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Abstract

This paper introduces a novel method for optimal shape design of thick shells.
We consider shells based on the Reissner-Mindlin theory, with the assumption
of linear elastic material behavior. The goal is to find the optimal material dis-
tribution within the shell’s mid-surface. This is achieved using a cost function
that minimizes the volume while considering stress-based constraints, with the
material distribution represented by a level set function. The evolution of the
shape is driven by the gradient of the cost function within the framework of
a Hamilton-Jacobi equation. Both the level set and the displacement fields are
described using computer aided design compatible tools, within the framework of
isogeometric analysis. This allows for precise definition of the optimal shape and
straightforward export of the resulting design to commercial software for manu-
facturing. Furthermore, the proposed method handles complex, non-conforming
multi-patch geometries thanks to an augmented Lagrangian formulation. The lat-
ter guarantees strong compatibility with real-world engineering applications. The
effectiveness of the method is demonstrated through its application to various
three-dimensional multi-patch geometries under different loading conditions.
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1 Introduction

Stress-based optimization stands as a cornerstone in engineering practices, as it
preemptively allows to address critical issues such as stress concentration, crack prop-
agation, structural failure, and fatigue. An effective and robust technique to address
topology optimization (TO) problems is the level set method, as demonstrated in
Allaire and Jouve (2008); Allaire et al. (2004); Allaire and Jouve (2005); Amstutz and
Andrä (2006); Amstutz and Novotny (2010); Picelli et al. (2018), which has been exten-
sively coupled with the finite element method (FEM) for the numerical analysis. These
works have seeded instrumental tool for engineering practices such as microstructure
design and additive manufacturing, as presented in Agnelli et al. (2022); Nika and
Constantinescu (2019); Agnelli et al. (2020); Alacoque et al. (2021).

However, since numerous industrial engineering applications are based on
computer-aided design (CAD) geometries, topological optimization algorithms based
on FEM have the drawback of producing an output that requires pre- and post-
processing operations to reconstruct a useful CAD geometry. To overcome this problem
in density-based TO methods, such as the Solid Isotropic Material with Penalization
(SIMP), the density field can be modeled as a NURBS surface, which has been demon-
strated to be effective in a range of applications, from stiffness maximization with
anisotropy T. Roiné and Pailhès (2022) to stress-related problems Montemurro et al.
(2024); Montemurro and Roiné (2024). Another possibility to overcome this problem is
to use isogeometric analysis (IGA) T.J.R. Hughes (2009), which provides in-loop CAD
compatibility. For instance, Gao et al. (2022) proposed a TO method to minimize the
level set method (LSM) compliance on composite structure for single-piece 2D and 3D
volumetric isogeometric elements. Seo et al. (2010a,b); Kang and Youn (2016) imple-
mented nucleation techniques on trimmed surfaces to extend parametric optimization
to incorporate topology changes on single-patch isogeometric shell elements. Further-
more, stress-based optimization using IGA has also been shown to work with the LSM
Jahangiry et al. (2022) and density-based approaches such as the SIMP method Liu
et al. (2018). Nevertheless, we believe that further improvements to stress-based TO
on shell isogeometric elements in nonconforming multi-patch isogeometric analysis are
still needed.

In Hübner Scherer et al. (2024), we presented a TO method for compliance min-
imization that combines the level set method and non-conforming multi-patch IGA.
In the present paper, we extend this approach to stress-based optimization, with par-
ticular interest on the minimization of the Lp norm of the von Mises stress. In this
study, we derive an alternative formulation for the shape derivative, given by a ten-
sor representation. We also extend the method to solve multi-patch problems with
an augmented Lagrangian approach based on Adam et al. (2020) which increases the
algorithmic robustness of multi-patch problems.

This work is structured as follows: Section 2 introduces the Reissner-Mindlin
shell model for isogeometric analysis. Section 3 introduces the level set method for
non-conforming NURBS surfaces. Section 5 combines the isogeometric and level set
approaches in an augmented Lagrangian setting. The optimization setting and the
expression of the shape derivative are presented in Section 6. Finally, the numerical
results are elaborated in Section 7, and conclusions are drawn in Section 8.
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2 Reissner-Mindlin shells with IGA

The problem of the linear elastic thick shell under the Reissner-Mindlin kinematic
assumption is introduced using isogeometric analysis, as previously developed in
Hübner Scherer et al. (2024). The domain of optimization, denoted by D, will be intro-
duced initially as a single-patch NURBS surface corresponding to the mid-surface of
the shell and will later be generalized to a non-conforming multi-patch domain. For fur-
ther insight into the development of an IGA solver for linear elastic Reissner-Mindlin
shells, refer to Benson et al. (2010); Adam (2020), and for fundamental principles of
shell modeling and differential geometry, see Ciarlet and Mardare (2008).

Notation. In the present paper, we employ the Einstein summation convention over
repeated indices, where Greek indices and exponents α, β, µ, λ have values in {1, 2},
while Latin lowercase indices i, j, r, s range in {1, 2, 3}. Furthermore, the symbol (ˆ)
is used to emphasize the parametric nature of a mathematical entity.

Let us introduce the NURBS parameterization S of the mid-surface, constructed
as a two-dimensional tensor product structure that is fully determined by the knot
vectors Ξα, the degrees dα and the net of n1 · n2 control points {XB}n1·n2

B=1 :

S : D̂ ⊂ R2 → R3 S(ξ1, ξ2) =

n1·n2∑
B=1

RB(ξ1, ξ2)XB (1)

where {RB}n1·n2

B=1 denotes the rational B-splines basis functions, D̂ is the parametric
domain and the integers nα are related to the size of the knot vector by the relation
nα = Card(Ξα)− dα − 1.

This parameterization naturally defines the mid-surface D of the shell with D =
S(D̂). In each point of this surface, we define the in-plane covariant basis {ai} by the

derivatives with respect to the parametric domain: aα = ∂̂αS and a3 = ∂̂1S×∂̂2S

|∂̂1S×∂̂2S|
.

The covariant vectors {gi} extend this concept to the whole volume of the shell and

are computed with gα = ∂̂αV = aα + ξ3∂̂αa3 and g3 = ∂̂3V = a3. Additionally,
both of these vectors define in a similar fashion their contravariant counterparts by
gj · gi = δji and aj · ai = δji , where δji is the Kronecker symbol. Finally, the covariant
and contravariant components of the metric tensor are given by gij = gi · gj and
gij = gi · gj , respectively.

The covariant basis allows us to define the thick shell of constant thickness ε > 0
as the image of the parametric volume map V given by:

V : D̂ ×
[
− ε

2
,
ε

2

]
→ R3 V((ξ1, ξ2), ξ3) = S(ξ1, ξ2) + ξ3a3(ξ1, ξ2). (2)
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Fig. 1: The construction of the thick shell: (top panel) The mid-surface function
S : D̂ → D maps a point of the parametric domain D̂ into a point in the physical
domain, namely the mid-surface D. (bottom panel) The parametric volume function
V : V̂ → V maps a point of the parametric volume V̂ = D̂ ×

[
− ε

2 ,
ε
2

]
into a point in

the physical volume V .

2.1 Mechanics

Let us now take into consideration the kinematic assumption of the Reissner-Mindlin
shell model. The displacement field uV in the volume is assumed to be decomposed
into the displacement uD : D̂ → R3 of the mid-surface and a rotation r : D̂ → R3

along its normal:

uV (ξ1, ξ2, ξ3) = uD(ξ1, ξ2) + ξ3r(ξ1, ξ2)× a3(ξ1, ξ2). (3)

The covariant components of the small strain tensor are written in terms of the
geometry of the shell as:

εij(u
V ) =

1

2

(
gi · ∂̂juV + gj · ∂̂iuV

)
. (4)

Let us consider a homogeneous material under the assumption of isotropic and lin-
ear elastic behavior, with a constitutive tensor Aijrs defined from the Young’s modulus
E and the Poisson’s ratio ν. Then, the stresses can be calculated with the generalized
Hooke’s law under the small strains assumption:

σij = Aijrsεrs, (5)
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This constitutive relation can be further refined in terms of the contravariant
components of the metric tensor of the shell Adam et al. (2020), by separating
membrane/bending and shearing stresses:


σαβ = Hαβλµελµ, Hαβλµ =

E

2(1 + ν)

(
gαλgβµ + gαµgβλ +

2ν

1− ν
gαβgλµ

)
σα3 =

1

2
Gαλελ3, Gαλ =

2E

1 + ν
gαλ.

(6)

Consequently, the virtual internal work of the stress associated with a displacement
u can be transformed by this constitutive relation into the following expression for a
virtual displacement field v:∫

V

σ(u) : ε(v) dV =

∫
V

Hαβλµελµ(u)εαβ(v) +Gαβεα3(u)εβ3(v) dV (7)

In addition, the shell is subjected to external loads in the region labeled ∂DN and
assumed to be fixed along the portion ∂DD. The remaining portion of the boundary
constitutes a traction-free region labeled ∂D0. Consequently, the complete boundary
∂D is partitioned into subsets as ∂D = ∂DD ∪ ∂DN ∪ ∂D0.

As a consequence of the kinematic assumption of the Reissner-Mindlin shell, we also
decompose the Dirichlet boundary ∂DD into a portion ∂DUD, where zero displacement
is imposed, and ∂DRD, wherein no rotation is permitted. This decomposition induces
the following functional space of the admissible displacement functions:

H1
D(D) = {v = (vU ,vR) ∈ H1(D)×H1(D) : vU |∂DUD = 0, vR|∂DRD = 0}, (8)

The elastic Reissner-Mindlin thick-shell can then be formulated with the following
variational problem:

Find the displacement field u ∈ H1
D(D) such that:

∫
V

σ(u) : ε(v) dV =

∫
V

fV · v dV +

∫
D

fS · v dD +

∫
∂DN

(
vU · g + vR ·m

)
ds (9)

for any test function v ∈ H1
D(D).

In this variational problem, we denote fS as the surface tension applied solely on
the mid-section D, fV as the volumetric force, m as the moment applied to ∂DN , and
g as the lateral traction applied to ∂DN .

It is widely acknowledged that thick shells can be susceptible to numerical locking
and yield less reliable results when standard finite elements do not account for shear
deformation and thickness effects. To mitigate locking issues, a reduced integration
technique is employed, which is particularly effective for NURBS approximations with
degrees greater than two. Although the current investigation does not treate the shape
optimization through the thickness, we assert that our method remains applicable to
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thin-shell models. Moreover, we advocate for the use of thick-shell models as it offers
a robust framework capable of accommodating future enhancements, in particular the
optimization of the thickness profile of the shell.

2.2 Extension to multi-patch isogeometric analysis

Let us consider extending the previous definitions to geometries composed of sereval
individual patches. For such purposes, we introduce a collection {Sk}Kk=1 of K
non-overlapping NURBS parameterizations. Each map Sk defines a mid-surface Dk
obtained from Dk = Sk(D̂k). The collection {Dk}Kk=1 forms a partition of the
mid-surface D with:

D =

K⋃
k=1

Dk where Dk ∩ Dl = ∅ if k 6= l. (10)

The interface γkl between two patches is given by:

γkl = ∂Dk ∩ ∂Dl with 1 ≤ k < l ≤ K. (11)

3 Level set representation of the material domain

We briefly introduce the setting proposed in Hübner Scherer et al. (2024) to define
a multi-patch shape Ω ⊂ D using the level set technique. For a given patch k, we
denote with Sk its parameterization, which yields a mid-surface Dk = Sk(D̂k). By
introducing a level set function φk : Dk → R, the material phase is defined as a subset
of the mid-surface Dk with:

Ωk = {x ∈ Dk : φk(x) < 0} (12)

The parametric construction of the mid-surface Dk naturally defines the pullback
operator of φk by Sk as the function φ̂k : D̂k → R given by the following expression:

φ̂k(ξ) = φk(Sk(ξ)) ∀ξ ∈ D̂k (13)

The parametric material phase Ω̂k is the parametric counterpart of the shape Ωk.
It is defined by means of the pullback operator:

Ω̂k = {ξ ∈ D̂k : φ̂k(ξ) < 0} = S−1
k (Ωk) (14)

Given that the map Sk is a diffeomorphism from D̂k onto Dk, it is straightforward
to verify that:

φk(x) = φ̂k(S−1
k (x)) ∀x ∈ Dk (15)

When we consider a collection of level set functions φ = {φk}Kk=1, a sequence of
shapes {Ωk}Kk=1 is directly obtained from equation (12). The global multi-patch shape
Ω is then defined as the union of the single-patch shapes Ωk:

Ω =

K⋃
k=1

Ωk (16)
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The level set technique consists of subdividing the domain into two regions with
distinct material behavior, as depicted in Figure 2. The material phase Ωk (or strong
phase) has the strong material properties of the component that is being optimized,
whereas the weak phase Dk \Ωk (also called void phase or ersatz material) has weaker
material properties, so that it behaves as a void region.

Fig. 2: Illustration on the coupling of the level set method with non-conforming multi-
patch NURBS surfaces. For the patch k, the material phases Ωk in blue is defined as
the set of points in the mid-surface Dk where the level set function φk is negative. The
set Dk \ Ωk is named the void phase which acts as a void region, because of its weak
material properties. The parametric material phase Ω̂k is defined in a similar fashion
as the set of points in the parametric domain D̂k where φ̂k is negative.

Let us now model the evolution of the shape Ωk in the course of a pseudo-time
t > 0. We track the evolution of a material point, initially at position x ∈ D, which
is assumed to be moving with a given velocity field vk(x, t). This velocity field is
assumed for now to be a descent direction of a certain cost functional J , which will
later be established in Section 6. For an arbitrary boundary point x(t) ∈ ∂Ωk(t), it
holds that φk(x(t), t) = 0. By differentiating this equation with respect to the pseudo-
time t, one obtains the equation that governs the evolution of the shape Ωk, known as
the Hamilton-Jacobi equation. In multi-patch non-conforming isogeometric analysis,
we consider writing this equation, along with its boundary conditions, as:

∂φk
∂t

+ vk · ∇Dφk = 0 in Dk × (0,∞)

φk(·, 0) = φ0
k in Dk

∇Dφk · tN = 0 on ∂Dk \ ∪Kl=1,l 6=kγkl

trklφk − trlkφl = 0 on ∪Kl=1,l 6=k γkl

(17)

where tN ∈ T (Dk) is the unit outward normal to ∂Dk in the tangent space and
(∇Dφk)α = ∂φk

∂lα
aα
|aα| is the gradient operator written in the local coordinates system

in the physical domain and φ0
k is a known initialization function of the level set at the

patch k.
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In numerical practice, the graph of the pullback operator φ̂k of the level set function
is modeled as a NURBS surface. This allows for accurate numerical integration as
a consequence of the precise delination of the boundaries of the parametric material
phase Ω̂k. In addition, by computing the intersection of φ̂k with the plane ξ3 = 0, one
obtains a set of closed parametric curves, which permits the visualization of a trimmed
surface Marussig and Hughes (2018). These p-curves are also mapped into the physical
domain by Sk, which yield the boundaries of Ωk as a set of B-spline curves.

To numerically solve equation (17), we applied the computational method previ-
ously introduced in Hübner Scherer et al. (2024) for non-conforming patches. In this
approach, we introduced a discrete counterpart [φk] of the level set function evaluated
on a uniform discretetization [Ĝk] of the parametric grid. We employed [φk] to solve
the equation is independently for each patch using an upwind finite difference scheme,
based on the Lax-Friedrichs flux Osher and Shu (1991); Laurain (2018). At the patch
boundaries, the scheme is adapted to incorporate information regarding the level set
function of neighboring patches.

4 Trimming surfaces with level set functions

The aim of this section is to establish a methodology for conducting numerical integra-
tion on a multi-patch domain D, which is trimmed by a level set function φk : Dk → R.
We begin by recalling the standard procedure in isogeometric analysis for computing
integrals over curved domains. The parameter space is divided into a set of elements,
each defined as the Cartesian product of the span between two consecutive points
in the knot vector of each parametric direction. Figure 3 illustrates how an element,
denoted by D̂ek, is mapped from the parametric space into an element Dek of the phys-
ical space. Finally, numerical integration can be performed using NURBS-enhaced
Gaussian integration, as described in Sevilla et al. (2008a,b), by mapping each element
D̂ek into the unit square reference element.

Fig. 3: Mapping an element into the parent space.

Let us now we consider a level set function φk to describe the material phase
Ωk ⊂ Dk. As illustrated in Figure 4, the level set φk = 0 implicitly defines a set of
trimming curves, which delineates the interface between the strong and weak phases.
However, in classical trimming problems in isogeometric analysis, the trimming curve
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is given directly by a parameterized curve. In this paper, we propose to adapt these
techniques, as presented in Kim et al. (2009), to the level set method by computing
in each element the parametric curve defined by the level set zero.

Fig. 4: The types of cut elements considered: it is assumed that each element in the
parametric space is cut into one of the two kinds: a trapezoid or a triangle shape.
These elements are subdivided into four triangles, as depicted on the right. The
triangles that intersect the interface, displayed in blue, are integrated with NURBS-
enhanced quadrature points, whereas the remaining triangles, represented in orange,
are integrated with traditional quadrature points for triangles in FEM.

The trimming procedure assumes that the elements are cut by the level set zero
into two configurations, as shown in Figure 4. The trimmed elements are further subdi-
vided into curved and polygonal triangles. Triangles with straight edges are integrated
using traditional FEM quadrature points. In contrast, triangles with a curved side
are transformed through successive mappings into a reference quadrilateral element,
where they can be integrated using complete NURBS-enhanced quadrature points.
This mapping procedure is detailed further in Figure 5.

Fig. 5: Transformation of a curved triangle into a reference rectangle
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Initially, a curved triangle, denoted D̃ek, in the parent domain is mapped into a
reference triangle T via a T transformation analogous to those used in FEM. This
mapping is defined as follows:

T(s1, s2) =

ξ̃A1
ξ̃A2

+

ξ̃C1 − ξ̃A1 ξ̃B1 − ξ̃A1
ξ̃C2 − ξ̃A2 ξ̃B2 − ξ̃A2

s1

s2

 (18)

Note also that this transformation only maps the corners of the curved triangle to
a reference triangle. The curved edge of the original triangle, given by the parametric
denoted ψ : [0, 1] → D̃ek, is mapped to another parametric curve, denoted β, which
is expressed by β = T−1 ◦ ψ. Furthermore, the Jacobian of the transformation T is
straightforwardly calculated as

JT =

∣∣∣∣∣∣
∂ξ̃1
∂s1

∂ξ̃1
∂s2

∂ξ̃2
∂s1

∂ξ̃2
∂s2

∣∣∣∣∣∣ =

∣∣∣∣∣∣ξ̃
C
1 − ξ̃A1 ξ̃B1 − ξ̃A1
ξ̃C2 − ξ̃A2 ξ̃B2 − ξ̃A2

∣∣∣∣∣∣ (19)

Next, the reference triangle is transformed into a reference rectangle using a gen-
eralized Duffy transform. The mapping is expressed in terms of the curve β(u1) =
(β1(u1), β2(u1)) as

Q(u1, u2) =

 β1(u1)(1− u2)

β2(u1)(1− u2) + u2

 (20)

It is noteworthy that this transformation degenerates the entire edge [0, 1] × {1}
into a single point at (0, 1). Consequently, it is imperative to refrain from utilising
quadrature schemes with integration points situated on this edge. Moreover, when
computing the Jacobian of the transformation Q, one finds that

JQ =

∣∣∣∣∣∣
∂s1
∂u1

∂s1
∂u2

∂s2
∂u1

∂s2
∂u2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∂β1

∂u1
(u1)(1− u2) −β1(u1)

∂β2

∂u1
(u1)(1− u2) 1− β2(u1)

∣∣∣∣∣∣ (21)

Note that in the particular case of triangles with straight edges, the transformation
Q is referred to as the Duffy transformation. In this case, the curve β is expressed
β(u1) = (u1, 0), which implies that the Jacobian is given by JQ = |1− u2|.

Let us now consider how to obtain the curve ψ : [0, 1]→ D̃ek on a trimmed element,
given a level set function. Our solution relies on local polynomial interpolation, which
is a simple and robust choice. Given that the elements are assumed to be cut in
triangular and trapezoidal configurations (see Figure 4) and that level set functions
are sufficiently regular at the element level, polynomial interpolation up to degree
three has proven sufficient for this application, as confirmed by numerical practice. For
higher orders of interpolation, polynomial approximation has oscilatory behavior, in
which case other types of curve fitting methods should be considered, see for instance
Costa et al. (2018) for NURBS-based fitting algorithms.

Based on a chosen integer polynomial degree N −1, a real-valued interval is deter-
mined as either one of the vertical or horizontal axis as the abscissa of the polynomial
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approximation of the curve. The abscissa, denoted ι ∈ {1, 2}, is determined based on
the following criterion:

ι = arg max
α∈{1,2}

|ξAα − ξCα | (22)

Let {(Iek)n}Nn=1 be a uniformly distributed local discretization of the abscissa of
the element e in which each component is defined by:

(Iek)n =
n− 1

N − 1
ξ̃Aι +

(
1− n− 1

N − 1

)
ξ̃Cι ∀n ∈ [[1, N ]] (23)

Then, we introduce the ordinate points of the local interpolation with the sequence
{(Yek)n}Nn=1 by computing the intersection of the level set function φk at the points
of the local abscissa discretization. Hence, the components (Yek)n are given by the
solution of the following problem for each n ∈ [[1, N ]]:

Find (Yek)n ∈ [0, 1] such that


φ̂k

(
S̃ek
(
(Iek)n, (Yek)n

))
= 0 if ι = 1

φ̂k

(
S̃ek
(
(Yek)n, (Iek)n

))
= 0 if ι = 2

(24)

Finally, the curve ψ : [0, 1] → D̂ek is computed with the polynomial πek that
interpolates the points {((Iek)n, (Yek)n)}Nn=1 by:

ψ(u) =

{
(ηu, π

e
k(ηu)) if ι = 1

(πek(ηu), ηu) if ι = 2
, with ηu = ξAι (1− u) + ξCι u (25)

Fig. 6: Approximation of the interface using local polynomial interpolation of the
curve φk = 0.

At this juncture, it is possible to evaluate the integral of an arbitrary function
h : D̃ek → R over the trimmed element D̃ek as the sum of the contributions of each
triangular element obtained by the trimming procedure. After a change of coordinates
to their respective reference rectangular element and taking into account the Jacobian
of this composed transformation, this integral is expressed as follows:
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∫
D̃ek
h(ξ̃1, ξ̃2) dξ̃1 dξ̃2 =

∑
c

∫
Qc

(h ◦Tc ◦Qc)(u1, u2)|detJTc◦Qc
|du1 du2 (26)

where the indices c are the different curved and polygonal triangles that partition
the element D̃ek.

As for the integration of the untrimmed elements, we retain the reduced quadrature
points proposed in Adam et al. (2020), which allows for reducing numerical locking
effects on thick shells because of the high regularity of the NURBS basis functions.
By denoting nGPC the number of Gaussian points for exact integration of NURBS of
degree d, the number of Gaussian points in the reduced integration in each direction
is nGPC − 1 for the interior elements and nGPC − reg − 1 for the boundary elements,
where reg is the desired regularity (0 < reg < d). In Figure 8 we illustrate the choice
of integration points for cubic NURBS and regularity C2, the main type of elements
employed in the numerical practice of the present study.
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Fig. 7: Trimming procedure with a level set function. In this particular example, the
plot of a level set function given by φ̂(ξ1, ξ2) = − sin(5.5ξ1 + (4ξ2 − 2)2 − 3) + 0.6 is
displayed in the top left. The top right panel illustrates how this function implicitly
defines the parametric material phase Ω̂ by the negative values of φ. The bottom
panel illustrates the integration points for each element when using cubic NURBS
with C2 regularity. The trimmed elements are subdivided into a set of curved and
polygonal triangles. The curved triangles utilize complete Gaussian quadrature points
for NURBS (shown in red), while the straight-sided triangles employ Legendre-Gauss
integration points for classical finite element method (shown in green). Additionally,
the untrimmed elements use reduced integration quadrature (shown in blue). A portion
of the parametric domain is depicted in greater detail, where one can observe the
selection of interpolation points utilized, as well as the resulting interpolating trimming
curve of degree 3.
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5 IGA representation of the material level set

Let us address the problem of the linear elastic Reissner-Mindlin shell on a multi-
patch shape Ω ⊂ D, characterized by a level set function φ = {φk}Kk=1. Since we
are considering a two phase approach, we introduce two constitutive tensors: Cijrs to
model the material behavior of the strong phase and C̃ijrs for that of the weak phase.
In each patch, the effective material behavior is given by the constitutive tensor Aijrs,
which varies within the domain Dk as a function the level set φk:

Aijrs(φk) =

{
Cijrs in Ωk

C̃ijrs in Dk \ Ωk

(strong phase, φk < 0)

(weak phase, φk > 0)
(27)

As a consequence, the stress tensor is also expressed with a dependency on the
level set function and the constitutive tensors of the strong and weak phases:

σφk
ij =

(
(Cijrs − C̃ijrs)1Ωk + C̃ijrs

)
︸ ︷︷ ︸

Aijrs(φk)

εrs. (28)

where 1Ωk : Dk → {0, 1} denotes the indicator function defined as 1Ωk(x) = 1
when x ∈ Ωk and 1Ωk(x) = 0 otherwise.

Let us now formulate the weak formulation of the linear elasticity in the space
H1
D(D), as introduced in equation (8), which we now decompose into local H1 spaces:

H1
D(Dk) = {vk = (vUk ,v

R
k ) ∈ H1(Dk)×H1(Dk) : vUk |∂DUD = 0, vRk |∂DRD = 0} (29)

The Reissner-Mindlin shell formulation, as presented in problem (9), is also rewrit-
ten with a dependency on the level set functions. For this purpose, we introduce for
each patch the local (continuous and coercive) bilinear form ak : H1

D(Dk)×H1
D(Dk)→

R and a (continuous) linear form Lk : H1
D(Dk)→ R by:

ak(uk,vk) =

∫
Vk

σφk(uk) : ε(vk) dVk =

∫
[− ε2 ,

ε
2 ]×D̂k

σφk(uk) : ε(vk)|detJVk |dD̂k dξ3

Lk(vk) =

∫
Vk

(
fVk · vk

)
1Ωk dVk +

∫
Dk

(
fSk · vk

)
1Ωk dDk +

∫
∂DN

(vUk · gk + vRk ·mk) dγ

(30)

where JVk is the Jacobian matrix associated with transformation Vk in equation (2).

5.1 Interface continuity with an augmented Lagrangian
formulation

In a previous paper Hübner Scherer et al. (2024), we presented an IGA-based topology
optimization technique for the compliance, which used a penalty approach to ensure
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the continuity of the fields at the interfaces γkl. In the present study, we extend
this formulation to an augmented Lagrangian formulation, as developed in Adam
et al. (2020), which we briefly summarize here for the sake of completeness. This
approach is more robust from an algorithmic standpoint, as it is less dependent on the
choice of the penalty parameter. For further details on the mathematical formulation
of the augmented Lagrangian approach for domain decomposition on non-matching
discretizations, we direct the reader to Tallec and Sassi (1995).

We consider now the displacements uV in the volume defined by a NURBS approxi-
mation. Denoting UB the displacement and rB the rotation associated with the control
point XB , this displacement uV is written as:

uV (ξ1, ξ2, ξ2) = uD(ξ1, ξ2)+ξ3r(ξ1, ξ2)×a3(ξ1, ξ2) =

n1·n2∑
B=1

RB (UB + ξ3rB × a3(ξ1, ξ2)) .

(31)
It follows that the finite dimensional space Uk,h ⊂ H1

D(Dk) of discretization is
generated by the NURBS functions with:

Uk,h =
{

vk = v̂k ◦ S−1
k with v̂k ∈

⊗
α∈{1,2}

R(dkα ,Ξkα)
}
, (32)

where R(dkα ,Ξkα) is the space of NURBS functions defined on the patch k of
degree dkα and knot vector Ξkα in the direction α ∈ {1, 2}.

Denoting trkl as the boundary trace operator along the internal interface γkl, we
introduce the bilinear forms bkl and ckl to ensure continuity across the interface γkl:

bkl : H1
D(Dk)×H1

D(Dl)→ R, (uk,vk) 7→
∫
γkl

(trkluk − trlkul)(trklvk − trlkvl) dγkl

ckl : L2(γkl)
2 × L2(γkl)

2 → R, (λkl,uk) 7→
∫
γkl

λkl · ukl dγkl (33)

The augmented Lagrangian approach employs Lagrange multipliers to weakly
impose C0 continuity at the interfaces between the patches in a slave-master set-
ting. This approach consists of a combination of the penalized approach and mortar
(or dualized) methods, which respectively correspond in this formulation to the bilin-
ear forms bkl and ckl. It is particularly suitable for industrial applications due to its
capability to manage complex multi-patch systems without the need for conformity
conditions at the interfaces, such as matching knot vectors or degrees.

As discussed in Adam et al. (2020), the selection of the space of the Lagrange
multipliers is of pivotal importance for the proof of the inf-sup stability condition and
for the provision of an adequate approximation of the dual space. A suitable discrete
approximation Mkl,h = Mlk,h ⊂ L2(γkl)

2 of this space is defined as follows:

Mkl,h = {w ∈ trklUs(kl),h, with wB = 0 at all corners of Ds(kl)} (34)

15



where denotes s(kl) a restriction to the arbitrarily chosen slave edge of the interface
γkl.

Then, the problem of linear elasticity on the elastic Reisnner-Mindlin multi-patch
shell is to find the discrete displacements u = {uk} ∈

∏
k Uk,h and the Lagrange

multipliers {λkl} ∈
∏
kMk,h such that the elastic equilibrium equation is satisfied:

∑
k

ak(uk,vk) +
∑
k>l

%LEkl bkl(uk,vk) +
∑
k>l

ckl(λkl, trkluk − trklul) =
∑
k

Lk(vk)∑
k>l

ckl(µkl, trkluk − trklul) = 0
(35)

for arbitrary test functions {vk} ∈
∏
k Uk,h and Lagrange multipliers {µkl} ∈∏

kMk,h. In this problem, %LEkl is a large penalty factor for the interface γkl associated
with the linear elasticity problem (LE).

6 Shape optimization problem

The optimization problem under consideration seeks to determine the material distri-
bution within the multi-patch mid-surface D, subject to given loading and boundary
conditions. Accordingly, we impose a constraint ensuring that the region ∂DN remains
unchanged throughout the evolution of the shape Ω. Additionally, we denote a region
∂DD where the shell is subject to constraints on displacement or rotation, while allow-
ing the shape to evolve freely within this region. Thus, the set of admissible shapes
can be defined as follows:

Uad = {Ω ⊂ D : ∂ΩN = ∂DN and ∂ΩD ⊂ ∂DD} (36)

We propose the study of a general cost function J : P(D) → R that aims to
minimize the volume of the shape Ω while simultaneously taking into consideration
stress criteria in two distinct ways. The first is to consider the Lp norm of the von
Mises stress, which allows for reducing the values of stress on the whole shape. The
second is a pointwise penalization of the von Mises stress greater than the yield stress
σY > 0 of the material. This objective function is expressed as:

J (Ω) =
∑
k

∫
Ωk

1Ωk dVk︸ ︷︷ ︸
volume

+ΛP

(∑
k

∫
Vk

(σvm(u))p dVk

) 1
p

︸ ︷︷ ︸
Lp norm of von Mises stress

+ΛQ
∑
k

∫
Ωk

Φq

(
σvm(u)2

σ2
Y

)
dVk︸ ︷︷ ︸

stress constraint

(37)

where ΛP ,ΛQ > 0 are two fixed scale factors chosen arbitrarily, and u = {uk} ∈∏
kH

1
D(Dk) is the multi-patch displacement field, solution of linear elasticity problem

(35). We remark that both the p-norm and the displacement u itself depend on the
shape Ω and the level set functions {φk}.
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The stress constraint is addressed in accordance with the methodology proposed
by Amstutz (2010) to permit the enforcement of the condition σvm

σY
< 1 throughout

the domain. This is accomplished by the penalization function Φq, depicted in Figure
8. In order for the aforementioned constraint to be satisfied, it is necessary that both
the integer parameter q and the penalty factor ΛQ are sufficiently large.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

t

Φq(t)

q = 1
q = 2
q = 4
q = 8
q = 16
q = 32

Fig. 8: Penalization function from Amstutz and Novotny (2010) used to ensure the
condition σvm

σY
< 1.

The optimization problem aims to find the optimal shape Ω∗ ∈ Uad such that:

J (Ω∗) = inf
Ω∈Uad

J (Ω),

subject to (35) (38)

It is noteworthy that the p-norm in problem (38) can be equivalently formulated in
terms of the yield stress σY > 0 as proposed in Wang and Li (2013). In this formulation,

the p-norm term in the cost function in equation (37) is replaced by
∥∥∥σvm(u)

σY

∥∥∥
Lp(D)

,

which allows to view the cost function as a penalization of stresses greater than the
yield stress. The integer p can therefore be selected to enhance the penalization effect.
Additionally, we also remark that the p-norm can also be interpreted as an approx-
imation of the maximum stress, since it tends to the essential supremum of σvm as
p→∞.

This problem is solved using the level set method detailed in Section 3. The velocity
field v(x, t) of the Hamilton-Jacobi in equation (17) is coupled with the descent direc-
tion of the cost function in equation (37). This descent direction is derived through
a regularization process applied to the shape derivative of the objective function
J . In the present study, we present a tensor representation for the Lp norm shape
derivative, also called distributed shape derivative (see Laurain, Antoine and Sturm,
Kevin (2016)), demonstrated through a similar mathematical approach as seen for the
compliance in Laurain (2018).
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Regularization field on the tangent bundle. The evolution of the material points
within the domain is governed by a velocity field denoted as θ, also called the regu-
larization field, which corresponds to the descent direction of the cost function. It is
imperative for this field to satisfy to two crucial conditions. First, we mandate that
the field θ is restricted to the tangent bundle of D to ensure the preservation of the
thickness of the shell. Second, at the boundary points, the of the field direction point-
ing outward from the shell is enforced to be zero, thus guaranteeing that the shape
remains contained within the optimization domain D.

Following these conditions, let us introduce the function space Θ(Dk) of the
regularization fields:

Θ(Dk) =

{
ϑk ∈ (H1(Dk))3 : ϑk · a3 = 0 in Dk and

ϑk · tN = 0 on ∂Dk \
K⋃
l=1
l6=k

γkl

}
,

(39)

recalling that tN ∈ T (Dk) is the unit outward normal to ∂Dk in the tangent space
and ai denotes the contravariant basis in the mid-surfaces, obtained by ai · aj = δji .

To obtain the tensor representation of the shape derivative, we consider a Lan-
gragian approach where we follow the evolution of the points in R3 given a velocity
field θ ∈ Θ(Dk). To track the position of a point x0 ∈ R3 in the course of a pseudo-
time t ∈ [0, τ ], we introduce the mapping Υt : R3 → R3, defined by Υt = x(t) where
x(t) : [0, τ ]→ R3 is the solution of the ODE:

dx

dt
(t) = θ(x) for t ∈ [0, τ ] and x(0) = x0. (40)

Using the map Υt, we track the evolution of a given initial shape Ω in terms of
the pseudo-time with:

Ωt = Υt(Ω). (41)

Let us introduce the definition of the shape derivative as in Laurain, Antoine and
Sturm, Kevin (2016).
Definition 1 (Shape derivative). Let J : P(D)→ R be a shape function.

(i) The Eulerian semiderivative of J at Ω in direction θ ∈ Θ(D), when the limit
exists, is defined by

dJ(Ω; θ) := lim
t↘0

J(Ωt)− J(Ω)

t

(ii) J is shape differentiable at Ω if it has a Eulerian semiderivative at Ω for all
θ ∈ Θ(D) and the mapping

J ′(Ω) : Θ(D)→ R, θ 7→ J ′(Ω)(θ) = dJ(Ω; θ)

is linear and continuous, in which case J ′(Ω)(θ) is called the shape derivative
at Ω in the direction of θ.
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The shape derivative of the cost functional in equation (37) is already known from
several works, see for instance Allaire and Jouve (2008); Picelli et al. (2018); Goo
et al. (2016); Ho-Nguyen-Tan and Kim (2021). The expression of the shape derivative
is given by a boundary integral, which is usually computed numerically as a volume
integral by means of a Dirac function using the sign function (see Allaire et al. (2004),
page 384). In the present paper, however, we propose an alternative formula that is
instead expressed as an integral directly over the volume, using a tensor representation.
We will show later that both formulations are equivalent.
Definition 2 (Tensor representation). Let Ω ∈ P(D) be an open set. A shape
differentiable function J admits a tensor representation of order 1 if there exists two
tensors Fα ∈ Lα(D,Lα(Rd,Rd)) with α = 0, 1 such that

J ′(Ω)(θ) =

∫
D
F1 : ∇θ + F0 · θ dx.

Let us now consider how to derive the tensor representation of the shape derivative
related to the cost functional in 37. For the sake of simplicity of notation during this
derivation, let us consider the functional:

J(Ω) :=

∫
Ω

f(Ae(u)) dV, (42)

where f is a given integrand function of the stress and A is a second order such
that for any second order symmetric tensor χ we have Aχ = 2µχ + λtrχ I. We have
chosen to derive the expression depending on the function f so that the expression of
of notation allows us to deal with a wider set of cost functionals and not only that
of the special case of our interest, namely the norm Lp of the von Mises stress. In an
ersatz approach, we also consider introducing the notation Aφ to extend the integral
(42) over the shape Ω to the whole domain D by multiplying the original tensor A by
a small factor e > 0 on the void phase:

Aφ = A1Ω + eA1D\Ω. (43)

6.1 Change of variables

Since we write our problems of interest in terms of weak formulations of an evolving
shape Ωt, we now consider applying a number of variable changes using the parameter-
ization Υt to rewrite all the problems in terms of the unchanged domain D. Therefore,
we will rewrite the cost function and the linear elasticity problem using the transfor-
mation x 7→ Υt(x). For such purposes, let us consider the two definitions ut := ut◦Υt

and E(t,ut) := ε(ut) ◦ Υt. The idea is that ut and ε(ut) express the displacement
field and strain tensor in the deformed configuration, i.e. in Ωt, while ut and E(t,ut)
express the same quantities but directly over the underformed shape D.
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Let us investigate the relationship between the derivatives of ut and those of ut. By
applying the chain rule on a composition, we get ∇ut = ∇(ut ◦Υt) = ∇ut ◦Υt∇Υt.
Subsequently, we can express E(t,ut) in terms of ∇ut as:

E(t,ut) = ε(ut) ◦Υt =
1

2

(
∇ut ◦Υt +∇uTt ◦Υt

)
=

1

2

(
∇ut ◦Υt

(
∇Υt∇Υ−1

t

)
+∇uTt ◦Υt

(
∇ΥT

t ∇Υ−Tt
))

=
1

2

(
∇ut∇Υ−1

t +∇Υ−Tt
(
∇ut

)T)
.

(44)

By denoting δ(t) = |detJΥt | the determinant of the Jacobian of the transformation
Υt, the cost function can be rewritten with this change of coordinates as:

J(Ω) =

∫
Ωt

f(Aε(ut)) dVt =

∫
D
f(AφE(t,ut))δ(t) dV (45)

Similarly, the weak formulation of the linear elasticity problem, stated in equation
(35), can be rewritten with the change of coordinates x 7→ Υt(x) as:∫

D
AφE(t,ut) : E(t,v)δ(t) =

∫
∂DN

g · v (46)

6.2 Lagrangian approach

For the optimization problem in equation (38) we consider a Lagrangian approach.
Let us then define the Lagrangian L : [0, τ ]×H1

D(D)×H1
D(D)→ R as:

L(t,v, q) =

∫
D
f(AφE(t,v))δ(t) dV +

∫
D
AφE(t,v) : E(t, q)δ(t) dV −

∫
∂DN

g · q ds

(47)
We remark that the first term of the Lagrangian in 47 is related to the cost func-

tional in 42. The two subsequent terms are that of the weak formulation computed in
46. Therefore, if we take ut ∈ H1

D(D) solution of the linear elasticity at time t over
the domain Ωt, we have that L(t,ut, q) = J(Ωt) for any q ∈ H1

D(D). Note that with
this, one can compute the shape derivative with

J ′(Ω)(θ) =
d

dt
(L(t,ut, q))|t=0 (48)

Additionally, notice that where we simplified the weak formulation in (35) since in
our applications fV , fS , m are all zero across all patches.
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6.2.1 The adjoint problem

The adjoint equation is obtained as an optimility condition, which is defined by the
problem:

Find p ∈ H1
D(D) such that

〈∂L(0,u,p)

∂v
,ϕ
〉

= 0 ∀ϕ ∈ H1
D(D) (49)

Hence, by differentiating the Lagrangian in equation (47) with respect to v, one
has that:

〈∂L(0,u,p)

∂v
,ϕ
〉

=

∫
Ωt

f ′(AE(0,u)) : AE(0,ϕ)δ(0) dV+

∫
Ωt

AE(0,ϕ) : E(0,p)δ(0) dV

(50)
We rearrange this equation using the fact that δ(0) = 1 and E(0,v) = e(v) for

∀v ∈ H1
D(D). To rearrange the order of terms in the double contracted product, we

consistently use the property D : BC = BTD : C = DCT : B, for any second order
tensors D, B and C. With these considerations, the adjoint problem can be stated as
finding p ∈ H1

D(D) such that:∫
Ω

Aε(p) : ε(ϕ) dV = −
∫

Ω

Af ′(Aε(u)) : ε(ϕ) dV ∀ϕ ∈ H1
D(D) (51)

where f ′ designates the derivative of the function f with respect to the components
of the tensor Aε(u).

With an integration by parts, it can be shown (see Allaire and Jouve (2008)
for instance) that the variational problem (51) is equivalent to the following strong
formulation:


−div(Aε(p)) = div (Af ′(Aε(u))) in Ω

p = 0 in ∂ΩD

(Aε(p))n = −(Af ′(Aε(u)))n in ∂ΩN ∪ ∂Ω0

(52)

6.3 The shape derivative

In the context of the Lagrangian approach, one can compute the shape derivative
using:

J ′(Ω)(θ) =
d

dt
(L(t,ut, q))

∣∣∣
t=0

=
∂

∂t
(L(0,u0,p0)) (53)

Hence, we differentiate the Lagrangian in (47) with respect to the pseudo-time:
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J ′(Ω)(θ) =

∫
D
f ′(AφE(0,u)) : ∂tAφE(0,u)δ(0) +

∫
D

Aφ∂tE(0,u) : E(0,p)δ(0)

+

∫
D
AφE(0,u) : ∂tE(0,p)δ(0) +

∫
D
f(AφE(0,u))divθ

+

∫
D
AφE(0,u) : E(0,p)divθ

(54)

To simplify this expression, we make use of the fact that E(0,v) = e(v) for all
v ∈ H1

D(D). Combining this with equation (44), it holds for all v ∈ H1
D(D) that:

∂tE(0,v) =
−∇v∇θ −∇θT∇vT

2
(55)

Finally, using equation (55), one can simplify (54) into:

J ′(Ω)(θ) =

∫
D
F1(u,p) : ∇θ (56)

where

F1(u,p) =−∇uTAφf
′(Aφε(u))−∇uTAφε(p)−∇pTAφε(u)

+ (f(Aφε(u)) +Aφε(u) : ε(p)) I
(57)

where I is the second order identity tensor.
Note that we have found a tensor representation for the shape derivative expressed

with a volume integral. However, this shape derivative is usually expressed Allaire and
Jouve (2008); Picelli et al. (2018); Goo et al. (2016); Ho-Nguyen-Tan and Kim (2021)
as the following boundary integral:

J ′(Ω)(θ) =

∫
∂Ω

θ · n (f(Aε(u)) +Aε(u) : ε(p)) ds (58)

We will demonstrate the expression of the shape derivative as a volume integral in
(56) is equivalent to that written as a boundary integral as in equation (58). For this
propose, let us enunciate proposition from Laurain (2018).
Proposition 1 (Boundary to volume representation). Let Ω ∈ P(D) and
assume ∂Ω is C2. Suppose that the shape derivative of a cost functional J has a ten-
sor representation as in definition (2). If F0 and F1 are of class W 1,1 in Ω and D \ Ω,
then we obtain the so-called boundary expression of the shape derivative:

J ′(Ω)(θ) =

∫
∂Ω

vθ · n

with v := [(F+
1 −F

−
1 )n] ·n, where + and - denote the restrictions of the tensor to

Ω and D \ Ω.
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Let us now demonstrate that the expression of the shape derivative as a volume
integral in (56) is equivalent to that written as a boundary integral as in equation
(58). We have already established that the shape derivative in equation (56) is a tensor
representation. Furthermore, by means of the proposition (1), we have that:

v = [(F+
1 − F

−
1 )n] · n = [(F (u,p)− 0)n] · n

= (−∇uT (Af ′(Ae(u))n+Ae(p)n)︸ ︷︷ ︸
=0 on ∂Ω\∂ΩD

−∇pT Ae(u)n︸ ︷︷ ︸
=0 on ∂Ω0

+ (f(Ae(u)) +Ae(u) : e(p)) In) · n

= f(Ae(u)) +Ae(u) : e(p)

In particular, the shape derivative of the cost function (37) can be obtained through
a similar Lagrangian approach. It follows that this shape derivative can be expressed
as

J ′(Ω)(ϑ) =
∑
k

∫
Ωk

divϑk +
∑
k

∫
Dk
F1(uk,pk) : ∇ϑk, (59)

where F1 is computed with equation (57) and the adjoint problem (51), both taking
the function σ 7→ f(σ) as

f(Ae(vk)) =
ΛP

p
(‖σvm(u)‖Lp(D))

1−p(σvm(vk))p + ΛQΦq

(
σvm(vk)2

σ2
Y

)
(60)

6.4 The regularization problem

Let us introduce the finite dimensional funcional space Θh(Dk) ⊂ Θ(Dk) of the
regularization problem, where the fields {θk} are approximated by NURBS basis
functions:

Θh(Dk) =
{
ϑ = ϑ̂ ◦ S−1

k : ϑ̂ ∈
⊗
i∈[[0,2]]

R(dki ,Ξki)
}
, (61)

recalling that R(dki ,Ξki) is the set of rational B-splines function defined on the
patch k of degree dki and with the knot vector Ξki in the direction i ∈ {0, 1, 2}.

Considering an identification problem using a scalar product over Θ(Dk), we can
formulate the single-patch case problem, which is enunciated by the following
variational problem:

Find θ ∈ Θh(D) s.t.

∫
V

∇Dθ : ∇Dϑ = −J ′(Ω)(ϑ) ∀ϑ ∈ Θh(D) (62)

This approach can easily be generalized to a multi-patch case, similarly to what
has been proposed for the linear elasticity case in Hübner Scherer et al. (2024), by
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means of a penalty approach. Therefore, the regularization problem aims to find the
field θ = {θk} ∈

∏
k Θh(Dk) such that

∑
k

∫
Vk

∇Dθk : ∇Dϑk+
∑
k>l

%Rklbkl(θk,ϑk) = −
∑
k

J ′(Ωk)(ϑk) ∀ϑ = {ϑk} ∈
∏
k

Θh(Dk)

(63)
where %Rkl is a penalty factor for the interface γkl of the regularization problem. It

is worth noting that the left-hand of the equation does not depend on the level set
function, meaning it is the same for all iterations. Denoting L the resulting matrix
related to this term, it is therefore possible to reuse the factorization of the L, thereby
considerably reducing computational cost.

In Figure 9, an example of non-conforming multi-patch system is illustrated demon-
strating how the boundary conditions and the continuity of the fields are imposed
in the borders of the patches. On the external boundaries, the regularization field
θ ∈

∏
k Θ(Dk) satisfies the condition tN · θk = 0 for ∀k. On th internal interface, the

continuity of the fields is weakly imposed by the penalization bkl of the problem 63.

Fig. 9: Illustration of the boundary conditions and continuity conditions for a non-
conforming multi-patch regularization problem.

The entire approach can be written in the format of a short algorithm, summa-
rizing the different steps executed during the optimization. The technical details on
the numerical implementation of this approach, along with its numerical results, are
discussed next in Section 7. Further detail on the resolution of the regularization field
on the tangent bundle and the resolution of the Hamilton-Jacobi on a non-conforming
parameterized shell were presented in a previous work Hübner Scherer et al. (2024).
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Algorithm 1 Stress-based topology optimization with isogeometric analysis

Input:
Multi-patch geometry using a set of NURBS parametrizations {Sk}
Discretization grid [Ĝk] of the parametric domain D̂k
Initial level set discretizations [φk](0)

Parameters ΛP ,ΛQ, σY , p, q

Compute:
L← Calculate and factorize the matrix of the regularization problem (63)
for m ≥ 0 iterate until convergence do
{φk}(m) ← Compute the NURBS interpolation of [φk](m) over [Ĝk]
{uk}(m) ← Solve linear elasticity on the shell (35) with {φk}(m)

{pk}(m) ← Solve adjoint problem on the shell (51) with {uk}(m) and {φk}(m)

J (m) ← Compute cost function
if m == 0 or J (m) < J (m−1) then
J ′ ← Compute shape derivative using (59)
{θk}(m) ← Solve regularization (63) with L and new right-hand term J ′

else
Decrease ∆t of Hamilton-Jacobi
Set {θk}(m) ← {θk}(m−1)

end if
[φk](m+1) ← Solve evolution equation (17) with {θk}(m), {φk}(m) and ∆t

end for

7 Numerical results

The numerical results presented in this section were obtained using a Python-based
implementation of the algorithm (1). The just-in-time compiler from the numba Lam
et al. (2015) was used to approach the speed of C or Fortran. The PyPardiso package
Schenk et al. (2000) was employed to efficiently solve linear systems and perform LU
factorization. Furthermore, the numba package was utilized for fast spline evaluations
based on the approach outlined in Dierckx (1994).

Throughout this study, we tackled non-dimensionalized problems with a Poisson’s
ratio of ν = 0.3 and a Young’s modulus of E = 1, except where explicitly stated
otherwise. All geometrical dimensions and force magnitudes have been normalized
from the International System of Units (SI), thus ensuring coherent correspondence
with all non-dimensionalized variables. The penalty parameters were set to %LEkl = 103

and %Rkl = 105. The degree of the NURBS representing the geometries and the level
set wad set to three for all problems.

For each one of the examples elaborated, the number of elements in each patch is
chosen such that the corresponding elements in the physical domain have an approx-
imative uniform distribution. To achieve this desired number of elements, h- and
p-refinement are executed, yielding a uniformly distributed knot vector, with the
exception of the first and last values, which have multiplicity dα + 1 to guarantee
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interpolatory control points in the boundaries. As for the local interpolation of the
trimming procedure, polynomials degree two were employed.

To numerically determine the properties of the weaker phase, the properties of
the stronger phase are scaled by a small positive factor. The Young’s modulus of
the stronger phase is multiplied by a factor of 10−3 while the Poisson’s ratio is kept
the same. In addition, the condition ∂ΩN = ∂DN in the set of admissible shapes in
(36) is fulfilled by artifially increasing by a factor of 103 the stiffness elements of L
corresponding to the zones DN . Additionally, for the stress-constrained cases, we also
consider that the von Mises stress is zero on these regions when computing the shape
derivative.

7.1 Example 1: multi-patch non-conforming cantilever 1.6× 1

The first problem aims to validate the approach on the classical cantilever beam setting
(see Allaire and Jouve (2008), for instance), which we represent in this context as a
multi-patch geometry with two non-matching patches. Both are parameterized with
a rectangular NURBS thick shell of dimensions 0.8 × 1.0 and thickness ε = 0.01. An
in-plane concentrated force of direction −e2 and magnitude 10−4 is applied on the
patch D1 domain at global position position (1.6, 0.5), as illustrated in Figure 10. The
patches D0 and D1 were discretized with 90 × 90 and 80 × 80 elements respectively,
resulting in a non-matching interface γ10.

This example is set as a minimization of the volume and the norm L2 with a fixed
parameter ΛP = 2. Initially, the optimization was executed without stress constraints,
which resulted on a optimal shape with maximum von Mises stress of 0.46. Subse-
quently, a fictitious material with a yield stress σY = 0.35 is considered, and the stress
constraint of σvm < σY is imposed while maintaining the parameter value of ΛP = 2.
To enforce this condition, a fixed penalization parameter ΛQ = 104 is applied with in
two distinct penalization functions Φq given by q = 4 and q = 6. The resulting stress
distributions for the different optimization cases are displayed in Figure 11.
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Fig. 10: Example 1 - cantilever beam 1.6× 1.0 with one vertical concentrated force.
On the top panel, the CAD geometry of the optimization domain along with a coarse
proportional representation of the used control points. On the bottom, the deformed
configuration is displayed along with the magnitude of the corresponding displace-
ment field. One can also observe the loads and boundary conditions applied to the
optimization domain D.

Fig. 11: Example 1 - cantilever beam 1.6× 1.0 with one vertical concentrated force.
Optimal designs for the cantilever beam in a volume and L2 norm minimization. From
left to right: the von Mises stress distribution for the unconstraint and the constraint
cases for q = 4 and q = 6.
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The evolution of the objective function, the volume and the L2 norm of the von
Mises stress are displayed in Figure 12. One can also observe the evolution of the
maximum stress computed in the integration points during the trimming procedure, as
well as the penalization function Φq. The plots indicate that when q = 4, the process
converges to a suboptimal condition, as evidenced by the value of the maximum stress
approaching only 86% of σY . In contrast, when q = 6, the volume was reduced until the
maximum von Mises stress reached a value corresponding to 96% of the yield stress.

Fig. 12: Example 1 - cantilever beam 1.6× 1.0 with one vertical concentrated force.
On the top, the evolution of the objective function, the L2 norm of the von Mises
stress and the volume with the increasing number of iterations shows the convergence
of the optimization process. On the bottom, the evolution of the maximum von Mises
stress computed in the integration points and the penalization function Φq.

7.2 Example 2: conforming multi-patch L-shape

The second example under examination is dedicated to validate the approach on struc-
ture with stress concentration points, based on a geometry studied in Holmberg et al.
(2013). The optimization domain is a L-shaped geometry, represented by two rectan-
gular patches of thickness ε = 0.01 and dimensions indicated in Figure 13. For the
IGA discretization, the side of unit length in patch D0 is partitioned into 80 elements,
while the others dimensions are discretized to ensure a uniform element size in the
physical space, which results in a total of 11289 elements. The optimization problem
is set as a unconstraint minimization of the volume and the p-norm considering p = 6
and ΛP = 1.5. In Figure 13, one can observe that the optimized shape avoids having
a sharp corner on the point with stress concentration.
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Fig. 13: Example 2 - L shape thick-shell. On the top panel, the CAD geometry of
the optimization domain along with a coarse proportional representation of the used
control points. On the middle, the deformed configuration is displayed along with the
magnitude of the corresponding displacement field. One can also observe the loads and
boundary conditions applied to the optimization domain D. On the bottom, the von
Mises stress is shown in a non-deformed configuration, where one can also visualize the
entire optimization domain. On the left, the shape corresponding to the initialization
of the optimization is displayed. On the right, one can see the optimal shape for the
norm L6 obtained on iteration 500.
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7.3 Example 3 - non-conforming quarter annulus

The following example explores a multi-patch optimization domain in the form of
in-plane arched domain, designed to validate the approach on domains with curved
interfaces and non-matching discretizations. We consider two patches composing the
quarter annulus, depicted in Figure 14, of internal and external radius of 1 and 2,
respectively. For the IGA discretization, the straight sides of the quarter annulus of
patches D0 and D1 are discretized with 51 and 53 elements, yielding a total of 12692
elements.

Similar to Example 1, we first run the unconstraint optimization for the norm L2

with a fixed parameter ΛP = 1.9. The maximal von Mises stress found in the inte-
gration points during this process was 0.42. Next, we perform a second optimization
process this time constraining the stress to a value inferior to the maximum stress of
the unconstraint optimum, namely σY = 0.35. The penalization parameter ΛQ was
set to 103 and q = 12. This process yields the shapes shown on the right of Figure
14, in which the contour of the constrained optimum is illustrated in red over the
unconstrained shape.
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Fig. 14: Example 3 - quarter annulus. On the top panel, the CAD geometry of the
optimization domain along with a coarse representation of the used control points.
On the middle, the deformed configuration is displayed along with the magnitude of
the corresponding displacement field. One can also observe the loads and boundary
conditions applied to the optimization domain D. On the bottom, the von Mises stress
is shown in a non-deformed configuration, where one can also visualize the entire
optimization domain, as well as the contour of the constrained optimal shape. On the
left, the shape corresponding to the initialization of the optimization is displayed. On
the right, one can see the optimal shape obtained on iteration 145.

31



The convergence of the objective function, the L2 norm of the von Mises stress, the
volume are displayed in Figure 12. The evolution of the maximum stress in the domain,
as well as the penalization function Φq are also displayed through the iterations. The
constraint optimization converges to a value 2.5% above the yield stress.

Fig. 15: Example 3 - quarter annulus. On the top, the evolution of the objective func-
tion, the L2 norm of the von Mises stress and the volume with the increasing number
of iterations shows the convergence of the optimization process. On the bottom, the
evolution of the maximum von Mises stress computed in the integration points and
the penalization function Φq.

7.4 Example 4: conforming multi-patch T-shape

In the subsequent problem, the method is tested on a geometrially conforming multi-
patch T-shape domain under an out-plane load, as depicted in Figure 16, as proposed
in Ho-Nguyen-Tan and Kim (2021). This configuration comprises of four identical
shells of dimension 20× 20, each with a thickness of ε = 0.5 and Young modulus E =
2.1 ·105. At the position indicated in Figure 16, a force of magnitude one is distributed
symmetrically on five boundary adjacent control points. The NURBS surfaces are
discretized with 60 × 60 each, resulting in a matching discretization with a total of
14400 elements.
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Fig. 16: Example 4 - T-shape. On the top panel, the CAD geometry of the opti-
mization domain along with a coarse proportional representation of the used control
points. On the bottom, the deformed configurations of the initialization and optimal
shape for p = 12 are displayed along with the magnitude of the corresponding dis-
placement field. One can also observe the loads and boundary conditions applied to
the optimization domain D.

The objective of this configuration is to demonstrate how an increase in p corre-
sponds to a more accurate approximation of the maximal stress. Two unconstrained
optimization problems are solved for minimizing the volume and the p-norm for p = 2
and p = 12. The values of the parameter ΛP are respectively set to 4.12 and 5.25. For
these parameters values, both processes converge to the same volume fraction of 0.13
within a relative difference < 0.1%, thereby enabling a direct comparison between the
shapes. In Figure 17, one can visualize how the optimal shape corresponding to the
L12 is more effective in avoiding to obtain stress concentration points. The maximum
stress of the L2 optimal shape is 122, which is reduced to 65 when p = 12.

33



Fig. 17: Example 4 - T-shape. Comparison between optimal shapes obtained for p-
norm when p = 2 (left) and p = 12 (right) for a fixed volume fraction of 0.13. The von
Mises stress is shown in a non-deformed configuration, where one can also visualize
the entire optimization domain.

7.5 Example 5: conforming cantilever 3D

In the next example, we address a conforming multi-patch domain as depicted in
Figure 18. This geometry is defined with eight patches, each with a thickness of ε = 0.1,
to which two concentrated forces of magnitude 10−4 are applied at the indicated
position. In the IGA spatial discretization for linear elasticity and regularization, we
chose in each patch a parametric discretization such that the elements in the physical
domain are uniformly distributed. With this condition, the length L1 subdivided with
uniformity using 100 elements, resulting in a total of 21186 elements. We consider a
unconstraint minimization of the volume and L2 norm with ΛP = 180.

This example allows us to obtain a three dimensional representation of the can-
tilever beam in Example 1. As also pointed out in Allaire and Jouve (2008), the
cantilever beam example has an optimal solution similar for compliance and von Mises
stress minimization. In Hübner Scherer et al. (2024) we tested this example for the
compliance minimization, also obtaining a nearly identical solution to that of the
present three dimensional equivalent.
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Fig. 18: Example 5 - conforming cantilever 3D. From left to right: the optimiza-
tion domain, the initial deformed shape with the applied loads and the final optimal
deformed solution found after 57 iterations. The blue zones on the left geometry rep-
resent the stiffness region for the regularization problem. The colors on both deformed
configurations are set using the same scale and correspond to the magnitude of the
displacement field.

We present the evolution of the optimization process in Figure 19, where the plots
of the objective function, the L2 norm of the von Mises stress and the volume. Three
different stages of the shape’s evolution are presented. After 13 iterations, the shape
is already quite similar to that obtained at iteration 57, as shown in more detail in
Figure 20.

Fig. 19: Example 5 - conforming cantilever 3D. The evolution of the objective func-
tion, the norm L2 and the volume with the increasing number of iterations shows the
convergence of the optimization process. The evolution of the shape is displayed at
iterations 4, 13 and 57.
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Fig. 20: Example 5 - conforming cantilever 3D. The optimal shape obtained at
iteration 57 and its corresponding von Mises stress field.

7.6 Example 6: torsion of a cylinder

The final problem under examination demonstrates the robustness of the approach in
predominantly curved geometries. In this example, two concentrated forces of magni-
tude 10−4 create a torsional load applied to a cylindrical structure composed of four
patches of thickness ε = 0.1, as illustrated in Figure 21. The cylinder was discretized
with 80 elements in the e3 direction. A commensurate refinement was applied in the
perpendicular direction so that a uniform element distribution is obtained in the phys-
ical domain, yielding a total of 16000 elements. The problem is set as an unconstraint
minimization of the volume and the L2 norm with a fixed multiplier ΛP = 160.

Fig. 21: Example 6 - torsion of a cylinder. From left to right: the optimization domain,
the initial deformed shape with the applied loads and the final optimal deformed solu-
tion found after 145 iterations. The blue zones on the left geometry represent the
stiffness region for the regularization problem. The colors on both deformed configura-
tions are set using the same scale and correspond to the magnitude of the displacement
field.

In Figure 22, one can visualize the evolution of the algorithm through the plots of
the objective function, the norm L2 of the von Mises stress and the volume, as they
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vary with the increasing number of iterations. This figure highlights three stages of
this evolution, observed at iterations 4, 23, and 145.

Fig. 22: Example 6 - torsion of a cylinder. The evolution of the objective function,
the norm L2 of the von Mises stress and the volume with the increasing number of
iterations shows the convergence of the optimization process. The evolution of the
shape is displayed at iterations 4, 23 and 145.

Fig. 23: Example 6 - torsion of a cylinder. The optimal shape obtained at iteration
152 and its corresponding von Mises stress field.

8 Conclusion

We proposed a level set based topology optimization algorithm for non-conforming
multi-patch geometries with trimming isogeometric analysis. The numerical results
suggests that the presented method allows to find optimal shapes with smooth CAD
curves of the domain boundaries, which is well suited for industrial applications and,
in particular, additive manufacturing.

We believe that this approach could be easily extended in the future to other
relevant objective functions, such as multi-loading conditions Allaire and Jouve (2005),
maximizing the smallest eigen-frequency, as showcased in Allaire and Jouve (2005);
Xu et al. (2019), and targeting a desired behavior, as in Allaire et al. (2004); Agnelli
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et al. (2022). Another interesting possibility is to apply this technique to investigate
the effect of randomly distributed quantities, for instance Young’s modulus or the shell
thickness, on the the optimal shapes, as in Koh and Cirak (2023); Chu et al. (2021);
Khristenko et al. (2022).
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