set of points in the parametric domain D̂k where ϕ̂k

is negative.

During the optimization process, we consider that the shape Ωk evolves as a function
of pseudo-time t > 0 and can therefore be rewritten with a time dependency as ϕk(x, t).
A material point x ∈ D will move according to a given velocity field vk(x, t), which will
later be associated with the descent direction of a cost functional.

In this setting, the evolution of the boundaries of the domain Ωk are described as:

∂Ωk(t) = {x ∈ Dk : ϕk(x(t), t) = 0}. (21)

Subsequently, for an arbitrary point x(t) ∈ ∂Ωk(t), the equation ϕk(x(t), t) = 0 holds.
After differentiation with respect to the time t, one obtains the equation that governs
the evolution of the shape Ωk, namely the Hamilton-Jacobi equation:

∂ϕk

∂t
+

∂x

∂t
· ∇ϕk =

∂ϕk

∂t
+ vk · ∇ϕk = 0. (22)
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It is worthwhile noting that these definitions are independent of the representation of the
level set and are therefore seamlessly extended for multi-patch systems, as illustrated in
Figure 4. By considering a collection of level set functions ϕ = {ϕk}Kk=1, with ϕk : Dk →
R, it follows that each ϕk defines a shape Ωk on the patch k by equation 17. Consequently,
the global shape Ω is straightforwardly realized as the union of these individual Ωk:

Ω =

K⋃
k=1

Ωk (23)

Figure 4: Multi-patch representation of a level set. By defining a set of level set functions {ϕk}Kk=1 one

is able to define via equation (17) the set of shapes {Ωk}Kk=1.

In numerical practice, an upwind scheme based on the Lax-Friedrichs flux [20, 21, 7]
was employed to solve the Hamilton-Jacobi equation. The methodology involved solving
the equation independently for each patch through the application of a finite difference
scheme that incorporates the interfaces between the patches. The details of this approach
are thoroughly elaborated in Appendix A.

3.1. Finding a CAD representation:

One notable advantage of using a topology optimization algorithm based on isogeo-
metric analysis is the ability to extract domain boundaries as B-spline curves and optimal
shapes as trimmed surfaces. This capability is advantageous for industrial applications,
in particular for the automotive industry, as it enables the direct integration of optimized
subsystem shapes with the global body-in-white assembly. In contrast, when employing
classic topology optimization with FEM, an additional step is necessary to reconstruct
the optimized CAD surfaces, as the output of the optimization process typically consists
of a trimmed mesh.

The procedure to extract the domain B-splines starts by finding the set of paramet-
ric curves {(Γ̂k)b}Bk

b=1, also referred to as p-curves, that intercept the NURBS ϕ̂k with
the plane ξ3 = 0. Afterwards, we close the p-curves when both of their extremities in-
tersect with the boundaries ∂D̂k, as shown in Figure 5. Finally, the set {(Γk)b}Bk

b=1 of
B-splines describing the boundary in the physical domain is obtained from the image of
the parameterization Sk by the p-curves: (Γk)b = Sk((Γ̂k)b) for all b.
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In numerical practice, the open-source C++ function BRepAlgoAPI_Section from
OpenCascade [22] was used to compute the surface to plane intersection when computing
the p-curves. Moreover, we remark that this set of closed curves precisely delineate the
visible portion of the domain Ω̂k, which can be used by a graphics display of a CAD
system to render the trimmed surfaces, as elaborated in [23].

Figure 5: Extracting the domain boundaries as B-spline or trimmed surfaces. For a given patch k, we

compute the set with Bk ∈ N closed parametric curves {(Γ̂k)b}
Bk
b=1 where the level set ϕ̂k intersects the

parametric plane ξ3 = 0. We find then a corresponding B-spline representation in the physical domain,

denoted {(Γk)b}
Bk
b=1, by using the relation (Γk)b = Sk((Γ̂k)b) for all b ∈ [[1, Bk]].

4. IGA representation of the material level set

We are interested in solving the linear elasticity problem over a multi-patch shape Ω,
described by a level set function ϕ = {ϕk}Kk=1, using the Reissner-Mindlin shell of mid-
surface D. To achieve this, one has to model the material behavior of the two phases.
Hence, let us consider a constitutive tensor Cijrs for the strong phase and C̃ijrs for the
weak phase. In each patch, the expected behavior of the material Aijrs can be expressed
in the domain Dk with a dependency on the level set function ϕk as:

Aijrs(ϕk) =

{
Cijrs in Ωk

C̃ijrs in Dk \ Ωk

(strong phase, ϕk < 0)
(weak phase, ϕk > 0)

(24)

To avoid numerical complications, one can consider a smooth transition function to
interpolate the properties of the material continuously from one phase to the other. Let
e > 0 be a small parameter to represent the thickness of this interface between the two
phases. One can introduce a smooth Heaviside function He ∈ C∞(R, [0, 1]), displayed
on Figure 6, with the expression:

He(ϕ) :=
1

2

(
1− ϕ√

e2 + ϕ2

)
. (25)

By defining an interpolation of constitutive tensors using the smooth transition in
equation (25), one is able to express the stress tensor with a dependency on the level set
function ϕk as such:
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σϕk

ij =
(
He(ϕk)(C

ijrs − C̃ijrs) + C̃ijrs
)

︸ ︷︷ ︸
Aijrs(ϕk,He)

εrs. (26)

Figure 6: Smooth interface approach: plot of the heaviside function He. This function provides a smooth
continuous transition between the strong phase (negative values of ϕ) and the weak phase (positive
values of ϕ). One can verify that equations (25) and (26) provide the desired effect by remarking that:
lime→0 Aijrs(ϕ,He) = Cijrs if ϕ < 0 and C̃ijrs if ϕ > 0.

Additionally, it is important to introduce the notation of the different regions in
the boundaries. Let us consider the decomposition of the boundaries of D as ∂D =
∂DD ∪ ∂DN ∪ ∂D0, where DD and DN are resp. the regions corresponding to Dirichlet
and Neumann boundaries conditions and ∂D0 is a the traction-free region. Similarly,
one can also decompose the boundaries ∂Ω of the shape Ω by using the same notation:
∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂Ω0.

With this setting, one can proceed towards the definition of the weak formulation of
the linear elasticity. Let us consider the following Sobolev space, suited for the Reissner-
Mindlin shell model:

H1
D(Dk) = {vk = (vU

k ,v
R
k ) ∈ H1(Dk)×H1(Dk) : v

U
k |∂DU

D
= 0, vR

k |∂DR
D
= 0}, (27)

where ∂DU
D, ∂DR

D are the subsets of the Dirichlet boundary ∂DD wherein, respectively,
zero displacements and rotations are imposed, and such that ∂DD = ∂DU

D ∪ ∂DR
D.

Finally, one can mathematically recover the IGA shell model (see also [18]) now
coupled with the level set formulation for the material distribution in the domain. Let us
introduce the local (continuous and coercive) bilinear form ak : H1

D(Dk)×H1
D(Dk)→ R

and a (continuous) linear form Lk : H1
D(Dk)→ R by:

ak(uk,vk) =

∫
Vk

σϕk
(uk) : ε(vk) dVk =

∫
[− ϵ

2 ,
ϵ
2 ]×D̂k

σϕk
(uk) : ε(vk)|detJVk

|dD̂k dζ

(28)

Lk(vk) =

∫
Vk

(
fVk · vk

)
1Ωk

dVk +

∫
Dk

(
fSk · vk

)
1Ωk

dDk +

∫
∂DN

(vU
k · gk + vR

k ·mk)1Ωk
ds

(29)
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where fVk is a volumetric force applied on the whole volume Vk, f
S
k is a surface force

applied in the mid-section Dk, gk is the lateral forces applied to ∂DN , mk is the moment
applied to ∂DN , JVk

is the Jacobean matrix associated with transformation Vk defined
in equation (2) and 1B : D → {0, 1} denotes the indicator function defined as 1B(x) = 1
if x ∈ B and 1B(x) = 0 otherwise, for any set B ⊂ Dk.

Consequently, to solve the linear elasticity in the context of multi-patch, we consider
the penalty approach as formulated in [16]. The key concept of this approach is to
introduce another a bilinear form bkl : H1

D(Dk) × H1
D(Dl) → R that forces continuity

between the interfaces of the patches k and l. One possible choice of for bkl is the
following:

bkl(uk,vk) =

∫
γkl

(trkluk − trlkul)(trklvk − trlkvl) dγkl (30)

where trkl denotes the boundary trace operator in the internal interface γkl and αkl is a
large penalty factor for the interface γkl.

The linear elasticity in multi-patch problem can then be solved by finding u = {uk} ∈∏
k H

1
D(Dk):

∑
k

ak(uk,vk) +
∑
k>l

αklbkl(uk,vk) =
∑
k

Lk(vk) ∀v = {vk} ∈
∏
k

H1
D(Dk) (31)

As ak(uk,vk) = Lk(vk) is valid for all patches k, the term
∑

k>l αklbkl(uk,vk), which
represents the sum over all pairwise combinations of internal interfaces between the
patches, has to be equal to zero. Furthermore, as a consequence of the definition of bkl,
the continuity of uk, ul and vk, vl at the interface γkl is guaranteed.

The computation of the boundary integral in bkl, however trivial for matching dis-
cretizations, raises some technical difficulties that deserve close attention in the case of
non-conforming interfaces. The issue lays on the fact that the boundary elements in one
patch are not coincident to those of the neighbour patch, as depicted in Figure 7. To
overcome this issue, a knot-to-segment approach was considered, as in [16], to build a
common knot vector between the interfaces.

For that let us introduce a projection operator Pkl : γ̂kl → γ̂lk defined by:

Pkl(ξ) = argmin
ζ∈γ̂lk

|Sk(ξ)− Sl(ζ)| (32)

where γ̂kl and γ̂lk are the parametric counterparts of the interface γkl in patches k
and l, namely γ̂kl = S−1

k (γkl) and γ̂lk = S−1
l (γlk).

This projection operator allows us to find, for any given parametric coordinate ξ of
patch k laying in the interface γ̂kl, the corresponding parametric position ζ in patch l
such that ξ and ζ are mapped to the same point in the boundary, i.e. Sl(ζ) is coincident
to Sk(ξ). Additionally, let Ξ(kl) represent the knot vector in patch k associated with

interface γkl. One can construct a common knot vector Ξ
(kl)
C for patch k by augmenting

the original vector Ξ(kl) with the projection of the knot vector Ξ(lk) of the neighboring
patch l onto patch k. Mathematically, this is expressed by:

Ξ
(kl)
C = Ξ(kl) ∪ Plk

(
Ξ(lk)

)
(33)
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It is worth noting that this construction provides a sequence of conforming elements
that can be used for boundary integration similarly to the matching discretization case.
This can be verified by the equality of the sets:

Sk

(
Ξ
(kl)
C

)
= Sl

(
Ξ
(lk)
C

)
(34)

Figure 7: A basic example of a multi-patch system with non-matching discretization. On the left, one
can observe that the elements at the non-matching interface do not overlap. On the right, the projection
of the knots onto the neighboring patch enables the construction of a common knot vector, resulting in
elements overlapping in a manner suited for numerical integration.

5. Shape optimization problem

We start by introducing the cost function J : P(D) → R as in equation (35), where
P(D) is the set of all subsets of D. This function evaluates the performance of a certain
multi-patch shape Ω, as a composition of the compliance and the volume. For such pro-
poses, we consider a fixed Lagrange multiplier Λ > 0 to penalize volume increases during
the optimization. This is a classic technique, as used in [2, 24, 25, 21], to attempt to
simultaneously increase the stiffness of the shape Ω and to reduce its volume. There-
fore, the chosen value for the Lagrange multiplier Λ can be used to give more or less
importance to one or other of these terms.

J (Ω) =
∑
k

∫
Vk

σϕk
(uk) : ε(uk) dVk︸ ︷︷ ︸
compliance

+Λ
∑
k

∫
Vk

1Ωk
dVk︸ ︷︷ ︸

volume

(35)

where u = {uk} ∈
∏

k H
1
D(Dk) is the solution of linear elasticity problem (31). Let

us further remark that both the compliance term and the field u itself are dependent on
the shape Ω because of the level set functions {ϕk}.

Let us now consider set the of admissible shapes, defined as:

Uad = {Ω ⊂ D : ∂ΩN = ∂DN and ∂ΩD ⊂ ∂DD} (36)

Then, the optimization can then simply be summarized by finding the optimum shape
Ω∗ ∈ Uad such that:
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J (Ω∗) = inf
Ω∈Uad

J (Ω),

subject to (31) (37)

As described in [2], the shape derivative of J , we consider a transformation of a
smooth initial shape Ω(0) using a small perturbation field θ ∈W 1,∞(D,Rd), as in:

Tθ = (id + θ) (38)

This transformation allows us to define the shape derivative as the Frechet derivative
in W 1,∞(D,Rd) at 0 of the application θ → J (Tθ(Ω)):

J (Tθ(Ω)) = J (Ω) + J ′(Ω)(θ) +O(θ) with lim
θ→0

|O(θ)|
∥θ∥

= 0 (39)

Regularization field on the tangent bundle: since our goal is to find the opti-
mal material distribution on the mid-surface D, we propose to build a velocity field that
has values on the tangent bundle of the manifold D. If we transform a shape Ω(0) with
the transformation Tθ (equation (38)), we would like to ensure that Tθ(Ω

(0)) is still a
subset of the optimization domain D.

With this condition in mind, let us consider a H1 Sobolev space that satisfy the
following conditions:

Θ(Dk) =

{
ϑk ∈ (H1(Dk))

3 : ϑk · a3 = 0 in Dk and

ϑk · tN = 0 on ∂Dk \
K⋃
l=1
l ̸=k

γkl

} (40)

where tN ∈ T (Dk) is the unit outward normal to ∂Dk in the tangent space and ai

denotes the contra-variant basis in the middle surfaces, obtained by ai · aj = δji . We
remark that the field tN can be identified with the contra-variant basis depending on the
edges {A1, A2, A3, A4} of the patch in the physical space, as illustrated in Figure 8.

Figure 8: Example of a single patch shell illustrating how to build the function space Θ(D). One can
also visualize how to determine the outward unit normal tN tangent to the manifold D based on the
contra-variant basis ai.
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Furthermore, one could also observe that the function space satisfies the conditions
that we desire. Because we aim to keep the thickness of the shell constant, the condition

ϑk · a3 = 0 imposes that a shape Ω
(0)
k transformed with Tθk

has no variation on the
direction of the thickness, for any θk ∈ Θ(D). Similarly, one also observes that a material
point x ∈ ∂Dk will not move outwards from the domain because of the condition ϑk ·tN =
0.

Let us now introduce the shape derivative of the cost functional in equation (35).
Typically, in the context of compliance, the shape derivative is expressed as a boundary
integral, as demonstrated in works such as in [2, 24]. However, for our approach, we have
chosen an alternative formulation, provided by [21], which offers a simpler implementa-
tion using a volume integral. In this study, we adapt this formulation to the context of
multi-patch isogeometric analysis. Specifically, for ϑ = {ϑk} ∈

∏
k Θ(Dk), we consider

the shape derivative expression as follows:

J ′(Ω)(ϑ) =
∑
k

∫
Dk

(
2∇uT

k σϕk
(uk)− σϕk

(uk) : e(uk)I
)
: ∇ϑk + Λ

∑
k

∫
Ωk

divϑk, (41)

where I is the second order identity tensor.
From the definition of the functional space Θ(Dk) of the velocity fields, one can

now propose its relation to the shape derivative of J . This is achieved by defining a
regularization problem in the form of an identification problem using a scalar product
over Θ(Dk). For clarity purposes, let us first enunciate this formulation for the single-
patch case and then we genelarize it to the multi-patch approach.

In the single-patch case, the regularization problem could be enunciated by the
following variational problem:

Find θ ∈ Θ(D) s.t.

∫
V

∇Dθ : ∇Dϑ = −J ′(Ω)(ϑ) ∀ϑ ∈ Θ(D) (42)

This approach can easily be generalized to a multi-patch case, similarly to what
has been proposed for the linear elasticity case, by means of the same penalty approach.
Therefore, the regularization problem aims to find the field θ = {θk} ∈

∏
k Θ(Dk) such

that

∑
k

∫
Vk

∇Dθk : ∇Dϑk +
∑
k>l

βklbkl(θk,ϑk) = −
∑
k

J ′(Ωk)(ϑk) ∀ϑ = {ϑk} ∈
∏
k

Θ(Dk)

(43)
where βkl is a penalty factor for the interface γkl.
We remark that for the multi-patch case, a given regularization field θ ∈

∏
k Θ(Dk)

has the condition tN · θk = 0 on the external boundary for ∀k. In Figure 9, we illustrate
on a multi-patch system how to apply the boundary conditions on the boundaries of the
patches according to their nature (external or internal interface).

15



Figure 9: Illustration of the boundary conditions for the regularization problem in a simple multi-patch
case. The external boundaries of D have the orthogonality condition θk · tN = 0 for ∀k. The internal
interfaces are handled with the penalty approach, where the aim is to guarantee the continuity of θk

and θl on the interface γkl for all pairs (k, l).

It is also important to remark that the left-hand side of the equation (43) does not
change during the iterations. By denoting L the matrix associated with this term, it is
possible to use the same factorization of L in all iteration, thereby considerably reducing
computational cost.

As for the space discretion of the problem in (43), we consider a discretization of the
space Θ(Dk) by NURBS basis functions. This set Θh(Dk) ⊂ Θ(Dk) can be defined as
follows:

Θh(Dk) =
{
ϑ = ϑ̂ ◦ S−1

k : ϑ̂ ∈
⊗

i∈[[0,2]]

R(pki
,Ξki

)
}

(44)

where R(pki
,Ξki

) is the set of rational B-splines function defined on the patch k of
degree pki

and with the knot vector Ξki
in the direction i ∈ {0, 1, 2}.

The methodology detailed in this study can be conveniently encapsulated in the form
of an algorithm, as presented in (1). The technical details on this implementation is
discussed next in Section 6. Moreover, a guideline on how to solve the regularization
problem in the tangent bundle using isogeometric analysis is explained in more depth in
Appendix B. Finally, we also remark that this algorithm uses the notation introduced
in Appendix A, where the numerical schemes for solving the Hamilton-Jacobi equation
are presented. In this appendix, we introduce [ϕk] as the discrete counterpart of the level
set function ϕk, representing the evaluation of the NURBS ϕk at the grid points [Ĝk],
defined by a uniform discretization of the parameter domain.
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Algorithm 1 Topology optimization with IGA shells and LSM

Input:
Multi-patch geometry using a set of NURBS parametrizations {Sk}
Discretization grid [Ĝk] of the parametric domain D̂k

Initial level set discretizations [ϕk]
(0)

Fixed Lagrange multiplier Λ > 0

Compute:
Calculate and factorize the matrix L of the regularization problem (43)
for m ≥ 0 iterate until convergence do

Compute the NURBS {ϕk}(m) by interpolating [ϕk]
(m) on the parametric grid [Ĝk]

Solve linear elasticity on the shell (31) using {ϕk}(m)

Compute cost function J (m)

if J (m) < J (m+1) or m == 0 then
Compute shape derivative J ′ using (41)
Find {θk}(m) using L by updating right-hand term of (43) with J ′

else
Decrease ∆t of Hamilton-Jacobi
Set {θk}(m) ← {θk}(m−1)

end if
Find [ϕk]

(m+1) by solving evolution equation (22) using {θk}(m), {ϕk}(m) and ∆t
end for

6. Numerical results

In this section, we present the results achieved through the application of the de-
scribed optimization method. Numerically, the characteristics of the weaker phase were
established by scaling the properties of the stronger phase by a small positive factor.
Typically, the Young’s modulus of the stronger phase can be multiplied by 10−3 while
maintaining the same Poisson ratio. Throughout all the examples conducted in this
study, we consider non-dimensionalized problems, with a Poisson ratio of ν = 0.3, a
Young’s modulus of E = 1, penalty parameters set to αkl = 103 and βkl = 105 and all
concentrated forces have magnitude of one.

To fulfill the constraint ∂ΩN = ∂DN specified in equation (36), an additional stiffness
is introduced into the Laplace matrix L, affecting the elements in a small neighbourhood
of the Neumann boundary condition region. Typically, the original stiffness of these
elements can be multiplied by a factor of 103. This technique effectively compels the
velocity field θ to approach zero within ∂ΩN , thereby forcing this region to remain
unchanged while the shape Ω is evolving.

During the resolution of the IGA problems, the level set functions were modeled as
NURBS. Following the resolution of the Hamilton-Jacobi equation for each patch k, which
yields a matrix on the parametric grid (see Appendix A), the NURBS representation is
subsequently updated through a process of bivariate interpolation [26] using the newly
acquired values of ϕ on the grid. The degree of the NURBS surfaces was set to 3 across
all problems. Additionally, the size of the parametric grid was chosen to be twice as
refined as the knot vector employed for linear elasticity and the regularization problem.
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Numerous resources were used to increase performance, given that the primary code-
base is entirely implemented in Python. For accelerated spline evaluation, an implemen-
tation based on [27] was employed. Furthermore, for the construction of the stiffness
matrix, a LIL matrix object was developed utilizing the numba package [28]. In addi-
tion, the package PyPardiso [29] played a pivotal role in the efficient resolution of linear
systems and LU factorization processes.

6.1. Example 1: parabolic domain

The first problem considers two concentrated forces of direction −e3 applied on a
single-patch domain obtained by the extrusion of a parabola (see left panel in Figure
10). The geometry was discretized with 140 elements along the e2 direction and with
414 elements in its perpendicular direction, ensuring a nearly uniform distribution of
element sizes in the physical space. Additionally, the Lagrange multiplier was configured
to Λ = 6 · 103.

Figure 10: Example 1 - parabolic shell with two concentrated forces. From left to right: the parabolic
optimization domain, the initial deformed shape with the loads applied and the final optimal deformed
solution found after 186 iterations. The blue zone on the left geometry represents the stiffness region
for the regularization problem. The colors on both deformed configurations are set using the same scale
and correspond to the magnitude of the displacement field.

The evolution of the objective function, the compliance, the volume, as well as the
shape at iterations 4, 18 and 33, are displayed in Figure 11. One can discern that,
following 33 iterations, the shape begins to exhibit a keen resemblance to the final form
achieved at iteration 186.
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Figure 11: Example 1 - parabolic shell with two concentrated forces. The evolution of the objective
function, the compliance and the volume with the increasing number of iterations shows the convergence
of the optimization process. The evolution of the shape is displayed at iterations 4, 18 and 33.

6.2. Example 2: conforming platform 3D 1× 1

The second example is dedicated to study a three dimensional platform consisting of
three flat panels connected with two curved patches, as illustrated in Figure 12. As for the
IGA discretization, the length L1 was partitioned into 180 elements, whereas the element
size in the perpendicular direction was chosen to maintain an uniform element size in
physical space. This results in a total of 78120 elements for all patches. Furthermore,
the thickness of all shells was fixed at ϵ = 0.05 and the volume Lagrange multiplier was
set to a constant value of Λ = 8 · 104.

Figure 12: Example 2 - conforming platform 3D 1 × 1. From left to right: the optimization domain,
the initial deformed shape with the applied load and the final optimal deformed solution found after
190 iterations. The blue zone on the left geometry represents the stiffness region for the regularization
problem. The colors on both deformed configurations are set using the same scale and correspond to
the magnitude of the displacement field.

It is possible to visualize the convergence of the objective function, the compliance and
the volume in Figure 13. Moreover, the evolution of the shape is shown in three different
stages of the optimization, at iterations 6, 17 and 89. The sudden peaks in compliance,
triggering a peak in the cost function, occur because the volume shape derivative causes
the shape Ω to be such that ∂ΩN and ∂ΩD are disconnected. This is a consequence of a
modification in the descent algorithm. More precisely, we tolerate increases of the cost
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function after a maximum of three attempts to decrease the time step ∆t. Despite this
issue, the shape still manages to evolve into a connected domain. One can also observe
the presence of disconnected regions on the shape Ω at iteration 17, that eventually
disappear before iteration 89. Furthermore, one can remark that after iteration 89, the
shape closely approximates the final state achieved by the conclusion of the optimization
process.

Figure 13: Example 2 - conforming platform 3D 1 × 1. The evolution of the objective function, the
compliance and the volume with the increasing number of iterations shows the convergence of the opti-
mization process. The evolution of the shape is displayed at iterations 6, 17 and 89.

6.3. Example 3 - conforming platform 3D 2× 1

The following example, as depicted in Figure 14, explores a multi-patch optimization
domain that is closely linked to the previous one. The primary deviation from the
preceding geometry is the adjustment of the length L1 to 2, along with an alteration in
the thickness of all panels to ϵ = 0.1. For the IGA discretization, the length L1 was
divide into 180 elements and the discretization in the orthogonal direction was selected
to ensure uniform element sizes in physical space, which yielded a total of 39060 elements
for all patches. Finally, a volume Lagrange multiplier of Λ = 1.9 · 103 was incorporated
in the analysis.

Figure 14: Example 3 - conforming platform 3D 2 × 1. From left to right: the optimization domain,
the initial deformed shape with the applied load and the final optimal deformed solution found after
176 iterations. The blue zone on the left geometry represents the stiffness region for the regularization
problem. The colors on both deformed configurations are set using the same scale and correspond to
the magnitude of the displacement field.
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The convergence of the objective function, compliance, and volume, along with the
evolving shape at iterations 6, 17, and 54, is illustrated in Figure 15. Similar to the
previous example, one can observe the existence of disconnected regions in iteration
17, but they vanish before reaching iteration 54. By iteration 54, the shape closely
approximates the final optimal configuration.

Figure 15: Example 3 - conforming platform 3D 2 × 1. The evolution of the objective function, the
compliance and the volume with the increasing number of iterations shows the convergence of the opti-
mization process. The evolution of the shape is displayed at iterations 6, 17 and 54.

6.4. Example 4: conforming cantilever 3D

In the subsequent problem, we address a multi-patch domain as depicted in Figure 16.
This configuration comprises eight patches, each with a thickness of ϵ = 0.1. For spatial
discretization for the IGA problems, the element size in the parametric domain is chosen
to ensure that elements in the physical domain are uniformly distributed. Under this
criterion, the direction e1 is discretized with uniformity using 220 elements, resulting
in a total of 69080 elements. Additionally, the volume Lagrange multiplier is set to
Λ = 2.5 · 103.

This particular example draws inspiration from a well-known study case in topology
optimization, the cantilever beam. Typically applied in the context of 2D linear elasticity,
the results for this example can be found in [2, 21]. Our method manages to replicate
these results when applied to a rectangular Reissner-Mindlin plate.
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Figure 16: Example 4 - conforming cantilever 3D. From left to right: the optimization domain, the initial
deformed shape with the applied loads and the final optimal deformed solution found after 255 iterations.
The blue zones on the left geometry represent the stiffness region for the regularization problem. The
colors on both deformed configurations are set using the same scale and correspond to the magnitude of
the displacement field.

In Figure 17, we present the progressive evolution of the optimization process as the
number of iterations increases. We provide visualizations of the metrics of our interest,
namely the objective function, the compliance and the volume. Moreover, the transfor-
mation of the shape is depicted at three distinct stages of the optimization, specifically
at iterations 7, 21 and 55. By the 55th iteration, it becomes clear that the shape closely
resembles the converged configuration.

Figure 17: Example 4 - conforming cantilever 3D. The evolution of the objective function, the compliance
and the volume with the increasing number of iterations shows the convergence of the optimization
process. The evolution of the shape is displayed at iterations 7, 21 and 55.

6.5. Example 5: conforming arc 3D

The subsequent problem considers a multi-patch domain forming a three-dimensional
arc structure (see left panel in Figure 18). The thickness is set to ϵ = 0.1 for all patches.
The element sizes in the parametric domain are chosen to ensure a near-uniform distri-
bution of elements in the physical. For this purpose, the linear segment at the top of
the arc, with size Re − Ri − 2R, was discretize with 70 elements, which resulted in a
total of 36080 elements for all patches. For this optimization process, a volume Lagrange
multiplier of Λ = 3.0 · 103 was employed.
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Figure 18: Example 5 - conforming arc 3D. From left to right: the optimization domain, the initial
deformed shape with the applied loads and the final optimal deformed solution found after 135 iterations.
The blue zones on the left geometry represent the stiffness region for the regularization problem. The
colors on both deformed configurations are set using the same scale and correspond to the magnitude of
the displacement field.

The progression of the optimization process is illustrated in Figure 18, where one
can observe the convergence of the objective function, the compliance and the volume.
Furthermore, three snapshots of the evolving shape are provided at iterations 5, 14, and
42, offering insights into the transformation of the shape over time.

Figure 19: Example 5 - conforming arc 3D. The evolution of the objective function, the compliance and
the volume with the increasing number of iterations shows the convergence of the optimization process.
The evolution of the shape is displayed at iterations 5, 14 and 42.

6.6. Example 6: torsion of a conforming cylinder

The next problem under consideration involves a multi-patch representation of a cylin-
drical structure subjected to torsional loading. This representation utilizes four patches,
as visually depicted in Figure 20. The geometry was discretized by partitioning the cylin-
der with 120 elements in the e3 direction. A commensurate refinement was employed in
the perpendicular direction to guarantee uniform element sizing in the physical domain.
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This discretization strategy yielded a total of 22560 elements across all patches. The
thickness of the shells was uniformly set at ϵ = 0.1 and the Lagrange multiplier was
established at Λ = 4.5 · 103

Figure 20: Example 6 - torsion of a conforming cylinder. From left to right: the optimization domain,
the initial deformed shape with the applied loads and the final optimal deformed solution found after
187 iterations. The blue zones on the left geometry represent the stiffness region for the regularization
problem. The colors on both deformed configurations are set using the same scale and correspond to
the magnitude of the displacement field.

In Figure 21, one can visualize the evolution of the algorithm through the plots of
the objective function, the compliance and the volume, as they vary with the increasing
number of iterations. This figure highlights three pivotal stages of this evolution, observed
at iterations 6, 22, and 71. One can remark that by iteration 71 one obtains a similar
shape to that of the final optimum shape achieved at iteration 187.

Figure 21: Example 6 - torsion of a conforming cylinder. The evolution of the objective function,
the compliance and the volume with the increasing number of iterations shows the convergence of the
optimization process. The evolution of the shape is displayed at iterations 6, 22 and 71

6.7. Example 7: non-conforming platform 3D

This following example aims to demonstrate the capability of this approach in man-
aging geometrically non-conforming parameterizations and non-matching distributions.
For that, we propose a structural arrangement akin to that of examples 2 and 3, while
incorporating two non-conforming interfaces, as depicted in Figure 22. Regarding the
discretization of the IGA problems, the length L1 was divided into 130 elements, with
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the element size in the perpendicular direction uniformly distributed based on the dis-
cretization of L1. This amounts to a total of 25610 elements for all patches. Moreover,
the shell thickness was set at ϵ = 0.05 across all patches and a value of Λ = 2.0 · 105 was
chosen for the volume Lagrange multiplier.

Figure 22: Example 7 - non-conforming platform 3D. From left to right: the optimization domain,
the initial deformed shape with the applied loads and the final optimal deformed solution found after
101 iterations. The blue zone on the left geometry represents the stiffness region for the regularization
problem. The colors on both deformed configurations are set using the same scale and correspond to
the magnitude of the displacement field.

In Figure 23, the evolution of the shapes in the course of the iterations are shown
by means of the plots of the objective function, the compliance and the volume. This
illustration facilitates an observation of how the proposed method yields a continuous
level set function at the interfaces of the patches, as evidenced at iterations 3, 9, and 45.

Figure 23: Example 7 - non-conforming platform 3D. The evolution of the objective function, the compli-
ance and the volume with the increasing number of iterations shows the convergence of the optimization
process. The evolution of the shape is displayed at iterations 3, 9 and 45

6.8. Example 8: torsion of a non-conforming cylinder

The final example under examination seeks to demonstrate the well-functioning of the
approach in predominantly curved geometries with non-conforming and non-matching in-
terfaces. Let us consider a multi-patch structure of a non-conforming cylindrical structure
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subjected to a torsion load, as depicted in Figure 24. The geometry underwent discretiza-
tion by dividing the cylinder into 130 elements along the e3 direction. A corresponding
refinement was applied perpendicular to ensure consistent element sizes in the physical
domain. This discretization approach resulted in a combined total of 27040 elements for
all patches. The shell thickness remained uniformly set at ϵ = 0.1, while the Lagrange
multiplier was fixed at Λ = 4.5 · 103.

Figure 24: Example 8 - torsion of a non-conforming cylinder. From left to right: the optimization domain,
the initial deformed shape with the applied loads and the final optimal deformed solution found after
181 iterations. The blue zones on the left geometry represent the stiffness region for the regularization
problem. The colors on both deformed configurations are set using the same scale and correspond to
the magnitude of the displacement field.

Insights into the progression of the algorithm via plots are provided by Figure 25,
which illustrates the changes in the objective function, compliance, and volume over
successive iterations. Similarly to the previous example, it becomes apparent how the
proposed method maintains a continuous level set function at the non-conforming inter-
faces of the patches, exemplified at iterations 3, 22, and 154.

Figure 25: Example 8 - torsion of a non-conforming cylinder. The evolution of the objective function,
the compliance and the volume with the increasing number of iterations shows the convergence of the
optimization process. The evolution of the shape is displayed at iterations 3, 22 and 154

6.9. Extracting the solution as a CAD

As detailed in Section 3.1, the method subject of this study facilitates the extraction
of domain boundaries in the form of CAD curves and trimmed surfaces. In Figure 26,
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we present an application of the procedure proposed for the structure in Example 8.
One can visualize the level set function in two different patches, as well as the smooth
B-spline domain lines that can be exported in regular CAD format such as IGES, STEP,
and STL.

Figure 26: Process of extracting a smooth B-spline curve from the results of the optimization in Example
8 - Torsion of a non-conforming cylinder. On the left, one can visualize the pullback operator of the level
set function ϕ̂k along with its composition with the Heaviside function He. These functions are only
plotted on the parameter domain of patches k = 0, 1, since the other two patches yield identical results,
as the structure is symmetrical. On the right, the B-spline curves obtained from the CAD extraction
procedure. It consists of computing the intersection of ϕ̂k with the parametric plane ξ3 = 0 using the
C++ function BRepAlgoAPI Section from OpenCascade [22]. The resulting p-curves are mapped to the
physical domain via the NURBS parameterization map Sk.

7. Concluding remarks and discussion

This study has successfully implemented a topology optimization method that lever-
ages the strengths of isogeometric analysis and Reissner-Mindlin thick shells while main-
taining the inherent flexibility of the level set method. The use of NURBS-modeled
level set functions enhances the precision of numerical integration. The resulting smooth
boundary of the optimized shapes aligns perfectly with industrial requirements, as it can
be exported as a CAD model.

One limitation of the proposed method is its assumption of G1 continuity across the
interfaces of the patches comprising the manifold D. This assumption poses a challenge
when dealing with structures that feature sharp corners. However, as our work demon-
strates, this issue can be addressed in certain cases through the incorporation of fillets.
Additionally, while the Hamilton-Jacobi equation was solved using finite differences, the
full advantage of ϕ being modeled as a NURBS was not exploited. Exploring alterna-
tive schemes that directly incorporate the derivatives calculated from the NURBS could
potentially improve computational efficiency and accuracy.

Looking ahead, we anticipate that this approach can be readily extended to encompass
other industrially relevant cost functions. For instance, it could be applied to maximizing
the smallest eigen-frequency, as shown in [11], target displacements/behavior, as in [2, 7],
and minimization of the norm of the Von Mises stress, as investigated in [5].
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Appendix A. Numerical scheme for Hamilton Jacobi equation in non con-
forming multi-patch

In this section, we present the numerical scheme to solve the Hamilton-Jacobi equation
in a non-conforming multi-patch geometry. This scheme builds upon prior works [20, 21],
and extends them to accommodate the complexities inherent in multi-patch parametric
surfaces. To this end, let us assume that a velocity field θ = {θk}Kk=1 is known and that
it is characterized by being a descent direction of a given cost functional J . We recall
that the establishment of this velocity field and its relation with the shape derivative of
the cost-functional J are discussed in Section 5.

Let us revisit the Hamilton-Jacobi equation (22) on a given patch k, considering now
{θk}Kk=1 as the velocity field. As for the boundary conditions, the external interfaces
are set with a zero flux condition (Neumann), whereas the internal interfaces between
the patches must satisfy a continuity condition. Hence, the problem to be solve on each
patch k is the following:

∂ϕk

∂t
+ θk · ∇Dϕk = 0 in Dk × R+

ϕk(·, 0) = ϕ0
k in Dk

∇Dϕk · tN = 0 on ∂Dk \ ∪Kl=1,l ̸=kγkl

trklϕk − trlkϕl = 0 on ∪Kl=1,l ̸=k γkl

(A.1)

where (∇Dϕk)α = ∂ϕk

∂lα
tα is the gradient operator written in the local coordinates system

in the physical domain and ϕ0
k is a known NURBS initialization function of the level set

at the patch k. As we operate within the tangent bundle, it is worth noting that the
fields θk have a vanishing normal component: θk · t3 = 0.

The overall strategy to solve problem (A.1) consists of finding a discrete representa-
tion of the Hamilton-Jacobi equation, which involves the application of a finite differences
scheme and subsequently solving it independently for each patch. The scheme incorpo-
rates information from neighboring patches, ensuring the continuity condition in equation
(A.1) across the internal interfaces.

Initially, the parameter domain is discretized using a uniform grid Ĝk ⊂ D̂k, consisting
of Nα

k points in each direction α ∈ {1, 2} and thus defining the steps ∆ξαk = 1
Nα

k −1 . The

components of the grid can then be computed as follows:

[Ĝk]pq = (p∆ξ1k, q∆ξ2k) ∀(p, q) ∈
2∏

α=1

[[0, Nα
k − 1]]. (A.2)

Note that this parametric grid induces a grid [Gk]pq in the physical space via the

parametrization Sk. Its components are computed for all (p, q) ∈
∏2

α=1[[0, N
α
k − 1]] with:

[Gk]pq = Sk([Ĝk]pq) (A.3)

The operators in equation A.1 are also discretized uniformly in time by choosing a
time step ∆t that satisfies CFL conditions. To meet this condition, the Courant number
C can be evaluated with C = ∆tmaxk(

∑2
α=1 max(|θk · tα|)/∆lα), where the steps ∆lα

are the minimal distance between two consecutive points of the physical grid [Gk] in
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the direction α. In numerical practice, no numerical instabilities were encountered when
using the condition C ≤ Cmax = 1.

Furthermore, we address the discretization of the level set function in both spatial
and temporal domains. For this purpose, the evaluations of the function ϕ at the grid
points will be denoted as follows:

[ϕk]
n
pq = ϕ̂k([Ĝk]pq, n∆t) (A.4)

In sight of this considerations, we propose in equation A.5 a discrete representa-
tion of the Hamilton-Jacobi in equation A.1, which is based on the Lax-Friedrichs flux
[20, 21]. By isolating the term [ϕk]

n+1
pq , one obtains a recursive formula which can be

straightforwardly solved for n > 0, starting from the initialization [ϕk]
0
pq.

[ϕk]
n+1
pq − [ϕk]

n
pq

∆t
+

2∑
α=1

(
[θk]pq · tα

2

(
d+tα [ϕk]

n
pq + d−tα [ϕk]

n
pq

)
−|[θk]pq · tα|

2

(
d+tα [ϕk]

n
pq − d−tα [ϕk]

n
pq

))
= 0

(A.5)

where (p, q) ∈
∏2

α=1[[0, N
α
k − 1]] are the indices of the spatial discretization, n ∈ N∗

is the indice of the time discretization, α ∈ {1, 2} is the indices of each direction in local
coordinates, [ϕk]

n
pq is the evaluation of the level set function in the grid points, [θk]pq · tα

is α-th component of the evaluation of the velocity field in the grid points, and d±tα are the
forward (+) and backward (-) Euler finite difference scheme for computing the derivative
in the local direction tα.

The computation of the approximation of the derivatives with respect to the physical
domain coordinates in equation (A.5) is achieved by a coordinate transformation of the
finite differences computed with respect to the parametric domain:d±t1 [ϕk]

n
pq

d±t2 [ϕk]
n
pq

0

 = [Tk]pq[Ak]pq

d±ξ1 [ϕk]
n
pq

d±ξ2 [ϕk]
n
pq

0

 (A.6)

where d±ξm are the forward (+) and backward (-) Euler finite difference scheme for com-
puting the derivative with respect to the parametric coordinate ξα and the 3×3 matrices
[Ak]pq, [Tk]pq are the evaluation at the grid points of the change of basis matrices A,T
presented in Section 2.

Let us now introduce the computation of the finite differences d±ξ1 [ϕk]
n
pq and d±ξ2 [ϕk]

n
pq

in equation (A.6). We remark firstly that, in order to simplify the notation of the schemes,
we assume that the local reference system of the adjacent patches is aligned with that of
patch k, which can easily be achieved by a simple transposition operation.
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Then, the backward Euler schemes for the derivatives with respect to the paramet-
ric coordinates (ξ1, ξ2) are computed with:

d−ξ1 [ϕk]
n
pq =



[ϕk]
n
pq − [ϕk]

n
p−1q

∆ξ1k
if p ∈ [[1, N1

k − 1]],

[ϕk]
n
0q − ϕ̂l

(
Pkl

(
[Ĝk]0q

)
−
[
∆ξ1l
0

])
∆ξ1l

if p = 0 and ∃l ̸= k

such that [Gk]0q ∈ ∂Dl,

[ϕk]
n
1q − [ϕk]

n
0q

∆ξ1k
otherwise.

(A.7)

d−ξ2 [ϕk]
n
pq =



[ϕk]
n
pq − [ϕk]

n
pq−1

∆ξ2k
if q ∈ [[1, N2

k − 1]]

[ϕk]
n
p0 − ϕ̂l

(
Pkl

(
[Ĝk]p0

)
−
[

0
∆ξ2l

])
∆ξ2l

if q = 0 and ∃l ̸= k

such that [Gk]p0 ∈ ∂Dl,

[ϕk]
n
p1 − [ϕk]

n
p0

∆ξ2k
otherwise.

(A.8)

Figure A.27: Illustration on how to compute the backward Euler finite differences for the derivatives
with respect to the parametric coordinates (ξ1, ξ2). As the scheme is trivial in the interior of the domain,
we depict only how to compute the last two cases in equations A.7 and A.8.
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Similarly, the forward Euler schemes for the derivatives with respect to the para-
metric coordinates (ξ1, ξ2) are obtained with the following:

d+ξ1 [ϕk]
n
pq =



[ϕk]
n
p+1q − [ϕk]

n
pq

∆ξ1k
if p ∈ [[0, N1

k − 2]]

ϕ̂l

(
Pkl

(
[Ĝk]N1

k−1q

)
+

[
∆ξ1l
0

])
− [ϕk]

n
N1

k−1q

∆ξ1l
if p = N1

k − 1 and ∃l ̸= k

s.t. [Ĝk]N1
k−1q ∈ ∂Dl,

[ϕk]
n
N1

k−1q
− [ϕk]

n
N1

k−2q

∆ξ1k
otherwise.

(A.9)

d+ξ2 [ϕk]
n
pq =



[ϕk]
n
pq+1 − [ϕk]

n
pq

∆ξ2k
if q ∈ [[0, N2

k − 2]]

ϕ̂l

(
Pkl

(
[Ĝk]pN2

k−1

)
+

[
0

∆ξ2l

])
− [ϕk]

n
pN2

k−1

∆ξ2l
if q = N2

k − 1 and ∃l ̸= k

s.t. [Gk]pN2
k−1 ∈ ∂Dl,

[ϕk]
n
pN2

k−1
− [ϕk]

n
pN2

k−2

∆ξ2k
otherwise.

(A.10)

Figure A.28: Illustration on how to compute the forward Euler finite differences for the derivatives with
respect to the parametric coordinates (ξ1, ξ2). As the scheme is trivial in the interior of the domain, we
depict only how to compute the last two cases in equations A.9 and A.10.
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We remark the distinction of the three different cases in each one the schemes in
equations A.7 to A.10. The first case handles the points in the interior of the domain,
in which the Euler schemes are computed trivially. The second case addresses points
in the internal interfaces between patches, so as to satisfy the continuity condition in
equation A.1. Let us further notice that this term requires the evaluation of ϕ̂l in an
extension of the grid of patch k into patch l. Since this extension point generally does
not coincide with another point of grid the [Ĝl], the evaluation of ϕ̂l is computed with
a linear interpolation of the adjacent points. And finally, the third case is related to the
points with external boundary, where the Neumann boundary condition is applied.

Appendix B. Regularization problem in tangent bundle

Let us now discuss how to numerically implement the regularization problem in the
tangent bundle. We start by recalling the definition of the space discretion of problem
(43), which is notated by Θh(Dk) ⊂ Θ(Dk) and is given by the following set:

Θh(Dk) =
{
ϑ = ϑ̂ ◦ S−1

k : ϑ̂ ∈
⊗

i∈[[0,2]]

R(pki
,Ξki

)
}

(B.1)

where R(pki
,Ξki

) is the set of rational B-splines function defined on the patch k of
degree pki

and with the knot vector Ξki
in the direction i ∈ {0, 1, 2}.

The solutions θh of problem (42) will therefore be obtain as a linear combination of
function of Θh(Dk), as i.e

θh(ξ) =

N∑
A=1

RA(ξ)wA (B.2)

One can classically show that the regularization problem (42), which is nothing but
a Laplace equation, can be rewritten using this discretization as a linear system of the
form:

Lw = j (B.3)

where L ∈ M3N×3N (R) is the global stiffness matrix related to the bilinear form
in the left of equation (42) and j ∈ R3N is a vector related to the source term in the
right-hand side in the same equation.

In order to solve problem (42) in the tangent bundle, we transform this discrete
representation into a local coordinates system, where the conditions in (40) can naturally
be expressed as Dirichlet boundary conditions. To achieve this, we can construct a global
rotation matrix Rg ∈ M3N×3N (R). For such purposes, we will use an approximation
of the orthonormal basis (t1, t2, t3) by using the Greville abscissae [30], which can be
defined by:

Gi =

{
ξ̃A =

1

pi

pi∑
j=1

ξA+j , ∀A ∈ [[1, Ni]]

}
∀i ∈ [[0, 2]] (B.4)

Let us view the global rotation matrixRg as an embedded matrix inMN×N (M3×3(R)).
In this setting, we define Rg as:
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(Rg)ij =

{
T̃i, if i = j

0M3×3
otherwise

∀(i, j) ∈ [[0, N ]]2 (B.5)

where T̃i is an approximation of the local basis rotation matrix T = (t1, t2, t3),

defined via the use of an approximation of the covariant basis as ãi1 = ∂̂1S(ξ̃i) and

ãi2 = ∂̂2S(ξ̃i) using the Greville abscissae:

T̃i =

(
ãi1
|ãi1|

,
ãi2
|ãi2|

,
ãi1 × ãi2
|ãi1 × ãi2|

)
(B.6)

Finally, one can use the global rotation matrix Rg to transform the matrix linear
system Lw = j into its description in local coordinates:

RT
g LRgw = Rgj (B.7)
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