
HAL Id: hal-04758286
https://hal.science/hal-04758286v2

Preprint submitted on 5 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Locally convergent bi-level MDO architectures based on
the block coordinate descent algorithm

Yann David, François Gallard, Aude Rondepierre

To cite this version:
Yann David, François Gallard, Aude Rondepierre. Locally convergent bi-level MDO architectures
based on the block coordinate descent algorithm. 2024. �hal-04758286v2�

https://hal.science/hal-04758286v2
https://hal.archives-ouvertes.fr


Locally convergent bi-level MDO architectures based on the
block coordinate descent algorithm

Yann David∗1, François Gallard1, and Aude Rondepierre2

1IRT Saint Exupéry, Toulouse, 31000, France
2INSA-Toulouse, Toulouse, 31000, France

Received: date / Accepted: date

Abstract

This paper proposes a new bi-level multidisciplinary design optimization architecture (or
MDO formulation) with variants and proves their convergence properties. MDO architectures
are reformulations of an original MDO problem into one or combined optimization problems.
Distributed architectures define several optimization problems, and can be exploited in indus-
trial contexts to map the separation of responsibilities, models, and computational resources
in the design of sub-systems. Also, they allow to use only some disciplinary blocks of the over-
all MDO problem Jacobian, and do not require the complete coupled adjoint, which is rarely
available in an industrial context. These advantages come at the price of weaker convergence
properties compared to monolithic architectures. The IRT bi-level architecture, which falls
within this category, is derived from the MDF architecture and is highly reliant on a block
decomposition of the lower optimization problem, in which blocks are optimized in paral-
lel. In order to enhance its convergence capability, a novel bi-level architecture is proposed
(BL-BCD-MDF), which solves the lower optimization problem using the well-known Block
Coordinate Descent (BCD) algorithm. The primary findings of this study are twofold. First,
under appropriate hypotheses, the solutions of the reformulated optimization problems are
identical to those of the MDF optimization problem, and the BL-BCD-MDF architecture is
locally convergent. Variants are proposed to enhance flexibility in assumptions and the de-
composition. To the authors’ knowledge, this is the first convergence proof of a distributed
MDF bi-level MDO architecture in the MDO literature. The architectures are benchmarked
on standard MDO problems (Sellar and Sobieski’s SSBJ). Improved functions continuity and
robustness than the IRT bi-level is demonstrated, as well as a superior scalability with respect
to disciplinary design variables than MDF when the full Jacobian is not available.

Keywords: Multidisciplinary Optimization (MDO), Bi-level optimization, Block decomposition,
Block Coordinate Descent (BCD), NonLinear programming

1 Introduction
Multidisciplinary Optimization (MDO) is an engineering field that supports the numerical design
of complex systems, often requiring the simulation and optimization of several interdependent
domains, or disciplines. Over the past few decades, the theory of MDO has been extensively
developed, and the results have been highly promising [18, 9].

A particular area of research in MDO is the so-called MDO architectures or MDO formulations [8,
25] which are generic algorithms used to formulate one or more optimization problems from a set
of disciplines. A given MDO architecture applied to an MDO problem consists of a combination
of computational techniques, such as fixed-point solvers, sub-optimizations, gradient computation

∗Corresponding author: yann.david@irt-saintexupery.com

1



techniques, such as the coupled adjoint [27, 35], that are used together to compute the optimization
criteria of one or more optimization problems, i.e. the objectives and constraints. The different
disciplines are coupled when the input of one model is the output of another and vice versa, so
that they cannot be computed independently. Coupling variables are the variables that create this
interdependence.

Monolithic MDO architectures are well-known for their convergence properties. This is due to
the fact that they formulate a single optimization problem, which ensures the continuity and
differentiability of the objective and constraints if the disciplines are differentiable. Two strategies
are employed to address the couplings. The first of these adds the consistency constraints directly
to the optimizer, resulting in the Individually Disciplinary Feasible (IDF) architecture [25] and its
derivatives. The second approach employs an iterative process, typically Jacobi or Gauss-Seidel
type, called Multidisciplinary Analysis (MDA) to solve the couplings. The most fundamental
architecture based on this strategy is the Multidisciplinary Feasible (MDF) architecture [25].

On the other hand, MDO architectures that handle multiple optimization problems, called dis-
tributed architectures, and especially those that are multilevel, based on the generalization of
Benders’ decomposition [17], are less studied and the convergence properties of the algorithms are
more difficult to establish. The great potential of MDO architectures lies in exploitation of the
problem structure. First, the design variables (optimization variables) may directly affect only one
discipline (the local design variables) or at least two (the shared design variables). The formulat-
ing of multiple optimization problems in an MDO architecture typically exploits this separation
by assigning the shared design variables x0 to a top-level optimization problem, and the local
design variables x to the sub-optimization problem. In a bi-level decomposition, the following
MDF-based monolithic optimization problem

min
(x0,x)∈(X0×X )

f(x0, x,Ψ(x0, x)) s.t G(x0, x,Ψ(x0, x)) ≤ 0 (Pmono)

is reformulated as

min
x0∈X0

f(x0, x
∗(x0),Ψ(x0, x

∗(x0)))

s.t. gup(x0) ≤ 0, x∗(x0) = argmin
x∈X

{f(x0, x,Ψ(x0, x)) s.t g(x0, x,Ψ(x0, x)) ≤ 0}.
(Pbl)

Where gup is the subset of G which does not depends directly on the local variable vector x nor
the couplings y = Ψ(x0, x

∗(x0)), and g the ones which does. It is often considered that the lower
optimization problem has a unique solution x∗(x0) for each parameter x0 for (Pbl) to be well
defined, this assumption is done throughout this paper. Since the couplings are handled by MDA,
the couplings are implicitly defined by the design variables x0 and x through Ψ.

Figure 1: Bi-level decomposition separating shared and local variables

Following the disciplinary separation, the local variables x can be decomposed into several box-
constrained subsets xi ∈ Xi (i ∈ J1, pK), usually one per discipline. These can then be viewed
as the unknowns of multiple sub-optimization problems resulting from the domain decomposition
of the sub-optimization problem in the previous architecture. Similarly, considering that g can
be decomposed in p subsets gi which depends directly on xi, the previous optimization problem
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(Pmono) can be reformulated by decomposing the set X as X =
∏p

i=1 Xi:

min
x0∈X0

f(x0, x
∗(x0),Ψ(x0, x

∗(x0)))

s.t. gup(x0) ≤ 0

x∗
i (x0) = argmin

t∈Xi

{
f(x0, x

∗
1:i−1(x0), t, x

∗
i+1:p(x0),Ψ(x0, x

∗(x0)))

s.t gi(x0, t,Ψ(x0, x
∗(x0))) ≤ 0

}
, i = 1, . . . , p

(Pbl−dd)

Although bi-level decomposition (Pbl) preserves the solution set of the original problem (cf. Propo-
sition 2.1), decomposing the sub-optimization problem into multiple, coupled ones may not. This
problem is one of the reasons why distributed MDO architectures are considered to have weaker
convergence properties than the monolithic ones [37]. For example, despite efforts in this direction
to improve their practical convergence [26, 39], to the author’s knowledge there is no proof of
convergence properties for classical multilevel architectures such as BLISS98 [35], CO [25]. The-
oretical results exist that address the properties of bi-level optimization [12, 22]. However, these
results do not consider the coupling variables, which represent a key distinction between classical
optimization and MDO.

The main contribution in this paper is the development of a theoretical mathematical framework
for a new bi-level MDO architecture called BL-BCD-MDF and a variant, BL-BCD-WK. This
work builds upon previous research done by Gazaix and al. [14, 15, 16] who proposed a ”Bi-Level
Distributed MDF” MDO architecture, referred to as bi-level IRT, inspired by BLISS98 by Sobieski
et al. [35] and its variants from ONERA [10]. The main improvement of this architecture is the
use of the block coordinate descent algorithm that iterates over sub-optimizations to guarantee
consistency of local design variables in each sub-optimization, as opposed to the purely parallel
computation employed in bi-level IRT, which may result in discrepancies in the system objective
and constraints, potentially impeding the convergence of general gradient-free algorithms.

The paper is structured as follows: in Section 2 we prove that the MDF and the bi-level opti-
mization problems (Pbl) are equivalent in the sense that they have the same theoretical solution
set under a set of disciplinary separability assumptions. We propose sufficient assumptions under
which this reformulation from the MDF optimization problem to the bi-level one does not dete-
riorate important properties such as continuity and differentiability of the system optimization
objective function and constraints. Thus, usual algorithms should be able to solve the system-
level of the bi-level optimization problem. The desired equivalence of architectures is given by (1),
which is the main point to be addressed in Section 2.

min
(x0,x)∈(X0×X )

f(x0, x,Ψ(x0, x))

s.t G(x0, x,Ψ(x0, x)) ≤ 0

⇐⇒

min
x0∈X0

f(x0, x
∗(x0),Ψ(x0, x

∗(x0)))

s.t. gup(x0) ≤ 0

x∗(x0) = argmin
x∈X

{
f(x0, x,Ψ(x0, x))

s.t g(x0, x,Ψ(x0, x)) ≤ 0

} (1)

In Section 3, we investigate algorithms for solving the lower-level problem with the greatest possible
precision, utilizing the block decomposition given by (2).

min
x∈X

f(x0, x,Ψ(x0, x))

s.t G(x0, x,Ψ(x0, x)) ≤ 0

⇐⇒ x∗
i = argmin

t∈Xi

{
f(x0, x

∗
1:i−1, t, x

∗
i+1:p,Ψ(x0, x

∗
1:i−1, t, x

∗
i+1:p))

s.t gi(x0, t,Ψ(x∗
1:i−1, t, x

∗
i+1:p)) ≤ 0

}
i ∈ J1, pK.

(2)

To circumvent the discrepancy issue induced by the bi-level IRT architecture, an emphasis is
placed on a Block Coordinate Descent (BCD) [4] algorithm (also known as Block Gauss-Seidel
(BGS) or Alternating Optimization (AO)) which is used to solve the lower optimization problem.
This algorithm alternatively optimizes each local block until convergence of the entire local design
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vector. Sufficient assumptions are then provided to ensure the convergence of the algorithm. Fig. 2
provides a concise overview of the two approaches considered in this paper for solving the lower
optimization problem, including the distributed resolution used in [14, 15, 16] and the approach
proposed in this paper. Variants are also presented, offering greater flexibility in the design.

(a) BL-IRT (b) BCD

Figure 2: Two approaches to solve the lower problem

In Section 4, the three bi-level architectures are benchmarked on standard MDO problems (Sellar
[34] and Sobieski’s SSBJ [35]). Both the measures of discrepancy error on the system functions and
the ability to reach the MDF optimal design are considered. A scalability study is performed with
respect to the number of local design variables, constraints, and the number of couplings.

2 From MDF to a bi-level architecture
2.1 Multidisciplinary optimization framework
Models that involve the integration of multiple areas of expertise typically result in high-dimensional
and complex optimization problems. Multidisciplinary Optimization (MDO) addresses this issue
by decomposing the model into several interdependent models (referred to as disciplines) that are
then simulated and optimized together.

The primary challenge in addressing an MDO problem is the interdependence between disciplines,
also known as coupling variables. Coupling variables are specific variables that serve as inputs to
one or more disciplines and, at the same time, as outputs to a particular discipline. This in-process
computation often results in inconsistency of the couplings values for the different disciplines, which
is a dead end since MDO problems typically represent physical models.

To deal with the coupling variables and effectively solve a MDO problem, the choice of architecture
is fundamental as it specifies a reformulation of the original optimization problem, a computational
process, and thus a strategy for dealing with the couplings. In general, the literature considers two
broad categories of architectures to handle the coupling variables. The first ones are derived from
the Individual Disciplinary Feasible (IDF) [25] architecture and ensure the coherence between the
couplings by directly constraining the optimizer (called consistency constraints).

However, as the number of disciplines increases, the consistency constraints become more challeng-
ing to satisfy due to the large number of interdependencies. The second category of architectures
eliminates the couplings by using the implicit function theorem and thus defining the couplings
as an implicit function of the other design variables. The resulting implicit function often takes
the form of a Multidisciplinary Analysis (MDA), which is usually a fixed-point iteration method
such as the Jacobi or Gauss-Seidel algorithms. These methods are guaranteed to converge under
mild assumptions required by the Banach fixed-point theorem [1] and nonlinear iteration scheme
[41]. These assumptions include the twice differentiability of the MDA operator and the positive
definiteness of its Hessian in a neighborhood of the solution.
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Eliminating the couplings with an MDA leads to the so-called Multidisciplinary Feasible (MDF)
[25] architecture, which can be described by the following general optimization problem:

min
(x0,x)∈X0×X

(x0, x,Ψ(x0, x)) subject to G(x0, x,Ψ(x0, x)) ≤ 0 (PMDF )

where X0 ⊂ Rn0 and X ⊂ Rn denote the design spaces, f : X0×X×Rm → R the objective function
and G : X0 × X × Rm → Rnc the constraints. The function Ψ : Rn0+n → Rm denotes the MDA
function defined by the implicit function theorem which compute the couplings at equilibrium for
some design vectors x0 and x.

The (PMDF ) architecture is one of the most widely used architectures in the MDO community, so
it will be our reference for elaborating a bi-level architecture. In particular, all assumptions made
to ensure the validity and convergence of the (PMDF ) architecture for gradient-based optimizers
are assumed to be true. In particular, the Banach fixed-point theorem [2] assumptions must hold
to guarantee the existence and uniqueness of fixed points for the MDA. Apart from considering
the MDA as a contraction map, all disciplines are considered as C2 bounded functions, so that
the implicit function theorem holds at each design point (x, x0) to eliminate the coupling con-
straints from the optimization problem. Note that these assumptions ensure that the objective
and constraints are also at least C2 bounded functions.

2.2 A bi-level reformulation of the MDF architecture
In order to exploit the separation of the design variables between the shared and the local variables,
a bi-level reformulation of the MDF optimization problem is proposed:

min
x0∈X0

f(x0, x
∗(x0),Ψ(x0, x

∗(x0)))

s.t. gup(x0) ≤ 0

x∗(x0) = argmin
x∈X

{f(x0, x,Ψ(x0, x)) s.t g(x0, x,Ψ(x0, x)) ≤ 0}
(PBi−Level)

where the function gup defined on Rn0 , gathers the constraints from G(x0, x, y) that depend only
on the shared variables x0. They are handled by the system-level optimization problem. The
function g defined on Rn0 × Rn × Rm, gathers the constraints from G that depend on the shared
variables x0, the coupling variables y and at least one block xi(i ∈ J1, pK)) of the local design
variable x. They are handled by the lower-level optimization problem:

(Plow(x0)) min
x∈X

{f(x0, x,Ψ(x0, x)) s.t g(x0, x,Ψ(x0, x)) ≤ 0}. (3)

By definition, by rearranging the components of G, we have: G(x0, x, y) = [gup(x0), g(x0, x, y)].
This reformulation addresses the optimization problem by decomposing the optimization of the
design vector (x0, x) into two optimization processes. The first process is a system-level opti-
mization problem that optimizes with respect to the shared variable x0 under constraints that do
not depend on x. The second process is a lower-level optimization problem that minimizes the
same objective function according to the local design variable x for a particular value of x0 under
constraints that depend on at least one block of local constraints.

This bi-level reformulation is driven by the fact by the practical observation that shared variables
x0 are expected to be low-dimensional and thus manageable by a gradient-free algorithm, while
local variables (xi i ∈ J1, pK) and couplings (Ψ(x0, x)) are expected to be much more numerous,
justifying the combination of a gradient-based optimizer and fixed-point algorithm to handle them
effectively. Furthermore, coupled derivatives with respect to the shared variables x0 ( ∂Ψ

∂x0
) may

not be available, so that gradient based optimization is only possible if the shared variables are
eliminated.

One of the main assumptions underlying (PBi−Level) is that the mapping x∗(x0) is, in fact, a
function. Consequently, it is postulated that for each value of x0, there exists a unique minimizer
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x∗(x0) for the lower optimization problem. It is important to note that for this assumption to be
valid in practice, it is essential to solve (3) as precisely as possible.

Proposition 2.1. Assume that the lower-level optimization problem (3) admits a unique solution
denoted by x∗(x0) for all the possible values of x0 ∈ X0. Then the two architectures (PBi−Level)
and (PMDF ) are said equivalent in the sense that:

• If x0 is a solution of (PBi−Level), then (x0, x
∗(x0)) is a solution of the (PMDF ) problem.

• If (x0, x) is a solution of (PMDF ), then x0 is a solution of (PBi−Level) and x = x∗(x0).

Proof. Let x0 be a solution of the (PBi−Level) optimization problem and let

x∗(x0) = argmin
x∈X

{f(x0, x,Ψ(x0, x)) s.t g(x0, x,Ψ(x0, x)) ≤ 0}

be the unique solution of the (PMDF ) optimization problem. Let us prove that the point (x0, x
∗(x0))

is solution of the (PMDF ) problem. By definition of x0 and x∗(x0), we easily check that (x0, x
∗(x0))

is an admissible point for the (PMDF ) optimization problem. Let (x′
0, x) ∈ X0 ×X be any admis-

sible point for the (PMDF ) problem i.e. such that: G(x′
0, x,Ψ(x′

0, x)) ≤ 0, which means that:

gup(x′
0) ≤ 0, g(x′

0, x,Ψ(x′
0, x)) ≤ 0. (4)

In particular observe that the point x is admissible for the lower level optimization problem
computed at x′

0, hence:

f(x′
0, x,Ψ(x′

0, x)) > f(x′
0, x

∗(x′
0),Ψ(x′

0, x
∗(x′

0))), (5)

Remembering that x0 is an optimal solution of the problem (PBi−Level), we finally get:

f(x′
0, x,Ψ(x′

0, x)) > f(x′
0, x

∗(x′
0),Ψ(x′

0, x
∗(x′

0))) > f(x0, x
∗(x0),Ψ(x0, x

∗(x0))), (6)

proving that (x0, x
∗(x0)) is an optimal solution of the (PMDF ) problem.

Conversely, let (x0, x) be an optimal solution of the (PMDF ) problem. Let us verify that x0 is
an optimal solution of the (PBi−Level) problem. Let x′

0 be an admissible point for the problem
(PBi−Level) i.e. such that: gup(x′

0) ≤ 0. By definition of x∗(x′
0), we have:

g(x′
0, x

∗(x′
0),Ψ(x′

0, x
∗(x′

0))) ≤ 0

so that the point (x′
0, x

∗(x′
0)) is an admissible point for the (PMDF ) problem. Remembering that

(x0, x) is an optimal solution of the (PMDF ) problem and then using the definition of x∗(x0), we
finally get:

f(x′
0, x

∗(x′
0),Ψ(x′

0, x
∗(x′

0))) > f(x0, x,Ψ(x0, x)) > f(x0, x
∗(x0),Ψ(x0, x

∗(x0)))

proving that x0 is an optimal solution of the (PBi−Level) optimization problem as expected.

In the event that gup also depends on the coupling variable y, the equivalence property is under-
mined. More precisely, if (x0, x) is a solution of the (PMDF ) problem, it cannot be guaranteed
that x = x∗(x0) and that gup(x0,Ψ(x0, x

∗(x0))) 6 0. Consequently, x0 is not guaranteed to be a
feasible point for (PBi−Level). However it should be noted that the bi-level architecture remains
relevant as any solution of the bi-level problem remains a solution of the (PMDF ) problem.

In this paper, for the sake of simplicity, we have chosen to exclude the potential dependency
of the upper level constraints on the coupling vector. This allow us to demonstrate that the
problems (PMDF ) and (PBi−Level) are equivalent in the sense of Proposition 2.1. Moreover, this
is a reasonable assumption given that it is typically met in real-life applications.
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The main difference between the (PMDF ) and the (PBi−Level) architecture lies in the mapping x∗ of
the optimal local design variable according to each shared design variable x0. In fact, the objective
function (x0, x) 7→ f(x0, x,Ψ(x0, x)) is recast as x0 7→ F (x0) = f(x0, x

∗(x0),Ψ(x0, x
∗(x0))), which

is no longer guaranteed to be C1 with respect to the shared variables x0. The introduction of x∗

may therefore result in a deterioration of the convergence properties for the (PMDF ) architecture,
particularly when regularity conditions are required on the functions of interest.

Let us first define the linearized cone of a constraint set at some design point:

Definition 2.1 (Linearized cone). Consider the following feasibility set:

F = {x ∈ Rn | gi(x) ≤ 0, i ∈ {1, ...m}, hj(x) = 0, j ∈ {1, ...r}} .

Assume that all the considered functions are at least C1. The linearized cone of F at x ∈ Rn is
defined by:

CL
F (x) = {d ∈ Rn | ∇gI(x)(x).d ≤ 0,∇hE(x)(x).d = 0} ,

where Ix and Ex are the sets of active inequality and equality constraints at x respectively:

I(x) = {i ∈ J1,mK | gi(x) = 0}, E(x) = {j ∈ J1, rK | hj(x) = 0} .

The following proposition establishes the continuity and the differentiability with respect to the
shared variables x0 by applying the Fiacco’s theorem [12, Theorem 2.1], [36, Theorem 6.7] to the
lower-level optimization problem Plow(x0) defined by (3).

Proposition 2.2. Let f : Rn0 × Rn × Rm 7→ R and G : Rn0 × Rn × Rm 7→ Rnc be at least C2

functions. Let x̄0 ∈ Rn0 be a particular value of the shared variables x0 such that the constraint
qualification holds at x̄0 for Plow(x̄0), in the sense that the gradients of the active constraints at
x̄0 are linearly independent. Denote as F the feasibility set of Plow(x̄0).

Let x∗(x̄0) be a Karush-Kuhn-Tucker (KKT) point of the problem Plow(x̄0) and λ∗(x0) the asso-
ciated Lagrange multiplier. Assume that strict complementary slackness holds (component-wise):

λ∗
i (x̄0) > 0 when gi(x̄0, x

∗(x̄0),Ψ(x̄0, x
∗(x̄0))) = 0, (7)

and that the second order sufficient KKT conditions holds at x∗(x̄0) i.e. that for every direction
d ∈ CL

F (x
∗(x̄0)) \ {0} we have: d>∇2L(x∗(x̄0), λ

∗(x̄0))d > 0 where L denotes the Lagrangian
associated to the problem Plow(x̄0). Then there exists a neighborhood V̄0 of x̄0 such that:

1. x∗(x̄0) is a local isolated minimum point of Plow(x̄0) and the associated multiplier, denoted
by λ∗(x̄0), is uniquely defined.

2. For x0 in V̄0, there exist unique continuously differentiable functions x0 7→ (x∗(x0), λ
∗(x0))

satisfying the second order sufficient conditions for a local minimum of Plow(x0), and x∗(x0)
is a unique local minimizer of Plow(x0) with associated unique Lagrange multiplier λ∗(x0).

3. Strict complementarity and linear independence of the binding constraint gradients hold at
x∗(x0) for x0 in V̄0.

It should be noted that although Fiacco’s theorem is a strong result, it implies the verification of
assumptions that are difficult to verify and obtain. In particular, the existence of continuously
differentiable functions (x∗, λ∗) implies that, in the considered neighborhood, the set of active
constraints remains unchanged. Consequently, in the vicinity of the solution point (x∗

0, x
∗), the

inequality-constrained optimization problems can be regarded as equality-constrained ones, obvi-
ating the necessity for strict complementarity to be verified. This property permits the handling
of inequality constraints as if they were equality constraints, provided that they are in the active
set, with the remainder being discarded.

In this context, the bi-level reformulation (PBi−Level) of the original (PMDF ) problem does not
prevent the application of conventional algorithms to reach the same solution from the upper
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level’s perspective. However, it remains to demonstrate that the lower optimization problem can
be solved in practice.

3 Lower level problem
Let us now consider the lower problem independently from the bi-level architecture:

min
x∈X

f(x0, x,Ψ(x0, x)) s.t g(x0, x,Ψ(x0, x)) ≤ 0 (Plow(x0))

for given shared variables x0. Assume that the design vector x can be partitioned in p non
overlapping blocks denoted by xi ∈ Rni , i = 1, . . . , p, such that omitting the dependence on the
shared variables x0 to lighten the notations, the problem (Plow(x0)) can be reformulated as:

min
x∈

∏p
i=1 Xi

f(x,Ψ(x)) s.t gi(xi,Ψ(x)) ≤ 0 i = 1 . . . p (Plow)

where, reordering if necessary the components of x: x = (x1, . . . , xp) ∈ X1×· · ·×Xp, and Xi denotes
the box-constrained subspace of Rni where lies the ith block xi. The functions gi : Rni×Rm 7→ Rnci

define the constraints which directly depend on the block variable xi and indirectly on the others
block variables x 6=i = (x1, . . . , xi−1, xi+1, . . . , xp) through the coupling function Ψ.

This partitioning of the local variable and constraints allows for the definition of p optimization
sub-problems that consider only a subset of the local variable and constraints. For i ∈ J1, pK, the
ith optimization sub-problem is defined by:

min
t∈Xi

f(x1:i−1, t, xi+1:p,Ψ(x1:i−1, t, xi+1:p)) s.t gi(t,Ψ(x1:i−1, t, xi+1:p)) ≤ 0. (8)

The block decomposition of (Plow) serves several purposes. Primarily, this separation in blocks
aligns with the industry standard, matching the decomposition in terms of disciplines. It allows
for greater flexibility in the use of specific optimizers or algorithms to handle each subset of local
variables, while dealing with much smaller optimization problems (8). Secondly, coupled deriva-
tives ∂Ψ

∂x (x) may not be available, in contrast to the derivatives
(

∂Ψ
∂xi

(x)
)
i=1..p

of the disciplinary
analysis. Consequently, directly employing a gradient-based optimizer to solve (Plow) may not be
appropriate. Although the entire vector of coupled derivatives is not directly available, each block
may have access to the partial derivative of the coupled gradient along its own subset of variables.
This is because in practice, surrogates of other blocks’ disciplinary analysis are often used instead
of the entire discipline, further motivating the block decomposition.

In [16], the proposed distributed-MDF bi-level architecture assumes that each block has a unique
solution and that the objective function is minimized block by block, in parallel. The constraints gi
are handled by the block i that optimize f in xi, as the aforementioned subset of variables is directly
dependent on this subset. Considering an initial guess x is provided to solve (Plow), we propose
to describe the algorithm proposed in [16] by the following block optimization problems:

x∗
i (x 6=i) = argmin

t∈Xi

{f(x1:i−1, t, xi+1:p,Ψ(x)) s.t gi(t,Ψ(x)) ≤ 0} i ∈ J1, pK. (9)

Two MDAs are employed to ensure that couplings are at equilibrium before and after the update.
The overall process is illustrated for a generic two strongly coupled disciplines in Fig. 7. As
each block is solved in parallel, they do not exchange information on the found solution to the
others. The only synchronizing mechanism is made throughout the two MDAs computing the
couplings, which results in a significant dependence of x∗ on the initial guess x. It is imperative
to avoid this dependence, as it could result in disparate solutions for the same shared variables x0

vector, depending on the initial guess x. As the local variables x are concealed from the system
optimizer, the introduced noise propagates to the functions of interest, which relate to x0, thereby
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preventing Proposition 2.2 from holding, causing a discrepancy in the evaluation of the objective
and constraints.

Upon convergence of the system level optimiser, the two terms become equal, eliminating any
induced error on the optimum. Additionally, in practice, the system-level optimization algorithm
does not propose the same value for the design variables twice, resulting in noise on the objective
function. Some algorithms are more robust to noise than others. Therefore, in [16], the COBYLA
algorithm was utilized [32]. This algorithm makes first-order approximations of the function and
constraints, rendering it practically tolerant to noisy functions.

While solving (Plow)using (9) may be highly effective in terms of time consumption when conver-
gence occurs, it is challenging to predict in advance the range of problems it can solve and/or if
the discrepancy will circumvent a typical optimization algorithm to converge towards an accept-
able solution. Referring this bi-level architecture as bi-level-IRT (BL-IRT), this paper presents
new architectures which aim to extend the range of problems this bi-level approach can solve by
providing more stability on the resolution of the lower optimization problems, thus lowering the
discrepancy and allowing for convergence proofs in certain cases. In this section, we propose a
Block Gauss-Seidel approach to solve the lower level-problem (Plow), namely a BCD-MDF al-
gorithm, a Block Coordinate Descent algorithm using a MDF resolution at each step. We then
discuss several sets of assumptions to ensure the convergence of the whole algorithm, with particu-
lar emphasis on those that are most likely from an MDO point of view. A local convergence result
of our BCD-MDF algorithm is then proved. Finally, two variants for the BCD-MDF algorithm
are presented, in order to add more flexibility on both the assumptions needed for the convergence
and the computational process.

3.1 The Block Coordinate Descent algorithm
Once the local variables x have been partitioned into p component vectors xi ∈ Rni , a widely used
natural approach to solve (Plow) is the block coordinate descent (BCD) method [4], which is also
known as the Block Gauss-Seidel (BGS) method [20, 28, 29, 30] or alternating optimization (AO)
method [5, 6]: at a given iteration k, for a particular value of i, the BCD algorithm computes a
solution xk+1

i of the following optimization problem:

min
t∈Xi

f(xk+1
1:i−1, t, x

k
i+1:p,Ψ(xk+1

1:i−1, t, x
k
i+1:p)) s.t. gi(t,Ψ(xk+1

1:i−1, t, x
k
i+1:p)) ≤ 0 (PBi(x

k+1
1:i−1, x

k
i+1:p))

where: xk+1
1:i−1 = (xk+1

1 , . . . , xk+1
i−1 ) and xk

i+1:p = (xk
i+1, . . . , x

k
p). In other words, at each iteration

of this iterative algorithm, the objective function is minimized with respect to a single block
(or component), xi, of variables while the rest of the blocks, x 6=i, are held fixed. The iterative
scheme loops over each block successively until convergence. The BCD method is assumed to be
well-defined in the sense that every block (PBi) has a unique optimal solution.

The proposed BCD algorithm for solving the lower-level problem (Plow) is described in Algo-
rithm 1. It should be noted that this algorithm will be referred to as the BCD-MDF algorithm,
as each sub-optimization problem (PBi(x

k+1
1:i−1, x

k
i+1:p)) is solved using a MDF architecture. The

bi-level architecture using the BCD-MDF algorithm will be referred to as BL-BCD-MDF (Bi-level
- Block Coordinate Descent - MDF architecture) and is illustrated in Fig. 9 in Section 5. This
figure depicts a generic XDSM diagram for two strongly coupled disciplines.

Convergence issues for the block GS method have been widely explored under suitable convexity
assumptions, both in the unconstrained and constrained case [4, 20, 24, 28, 29, 30, 40] and the
reference therein. In [20], Grippo and Sciandrone consider the separable case i.e. where the
feasible set is the Cartesian product of p closed convex sets. They prove that the block GS
method is globally convergent for p = 2, and that for p > 2 convergence still holds provided
that f is pseudoconvex, or componentwise strictly quasiconvex with respect to p− 2 components.
Additionally, they propose a proximal point modification of the method to deal with nonconvexity.
Note that in the nonconvex case it is proved [20, 31] that the GS method may cycle indefinitely
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Algorithm 1: Block Coordinate Descent - (BCD-MDF) algorithm
Data: x0, x0, εvar, εfun
Result: x∗

k, i = 0, 1;
f0 = f(x0, x

0,Ψ(x0, x
0));

while ‖xk−1 − xk‖ > εvar OR ‖fk−1 − fk‖ > εfun do
xk+1 = [ ] ;
for i ∈ [1, p] do

Optimize ith Block: compute the solution xk+1
i solution of:

min
t∈Xi

{
f(xk+1

1:i−1, t, x
k
i+1:p,Ψ(xk+1

1:i−1, t, x
k
i+1:p)) s.t. gi(t,Ψ(xk+1

1:i−1, t, x
k
i+1:p)) ≤ 0

}
;

(10)
Update the ith local data: xk+1 = [xk+1, xk+1

i ];
end
Compute the objective value: fk+1 = f(x0, x

k+1,Ψ(x0, x
k+1));

k = k + 1;
end
x∗ = xk;

without converging to a critical point if p > 3 even if the objective function is componentwise
convex, but not strictly quasiconvex with respect to each component.

However, special cases ensure convergence for nonconvex nor pseudo-convex objective functions [3],
e.g. when the objective function is quadratic [24] or or has a unique minimum in each coordinate
block xi [23]. This very last assumption implies that there exists a unique disciplinary solution
for every shared variable x0 which is the most likely assumption in MDO practice.

In the non-separable case, as is the case for the (Plow) problem due to the couplings introduced
by the MDA, there are few results in the literature. One way of making the problem separable is
to include the coupling constraints in the function to be minimized, using a well-chosen penalty:
Tosserams et al. propose in [38] a method based on augmented Lagrangian relaxation and block
coordinate descent. In [43], Xu and Yin suggest to incorporate the constraints into the objective
using the indicator function, but this solution requires precise computation of the projection
operator on the set of constraints, which is usually not possible in practice.

Without further assumptions, we can easily check that, by construction, any fixed point of the
BCD-MDF algorithm is necessarily a feasible point for the lower-level problem (Plow) (but unfor-
tunately not necessarily a solution of (Plow) as explained in [7]):

Proposition 3.1. Let x̄ be a fixed point for the BCD-MDF algorithm which means that each
block x̄i is solution of PBi(x̄ 6=i). Then x̄ is a feasible point of (Plow).

In order to guarantee that the solutions of the lower-level problem are indeed fixed points of the
BCD-MDF algorithm (and vice versa), additional assumptions must be made regarding the block
decomposition itself. First of all, it is assumed that every block optimization will have a unique
minimizer, which is a very common assumption in MDO when convergence guarantees are sought:

Definition 3.1 (UBM). The optimization problem (Plow) is said to verify the Unique Block
Minimizer (UBM) property if for every block coordinate i and for every parameterization vector
x 6=i = (x1:i−1, . . . , xi+1:p), the optimization problem PBi(x 6=i) has a unique minimizer and no
local minimum point.
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3.2 Convergence analysis of the BCD-MDF algorithm
In this section, we address the convergence of the BCD-MDF algorithm, discussing the assumptions
ensuring that the blocks should depend primarily on the optimized block exerting only a minor
influence on the constraints via the coupling variables.

3.2.1 First-Order Separability

A first approach is to assume that the constraints in each sub-blocks optimization are independent
of the couplings in the neighborhood of the solution x∗ of the lower-level problem:

Definition 3.2 (First order separability). Let x∗ be the MDF solution of (Plow) at which the
constraints are assumed to be qualified in the sense that the gradients of the active constraints
at x∗ are linearly independent. The optimization problem (Plow) is said to have the first order
separability (FOS) property at x∗ if for every block coordinate i, and for every parameterization
vector x 6=i, the effects of the other blocks k = 1, . . . , p, k 6= i, upon the optimization of the ith

block are negligible in the following sense:

∀i ∈ J1, pK, ∀k 6= i ,
∂gk
∂y

(x∗
k,Ψ(x∗))

∂Ψ

∂xi
(x∗) = 0. (11)

In other words, each block x∗
i of a Karush-Kuhn-Tucker point x∗ of the MDF problem (Plow) is in

turn a Karush-Kuhn-Tucker point of PBi(x
∗
6=i). Under this assumption, exploiting the optimality

conditions associated to each optimization problems at stake, we prove that the solution of the
lower level problem is a fixed point of the BCD-MDF algorithm.

Proposition 3.2. Assume that the lower level problem (Plow) has a unique solution x∗, satisfies
the Unique Block minimizer (UBM) property. and the first order separability (FOS) property at
x∗. Then x∗ is a fixed point of the BCD-MDF algorithm i.e. for all i = 1, . . . , p,

x∗
i = argmin

t∈Xi

{
f(x∗

1:i−1, t, x
∗
i+1:p,Ψ(x∗

1:i−1, t, x
∗
i+1:p)) s.t gi(t,Ψ(x∗

1:i−1, t, x
∗
i+1:p)) ≤ 0

}
.

Proof. Let x∗ be the unique solution of the lower level problem (Plow). Let i ∈ {1, . . . , p}. Let us
prove that x∗

i is solution of:

min
t∈Xi

{
f(x∗

1:i−1, t, x
∗
i+1:p,Ψ(x∗

1:i−1, t, x
∗
i+1:p)) s.t gi(t,Ψ(x∗

1:i−1, t, x
∗
i+1:p)) ≤ 0

}
. (12)

Let L be the Lagrangian function associated to the optimization problem (Plow):

L(x;λ) = f(x,Ψ(x)) +

p∑
i=1

λ>
i gi(xi,Ψ(x)) (13)

where λ = (λ1, . . . , λp) ∈ Rnc1 × · · · ×Rncp denotes the vector of Lagrange multipliers, and Li the
Lagrangian function associated to (12):

Li(t;µ) = f(x∗
1:i−1, t, x

∗
i+1:p,Ψ(x∗

1:i−1, t, x
∗
i+1:p)) + µ>gi(t,Ψ(x∗

1:i−1, t, x
∗
i+1:p)) (14)

where: µ ∈ Rni . Since x∗ is the unique solution of (Plow) whose constraints are assumed to be
qualified at x∗, there exist Lagrange multipliers λ ∈ Rnc1 × · · · × Rncp such that: ∇L(x∗, λ) = 0,
and thus: ∇xi

L(x∗,Ψ(x∗), λ) = 0. Applying now the FOS assumption at x∗, a straightforward
computation provides:

∇xiLi(x
∗
i , λi) = ∇xiL(x∗, λ) = 0. (15)

and: ∇2
xi
Li(x

∗
i , λi) = ∇2

xi
L(x∗, λ). Furthermore, let d 6= 0Rn be a feasible direction for (Plow)

at x∗, then for every constraints gi and every component j ∈ J1, nciK such that for any active
constraint j, we have:

∇x(gi)j(x
∗
i ,Ψ(x∗))T d = 0. (16)
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As the FOS assumption holds at x∗, we also know that for all k 6= i, and every active component
j ∈ J1, nckK of gk at x∗ :

∇xi(gk)j(x
∗
k,Ψ(x∗)) = 0 (17)

Hence d is a feasible direction of (Plow) at x∗ if and only if all its components di (i ∈ J1, pK) are
feasible directions for their respective block PBi(x

∗
6=i). Putting all together and considering the

case i = i0, as x∗ is the solution of (Plow), we have that for all feasible direction di0 of PBi0(x
∗
6=i0

),
d>i0∇

2
xi0

L(x∗, λ)di0 = d>i0∇
2
xi0

Li0(x
∗
i0
, λi0)di0 ≥ 0. Hence x∗

i0
is solution of PBi0(x

∗
6=i0

) which
admits two different solutions and contradicts the UBM assumption.

The First Order Separability assumption is not always satisfied in practice, as it is a relatively
strong assumption that is not easily verified beforehand. However, FOS acts as a sufficient as-
sumption to ensure that the required solution is a fixed point for BCD-MDF. One might inquire
whether a relaxed assumption exists, assuming that the effect of the blocks x 6=i on the constraints
of a particular block i (8) (throughout the MDA function Ψ) is negligible in comparison to the
direct effect of the blocks’ own disciplinary variables xi around the solution x∗. In other words,
consider cases where the first-order perturbation of block i resulting from the removal of g6=i, given
by
∥∥∥∑k 6=i λ

∗
k∇xigk(x

∗
k,Ψ(x∗))

∥∥∥ is either very small or negligible prior to the first-order lagrangian
of the considered block ‖∇xiLi(x

∗
i , λi)‖. This is equivalent to the assumption that for each sub-

problem 8, near its solution and with respect to its block of variable xi, the cross derivatives of
the constraints of other blocks g6=i, through the coupling variables, are negligible in comparison
to the total derivatives of f and gi.

These relaxed assumptions, which are not considered here, may result in situations where each
block does reach its corresponding block of the joint optima, i.e. x∗

i (x
∗
6=i) = x∗

i , the ith block of the
MDF optimal solution of (Plow), with a sufficient precision. This may be a promising direction
for improvement of the following results.

3.2.2 Local convergence of the BCD-MDF algorithm

Let us now state the main theoretical result of this paper, namely the local convergence of the
BCD-MDF algorithm in the nonlinear, coupled, and constrained case, extending the results given
by Ortega and al. in [29, 30]:

Proposition 3.3. Let x∗ be the unique solution of the lower level problem (Plow) at which the
constraints are assumed to be qualified in the gradients of the active constraints at x∗ are linearly
independent. Let λ∗ be the associated Lagrange multiplier. Denote as F the feasibility set of
(Plow).

Assume that strict complementary slackness holds (component-wise) i.e. for any i = 1, . . . , p,

λ∗
i > 0 when gi(x

∗
i ,Ψ(x∗)) = 0, (18)

and that the second order sufficient KKT conditions hold at x∗ i.e. that for every direction
d ∈ CL

F (x
∗) \ {0} we have: d>∇2L(x∗, λ∗)d > 0 where L denotes the Lagrangian associated to the

problem Plow.

Assume that the Unique Block Minimizer assumption and the First Order Separability at x∗ holds.
Then there exists a neighborhood V (x∗, λ∗) of (x∗, λ∗) such that for every (x0, λ0) ∈ V (x∗, λ∗),
the sequence of iterates generated by the BCD-MDF algorithm converges q-linearly to (x∗, λ∗).

In order to prove the local convergence result, we first introduce the notion of eigenset, strongly
quadratic form sign equivalent (SQFSE) matrices, and a key theorem [28, Theorem 2.6.].

Definition 3.3 (Eigenset). Let A ∈ Mn(R) for some integer n > 0. A subset E of Cn is said to
be an eigenset [28] of A if E consists of only eigenvectors (hence nonzero) of A, with at least one
eigenvector corresponding to each distinct eigenvalue of A.
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Definition 3.4 (SQFSE). Let S be an arbitrary non-empty subset of Cn, the complex n-space.
Then two n×n hermitian matrices P and Q are said to be strongly quadratic form sign equivalent
(SQFSE) [28] on S if for all x 6= 0 in S, (xTPx)(xTQx) > 0.

Theorem 3.1. Let H ∈ Mn(R) be an hermitian matrix having a block splitting of the form
H = D − L − U with L being a block strictly lower-triangular matrix, U a block strictly upper-
triangular matrix, and D a block diagonal matrix. Assume that D − L is non-singular. Let
∇T = [D−L]−1U . If xTDx 6= 0 for all x on some eigenset E of ∇T then ρ(∇T ) < 1 if and only
if

(xTDx)(xTHx) > 0 for all x ∈ E , (19)

i.e. D and H are strongly quadratic form sign equivalent (SQFSE) on E.

Proof: Let x∗ be the unique solution of the lower level problem (Plow) and λ∗ be the associated
Lagrange multiplier. In this proof, we use the following block notation:

w∗ = (w∗
1 , . . . , w

∗
p) where w∗

i = (x∗
i , λ

∗
i ), i = 1, . . . , p.

1st step: Defining the BCD-MDF operator. First we introduce the BCD-MDF operator i.e. the
operator defining a complete iteration of the BCD-MDF algorithm (see Algorithm 1). More
precisely, let wk

i = (xk
i , λ

i,k) be the unique primal-dual pair associated to (PBi(x
k+1
1:i−1, x

k
i+1:p))

(which is consistent according the Unique Block Minimizer (UBM) assumption). Any complete
iteration k of the BCD-MDF algorithm is of the form:

wk+1 = T
(
wk
)
= Sp ◦ Sp−1 ◦ · · · ◦ S2 ◦ S1

(
wk
)

(20)

where the mapping Si : Rn × Rnc 7→ Rn × Rnc describes the result of the ith sub-optimization of
the BCD-MDF algorithm. Roughly speaking, Si will update the ith block as the solution to the
problem PBi parameterized by x 6=i, leaving the other blocks unchanged:

∀j ∈ N, (Si(w))j = wj if j 6= i. (21)

According to Fiacco’s theorem (see Proposition 2.2) at x∗ with multiplier λ∗, we easily check
that each mapping Si is well-defined and continuously differentiable in a neighborhood of w∗ =
(w∗

1 , . . . , w
∗
p). By composition, the BCD-MDF operator is at least of class C1 around w∗. Note

that in the considered neighborhood of w∗ the set of active constraints for each block is therefore
constant. This is a direct consequence of Fiacco’s theorem for the existence of continuously differ-
entiable functions Si. By construction, the set of active constraints for (Plow) in this neighborhood
is also constant, more precisely it is equal to the union of the active constraints of each (8).

2nd step: the BCD-MDF algorithm, a fixed-point algorithm. Assuming that the UBM property
and the first order separability hold, Proposition 3.2 ensures that x∗ is actually a fixed point of
the BCD-MDF operator T . Near the solution w∗, the Taylor expansion at wk gives:

T (wk)− T (w∗) = ∇T (w∗)(wk − w∗) + o(wk − w∗) (22)

where ∇T (w∗) denotes the Jacobian matrix of T . Since w∗ is a fixed point for T :

wk+1 − w∗ = ∇T (w∗)(wk − w∗) + o(wk − w∗) (23)

the sequence {wk}k∈N is locally convergent (towards w∗) if the spectral radius of the Jacobian
matrix ∇T (w∗) satisfies: ρ(∇T (w∗)) < 1.

Since the T operator is defined implicitly, the next step is to seek an analytical characterization of
this operator so that its spectral radius can be calculated. Let us now introduce the Lagrangian
function Li associated to the problem (PBi(x

k+1
1:i−1, x

k
i+1:p)):

Li(xi, λ
i;x 6=i) = f(x1:i−1, xi, xi+1:p,Ψ(x1:i−1, xi, xi+1:p)) + (λi)T gi(xi,Ψ(x1:i−1, xi, xi+1:p))
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where x 6=i = (x1:i−1, xi+1:p) denotes the vector parameterizing PBi. According to Definition 3.1,
the unique solution xk+1

i of (PBi(x
k+1
1:i−1, x

k
i+1:p)) and its associated Lagrange multiplier λk+1

i are
fully characterized by the Karush-Kuhn-Tucker optimality conditions:

G(wk+1, wk) = 0, (24)

where the i blocks of G(wk+1, wk) are defined by:

Gi(w
k+1, wk) =

[
∂

∂xi
Li(x

k+1
i , λk+1

i ;xk+1
1:i−1, x

k
i+1:p)

gi(x
k+1
i ,Ψ(xk+1

1:i−1, x
k+1
i , xk

i+1:p))

]
, i = 1, . . . , p. (25)

In other words, the fixed point iterations of the BCD-MDF algorithm are of the form:

wk+1 = T (wk) ⇐⇒ G(wk+1, wk) = 0, (26)

hence for all k ∈ N: G(T (wk), wk) = 0. According to Proposition 2.2, there exists a neighborhood
V∗ of w∗ in which the operator G is actually at least of class C1 and:

∀w ∈ V∗,
d

dw
(G(T (w), w)) = ∂1G(T (w), w)∇T (w) + ∂2G(T (w), w),

where, to lighten the notations, ∂jG, j ∈ {1, 2}, denotes the partial derivative of G with respect to
its jth block of variables w ∈ Rn+nc . Observe now that by construction, we have: dG

dw (T (w∗), w∗) =
0, hence:

∇T (w∗) = − [∂1G(T (w∗), w∗)]
−1

∂2G(T (w∗), w∗) (27)

= − [∂1G(w∗, w∗)]
−1

∂2G(w∗, w∗) (28)

Denoting: L(w∗) = ∂1G(w∗, w∗) and U(w∗) = −∂2G(w∗, w∗) a more compact form follows:

∇T (w∗) = [L(w∗)]
−1

U(w∗) (29)

and the iterative process converges towards w∗ if ρ([L(w∗)]
−1

U(w∗)) < 1.

3nd step: Computing the spectral radius of ∇T (w∗). Let us start by defining more explicitly
the operators L and U . By definition the operator L(w∗) is actually block lower triangular
since each block optimization does not depend on the block variables w that have not yet been
updated. Similarly, the operator U(w∗) is strictly upper triangular since each block optimization
only depends these same variables. More precisely:

L(w∗) =


D1 0 0 . . . 0
L2,1 D2 0 . . . 0
L3,1 L3,2 D3 . . . 0

...
...

...
. . .

...
Lp,1 Lp,2 Lp,3 . . . Dp

 and U(w∗) = −


0 L1,2 L1,3 . . . L1,p

0 0 L2,3 . . . L2,p

0 0 0 . . . L3,p

...
...

...
. . .

...
0 0 0 . . . 0

 (30)

where for any (i, j) ∈ J1, pK2, j 6= i:

Di =

 ∂2Li

∂x2
i
(w∗

i ;w
∗
6=i)

∂2Li

∂λi∂xi
(w∗

i ;w
∗
6=i)

∂2Li

∂xi∂λi
(w∗

i ;w
∗
6=i)

∂2Li

∂λ2
i
(w∗

i ;w
∗
6=i)

 =

 ∂2Li

∂x2
i
(w∗

i ;w
∗
6=i)

∂2Li

∂λi∂xi
(w∗

i ;w
∗
6=i)

∂2Li

∂xi∂λi
(w∗

i ;w
∗
6=i) 0

 (31)

Li,j =

 ∂2Li

∂xj∂xi
(w∗

i ;w
∗
6=i)

∂2Li

∂λj∂xi
(w∗

i ;w
∗
6=i)

∂2Li

∂xj∂λi
(w∗

i ;w
∗
6=i)

∂2Li

∂λj∂λi
(w∗

i ;w
∗
6=i)

 =

 ∂2Li

∂xj∂xi
(w∗

i ;w
∗
6=i) 0

∂2Li

∂xj∂λi
(w∗

i ;w
∗
6=i) 0

 .
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Observe now that by the First order separability, for all i, ∂L
∂xi

(x∗;λ∗) = ∂Li

∂xi
(w∗

i ;x 6=i) so that:

∀j 6= i, Li,j =

[
∂2L

∂xj∂xi
(w∗) 0

0 0

]
, Di =

 ∂2L
∂x2

i
(x∗;λ∗) ∂2L

∂λi∂xi
(x∗;λ∗)

∂2L
∂xi∂λi

(x∗;λ∗) 0

 , (32)

where L denotes the Lagrangian function associated to the lower level problem (Plow):

L(x;λ) = f(x,Ψ(x)) +

p∑
k=1

λT
k gk(xk,Ψ(x)) . (33)

Consider now the matrix H defined as

H = L(w∗)− U(w∗) =


D1 LT

2,1 LT
3,1 . . . LT

p,1

L2,1 D2 LT
3,2 . . . LT

p,2

L3,1 L3,2 D3 . . . LT
p,3

...
...

...
. . .

...
Lp,1 Lp,2 Lp,3 . . . Dp

 , (34)

by construction H is hermitian, and denote as H∗ the bordered Hessian of (Plow) at w∗, i.e. the
Hessian matrix of (33) with respect to x and λ. We then observe that H∗ is obtained after a row-
column reordering of the matrix H. More precisely, reordering the basis of H, which follows the
coordinates [x1, λ1, . . . xp, λp], into the new system of coordinates [x1, . . . xp, λ1, . . . , λp] yields the
matrix H∗. Hence, by defining P as the 2p× 2p block permutation matrix, P is defined as

Pi,j =


Ini×ni

if i = 0[2] and j = p+
i

2

Inci
×nci

if i = 1[2] and j =
i+ 1

2
0 Else

, (35)

and it follows that: H∗ = PTHP . To show that ρ(∇T (w∗)) < 1, we will establish the connec-
tion between the bordered Hessian of (Plow) at w∗, i.e. H∗, and the block decomposition of its
permutation H. Let us note that

L(w∗)T + U(w∗) = diag(D1, . . . , Dp) ≡ D . (36)

To apply Theorem 3.1, given our notation, the goal of this part of the proof is to show that there
exists an eigenset of ∇T (w∗) such that H and D = L(w∗)T + U(w∗) are SQFSE. Since these
eigensets are difficult to characterize in our case, we will consider the most general case, i.e. we
will show that H and D are SQFSE on the whole space of eigenvectors of ∇T (w∗).

First, for the sake of readability, let us introduce new notations for the block decomposition. For
all i ∈ J1, pK and for all j 6= i, let

Di =

[
Ai BT

i

Bi 0

]
, Li,j =

[
Ci,j 0
0 0

]
. (37)

In other words, Ai is the Hessian of the Lagrangian of (PBi(x
k+1
1:i−1, x

k
i+1:p)) at x∗, Li, with respect

to xi, Bi is the Jacobian of the active constraints among gi at w∗, and Ci,j are the cross derivatives
of the Lagrangian of (Plow) at w∗ with respect to the block xi and xj . We also know, that each
matrix Di is the bordered Hessian of (PBi(x

k+1
1:i−1, x

k
i+1:p)) at x∗, which is by nature indefinite. An

easy way to see this property is to pick a vector d ∈ Rni+nci such that the only non-zero elements
are on the λi coordinates, which necessarily leads to dTDid = 0. Following the new notations, we
also have a new expression for H∗:

H∗ = PTHP =

[
A BT

B 0

]
(38)
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with

A =


A1 CT

2,1 . . . CT
p,1

C2,1 A2 . . . CT
p,2

...
...

. . .
...

Cp,1 Cp,2 . . . Ap

 , B =

B1

. . .
Bp

 . (39)

Let us characterize the eigenvectors of ∇T (w∗). Let W = [w1, . . . , wp] = [x1, λ1, . . . , xp, λp] be an
eigenvector of ∇T (w∗) associated to an eigenvalue µ. Then:

U(w∗)W = µL(w∗)W (40)

⇐⇒ ∀i ∈ J1, pK −
p∑

k=i+1

Li,kwk = µ

(
−

i−1∑
k=1

(Li,kwk) +Diwi

)
. (41)

A straightforward calculation shows that

∀i ∈ J1, pK, ∀k ∈ J1, pK, k 6= i, Diwi =

[
Aixi +BT

i λi

Bixi

]
, Li,kwk =

[
Ci,kxk

0

]
. (42)

There is two possible cases for the value of µ: either µ = 0 or either µ is nonzero. Let us first
consider the case µ = 0. By reconsidering (40),we have W ∈ ker(U(w∗)), which combined with
(36) and (34) yields directly:

WTHW = WT (L(w∗)− U(w∗))W = WTL(w∗)W (43)
= WT (DT − UT (w∗))W = WTDW + (U(w∗)W )TW = WTDW . (44)

Hence for µ = 0,
(WTDW )(WTHW ) = (WTDW )2 > 0 . (45)

Assume now that the eigenvalue µ is nonzero, so the second block line of (41) implies that for all
i ∈ J1, pK, we have: Bixi = 0, which is equivalent to xi ∈ ker(Bi) for all i. Hence x = [x1, . . . , xp] ∈
ker(B) by construction.

Let us now study the sign of (WTDW )(WTHW ). First we calculate WTDW :

WTDW =
[
wT

1 . . . wT
p

] D1

. . .
Dp


w1

...
wp

 =

p∑
i=1

wT
i Diwi , (46)

with for all i ∈ J1, pK, wT
i Diwi = xT

i Aixi+xT
i B

T
i λi+λT

i Bixi . Remembering that for all i ∈ J1, pK,
we have xi ∈ ker(Bi), then

∀i ∈ J1, pK wT
i Diwi = xT

i Aixi > 0 , (47)

as each Di i ∈ J1, pK are positive-definite along the feasible direction of (PBi(x
k+1
1:i−1, x

k
i+1:p)) at

w∗. So we have shown that WTDW > 0. We then observe via a straightforward calculation
that WTHW = xTAx. Since x ∈ ker(B), i.e. since x is an admissible direction for (Plow), we
necessarily have xTAx > 0 and

WTHW > 0 . (48)

Finally, it follows in any cases that for all eigenvectors W of ∇T (W ∗)

(WTDW )(WTHW ) > 0 . (49)

Hence D and H are SQFSE on the set of all eigenvectors of ∇T (w∗), and according to Theorem 3.1,
it follows that ρ(∇T (w∗)) < 1. This concludes on the local convergence of the BCD operator
towards w∗ q-linearly.
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Discussion on the local convergence result The preceding result, Proposition 3.3, provides
sufficient conditions for (Plow) to be solved exactly. By additionally assuming that Proposition 2.2
holds, it makes all functions of interest of (Pbl), namely the objective and the constraints, to be
at least C1 functions with respect to the shared variables x0. Consequently, general gradient-free
algorithms, even those whose convergence properties are enhanced by the C1 property, may be
employed to solve (Pbl) and obtain the same result as solving (PMDF ).

However, this result is highly theoretical and several limitations must be acknowledged. First and
foremost, this can be seen as an extension of the results given in [20] by Grippo and Sciandrone in
the non-separable case, therefore stronger assumptions are made and may be challenging to verify,
particularly those in Definition 3.1. This assumption is often made without further investigations.
Furthermore, this result assumes that the block optimization problems are solved perfectly. In
practice, this may not be the case due to numerical which may introduce noise and prevent the
convergence properties from holding.

3.3 Variants of the BCD-MDF algorithm
3.3.1 With linear approximation of the constraints

In the event that the assumption made in Definition 3.2 is not validated, meaning that some
constraints are overly reliant on the other block variables, a linearization of these constraints can
be incorporated into the corresponding blocks in order to enforce it. In this instance, the iteration
scheme becomes:

xk+1
i = argmin

t∈Xi


f(xk+1

1:i−1, t, x
k
i+1:p,Ψ(xk+1

1:i−1, t, x
k
i+1:p))

s.t. gi(t,Ψ(xk+1
1:i−1, t, x

k
i+1:p)) ≤ 0

g̃j(t) ≤ 0 j ∈ Si

 (50)

where Si is the set of index of constraints which do not respect assumptions of Definition 3.2 along
ith block optimization and g̃j : Rni 7→ Rncj the corresponding linear approximation of constraint
j along xi. This implementation does not affect the local convergence of the BCD-MDF; however,
the overall process gets heavier as the linear approximation must be held updated most of the
time.

The architecture resulting from this new variant of the BL-BCD-MDF algorithm is referred as
BL-BCD-MDF-LC (Bi-Level - Block Coordinate Descent - MDF - Linearized Constraints archi-
tecture). It should be noted that the linear approximations of the constraints can be equivalently
replaced by surrogates which preserve first-order consistency (i.e., preservation of the value of
the functions and their gradients) at the considered points. These functions approximate the
constraints of the other disciplines in the current block in order to avoid their violation. If the
first-order surrogates are not conceivable in practice, it may indicate that the disciplinary separa-
tion is not physically pertinent. In this case, the effect of the couplings of a block’s j dominates
the impact of xi on the disciplinary optimization of block i. In such a scenario, the correspond-
ing blocks should be merged and optimized together in (xi, xj). This is equivalent to setting
the discrepancy between blocks i and j to zero. Note that in the event that all the blocks are
highly interdependent, merging all the blocks will result in the original MDF architecture, which
is assumed to converge towards x∗.

3.3.2 A weakly coupled variant

The BCD-MDF algorithm addresses the couplings by running MDAs in each sub-optimization.
This approach reduces the impact of the block decomposition by enforcing couplings to be coherent
and at equilibrium at each step of the overall process. However, depending on the problem’s
structure, solving an entire MDA at each iteration of a sub-optimization algorithm may not be
conceivable in practice, as it could become extremely time consuming. Consequently, we propose
a weakly coupled version of the previous BCD-MDF algorithm, whereby the couplings constraints
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are released in each sub-optimization. However, this approach results in a degradation of the
convergence properties for the overall procedure.

We introduce p coupled variables yi computed by a disciplinary function φi with the relation
yi = φi(xi, yj 6=i) i ∈ J1, pK. For a particular value of x, we say that the coupling vector y verify
the coupling constraints, (or is at equilibrium) if:

∀i ∈ J1, pK yi − φi(xi, y 6=i) = 0. (51)

For every design vector x, y is the unique solution of (51) if and only if Ψ(x) = y. Consequently,
the following nonlinear optimization problem:

min f(x, y) s.t. g(x, y) ≤ 0 and yi − φi(xi, y 6=i) = 0 ∀i ∈ J1, pK (52)

is equivalent to the previous lower-level optimization problem (Plow). The proposed variation of
the BCD-MDF algorithm no longer solves the entire coupling vector by solving a complete MDA;
instead, it only computes its own block of couplings. Similarly to the design vector x, the coupling
vector y is decomposed by blocks and updated by sequentially running each sub-optimization. The
BCD with weakly coupled optimization blocks (BCD-WK) procedure is described as follows:

xk+1
i = argmin

t∈Xi

{
f(xk+1

1:i−1, t, x
k
i+1:p, y

k+1
1:i−1, φi(t, y

k+1
1:i−1, y

k
i+1:p), y

k
i+1:p)

s.t. gi(t, y
k+1
1:i−1, φi(t, y

k+1
1:i−1, y

k
i+1:p), y

k
i+1:p) ≤ 0

}
yk+1
i = φi(x

k+1
i , yk+1

1:i−1, y
k
i+1:p)

(WKBCD)

The BCD-WK procedure can be considered a merger of both the design variables loop and the
MDA loop. In this procedure, both local and coupling variables only update their related block at
the end of each sub-optimization. It s hoped that the coupling vector will converge as long as the
local variables are converging towards x∗. This architecture will be referred to as BL-BCD-WK
(Bi-Level - Block Coordinate Descent - Weakly Coupled architecture). A generic XDSM diagram
on a two-strongly coupled disciplines problem is given in Fig. 11.

Similarly, as with the MDF counterpart, it is recommended that linearization of the constraints be
added to certain blocks when Definition 3.2 is not verified. The resulting architecture is referred
to as BL-BCD-WK-LC (Bi-Level - Block Coordinate Descent - Weakly Coupled - Linearized
Constraints architecture). The BCD-WK algorithm (with linearization of the constraints as a
possibility) is given by Algorithm 2.

3.3.3 Adding target values for difficult couplings

In the event that previous variants are insufficient to guarantee a satisfactory block decomposition
for the purpose of solving the lower-level optimization problem, it is possible to intervene on
the bi-level decomposition itself. Assume that there is a subset of coupling variables that is
threatening the block decomposition to be coherent. This may be due to the failure of either the
FOS (Definition 3.2) or UBM (Definition 3.1) assumptions. The management of this subset can
be handled by the system problem. Similarly as in the IDF approach, copies of those couplings,
also known as target values, can be added to the system-level optimizer and held fixed for the
lower-level optimization problem. The set of indices of these couplings is denoted as C0 and the
following bi-level decomposition is obtained :

min
x0∈X0,yt

0

f(x0, x
∗(x0, y

t
0), Ψ̃(x0, x

∗(x0, y
t
0), y

t
0))s.t. gup(x0) ≤ 0

x∗(x0, y
t
0) = argmin

x∈X


f(x0, x, Ψ̃(x0, x, y

t
0))

s.t g(x0, x, Ψ̃(x0, x, y
t
0)) ≤ 0

yt0,i − φi(x0, x
∗
i (x0, y

t
0), Ψ̃6=i(x0, x

∗(x0, y
t
0), y

t
0)) = 0 ∀i ∈ C0


(53)
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Algorithm 2: Block Coordinate Descent - Weakly Coupled (BCD-WK) algorithm
Data: x0, x0, y0, εvar, εfun
Result: x∗

k, i = 0, 1;
f0 = f(x0, x

0, y0);
while ‖xk−1 − xk‖ > εvar OR ‖yk−1 − yk‖ > εvar OR ‖fk−1 − fk‖ > εfun do

xk+1, yk+1 = [ ], [ ] ;
for i ∈ [1, p] do

Optimize ith Block: ;
if First order separability (Definition 3.2) holds for ith Block then

xk+1
i = argmint

{
f(xk+1

1:i−1, t, x
k
i+1:p, y

k+1
1:i−1, φi(t, y

k+1
1:i−1, y

k
i+1:p), y

k
i+1:p)

s.t. gi(t, y
k+1
1:i−1, φi(t, y

k+1
1:i−1, y

k
i+1:p), y

k
i+1:p) ≤ 0

}
end
else

xk+1
i = argmint


f(xk+1

1:i−1, t, x
k
i+1:p, y

k+1
1:i−1, φi(t, y

k+1
1:i−1, y

k
i+1:p), y

k
i+1:p)

s.t. gi(t, y
k+1
1:i−1, φi(t, y

k+1
1:i−1, y

k
i+1:p), y

k
i+1:p) ≤ 0

g̃j(t) ≤ 0 j ∈ Si


end
yk+1
i = φi(x

k+1
i , yk+1

1:i−1, y
k
i+1:p) ;

Update the ith local data: xk+1, yk+1 = [xk+1, xk+1
i ], [yk+1, yk+1

i ];
end
Compute the objective value: fk+1 = f(x0, x

k+1, yk+1);
k = k + 1;

end
x∗, y∗ = xk, yk;

where Ψ̃ is a slight modification of the complete MDA Ψ where all couplings in C0 are held fixed at
yt. In other words Ψ̃(x0, x, y

t) is the unique solution of the following system of equations :

∀i ∈ C0 yi − yti = 0

∀i ∈ J1, pK \ C0 yi − φi(x0, xi, y 6=i) = 0
(54)

This modification alleviates the block decomposition assumptions by making each block indepen-
dent from the ith block optimization ∀i ∈ C0. This is due to the ith disciplinary analysis φi being
fixed leading to ∂Ψ̃

∂xi
= 0 for each block optimization.

Similarly to the previous variants, the choice to introduce target variables, and which ones, is the
result of a compromise. On one side, adding targets for coupling variables enforce each block’s
autonomy, making it easier to obtain the solution of (Plow) and continuity, differentiability of the
x∗ mapping. On the other side, each added targets makes the system-level optimization problem
heavier similarly as in the classical IDF architecture : retrieving multidisciplinary feasibility at
the end of the optimization may be difficult and take, in average, more system-level iteration,
including more resolution of (Plow).

4 Application
The preceding architectures and results are presented in this section. All numerical experiments are
conducted using the GEMSEO MDO framework [13, 14], which has been developed to facilitate
the creation of MDO processes based on multi-level architectures. The BCD implementation
variant, as well as the SSBJ and modified Sellar MDO problems, are available as open source
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implementations in GEMSEO; see http://www.gemseo.org. The methodology for benchmarking
methodology algorithms is based on performance profiles is based on the open-source GEMSEO-
Benchmark plugin https://gitlab.com/gemseo/dev/gemseo-benchmark.

The Sobieski’s Super-Sonic Business Jet (SSBJ) test case [35] is initially considered. Its relative
complexity is comparable to that of a real MDO problem, while being relatively small with only
three strongly coupled disciplines and low-dimensional design variables. In particular, experiments
demonstrate the expected discrepancy reduction induced by the introduction of the BCD loop.
Subsequently, a benchmark demonstrates the robustness of our new architecture. Finally, a scal-
ability study demonstrates that our approaches become increasingly compelling as the number of
local variables increases.

Subsequently, a slightly modified sellar optimization problem [34] is considered. Its particular
simplicity allows for an affordable scalability study comparing gradient-free approaches for both
monolithic and distributed architectures when facing high-dimensional local variables, couplings,
and constraints.

4.1 Discrepancy reduction and local convergence comparisons
4.1.1 SSBJ : problem’s statement

The Sobieski Super Business Jet (SSBJ) test case was first introduced in [35] to present the Bi-
level integrated system synthesis (BLISS) architecture. It is a well-known conceptual design code
for the MDO community, conceived to test the different architectures at an affordable cost. As
it has been originally designed for the BLISS architecture, it is well suited to test more general
bi-level architectures such as those considered in this paper. The SSBJ model is comprised of three
strongly coupled disciplines : Aerodynamics, Structures and Propulsion. This MDO problem aims
to maximize the range of the business jet, which is computed by a fourth, non-coupled discipline
(Mission). The MDF XDSM diagram for the SSBJ test case is presented in Fig. 7.

Figure 3: MDF XDSM diagram on SSBJ test case

The optimal range being f∗ = 3963.88 nm, the related optimal design for the MDF archi-
tecture obtained in x∗

0 = [0.06, 60000, 1.4, 2.5, 70, 1500] and x∗
1 = [0.38757, 0.75], x∗

2 = 0.75,
x∗
3 = 0.15624.

In consideration of the hypothesis, at the shared variables optimal design point x∗
0, the MDF

solution for (Plow) is obtained in x∗ = [x∗
1, x

∗
2, x

∗
3] and verifies the linear independence constraint

qualification and the First and Second order KKT necessary conditions for (Plow). Both blocks
Aerodynamics and Propulsion verify Definition 3.1 in the vicinity of x∗

0. The solutions obtained
by each block correspond to the coupled optimal primal-dual pair of MDF, thereby validating the
Definition 3.2 assumption. The block Structure’s optimal solution reaches the upper bound of x1,
though it has a negligible impact on the objective (the error being approximately 10−2).
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4.1.2 Discrepancy measurement

From the standpoint of the system, the objective function of the previous BL-IRT architecture is
not a function in practice. In fact, evaluating f triggers the lower optimization problem computa-
tion, which is highly dependent on the previous value of the local and coupling variables, as these
parameterize every block optimization process which is done in parallel. To quantify the discrep-
ancy, we randomly generate n distinct values of x0 to serve as sample points. Subsequently, we
evaluate f at each of these points in a fixed sequence, which we refer to as the forward order repre-
sented by the set {(x0)

fd
k }k∈[1..n]. The evaluation of the objective function initiates the resolution

of the lower optimization problem, concurrently generating a sequence of values, {(x∗)fdk }k∈[1..n]

that is concealed from the system optimizer. This sequence is defined by the following relation
(x∗)fdk = x∗((x0)

fd
k , (x∗)fdk−1, (y

∗)fdk−1), where x∗
(k−1) and y∗(k−1) represent the previous values of the

local and coupling variables, respectively. These values are obtained by evaluating the objective
function f at the point xk−1

0 .

Concurrently, the same process is executed in reverse order, designated as backward order with the
notation {(x0)

bd
k }k∈[1..n]. Similarly, it generates a sequence {(x∗)bdk }k∈[1..n] of local variables. By

definition, (x0)
fd
k = (x0)

bd
n+1−k ∀k ∈ [1..n]. However, the same cannot be said for local variables,

which depend on the path taken by their previous evaluations. Consequently, an error on f can
be measured by the following formula :

E((x0)
fd
k ) = log10

(
||f((x0)

fd
k , (x∗)fdk )− f((x0)

bd
n+1−k, (x

∗)bdn+1−k)||
||f((x0)

fd
k , (x∗)fdk ))||

)
(55)

Fig. 4 depicts the distribution of the relative discrepancy error computed on 500 randomly gener-
ated values of x0 for the three bi-level architectures investigated in this paper.
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Figure 4: Measure of the discrepancy of the objective function for a randomly generated x0 for
SSBJ.

Fig. 4 illustrates that BCD-based architectures result in a reduction in the discrepancy on the
objective function in comparison to IRT bi-level architecture. The remaining error is due to
disciplinary optimization. The deactivation of all recycling mechanics, namely warm-start of the
MDAs, BCD loop, and block optimization, results in the complete control of precision by the
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tolerances given to the architecture. Indeed, it forces (x∗)fdk = (x∗)bdn+1−k, for all k ∈ [1..n] as
(x∗)fdk = x∗((x0)

fd
k , (x∗)0, (y

∗)0) which is now deterministic if the value of (x0)
fd
k is known.

Note that, in contrast to other architectures, the recycling mechanics, particularly warm starting
each block, are essential for performing numerical optimization in the IRT bi-level architecture.
Without these mechanics, each block would ignore the evolution of other blocks’ variables. Con-
sequently, the discrepancies in the functions of interest in the IRT bi-level architecture cannot be
fully controlled and are inherent to the architecture.

4.1.3 Local convergence comparisons

To illustrate the effect of discrepancy reduction on convergence properties, a complete optimization
benchmark is performed on the SSBJ test case with the three bi-level architectures, with MDF
present for comparison with a monolithic architecture. In order to address the potential bias
introduced by the algorithm performance on the starting point, and to generate performance pro-
files in accordance with standard methodology for comparison of optimization algorithms [11], the
computational cost and objective values are computed on 150 random starting points (x0)

0. The
gradient-free algorithm COBYLA [31, 32, 33]) is employed to solve the system level optimization,
and the state of the art SQP gradient-based SNOPT [19] algorithm, wrapped in pyoptsparse [42],
is utilized to solve the blocks optimizations.

The choice of COBYLA has been motivated as gradients with respect to the shared variables x0

are not available at the system level. Furthermore, as the g2 constraint computed by the aerody-
namic discipline depends solely on the shared variables x0, the system-level optimization problem
is constrained. Finally, based on experience, the first-order approximations of the functions of
interest utilized by COBYLA render the bi-level convergence robust to the noise introduced by
discrepancy errors.

The true optima for SSBJ being at f∗ = 3963.88, three targets are defined for the performance
profiles at respectively 3000, 3900 and 3957 the later, if reached, being considered as fully converged
considering a gradient-free approach is used (ie 0.2% error).
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Figure 5: Percents of targets reached relating to the total number of disciplines calls for each
considered architectures, BCD loop converge at 10−3

Results from Fig. 5 illustrates that both BL-BCD-MDF and BL-BCD-WK reached at least 90%
of the above defined targets while BL-IRT reached around 30%. Note that the MDF architecture
reached the SSBJ optima for every starting points as expected.
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The BL-IRT architecture’s low percentage of targets reached and dependency to the starting
point can be attributed to the fact that the first n0 + 1 iterations of the COBYLA algorithm are
dedicated to the sampling of the functions of interest around the starting point. Consequently,
the approximations are built on the points where the discrepancy error is high, due to the fixed
distance between these points.

The average 10% of targets that have not been reached by BCD-based architectures can be at-
tributed to numerical issues related to a conflict between the optimizer’s stopping criteria and
requested tolerances for each aspect of the bi-level architectures. Experiments have demonstrated
that non-converging starting points can be converted into converging ones when tolerances for
either the block optimization or the BCD loop are modified, although this may result in previous
convergent starting points no longer reaching the optimum. An excessively wide BCD loop toler-
ance may result in the local variables x remaining unchanged, despite a low impact on the block
optimization. This can lead to the system optimizer prematurely halting the optimization process.
Conversely, a BCD loop tolerance that is excessively restrictive may be impossible to converge in
practice due to the effects of couplings, thereby contradicting the assumption underlying Definition
First order separability. By repeating the failed starting points for both BCD-based architectures
with another BCD loop tolerances (between 10−3 and 10−8), one can reduce the impact on the
convergence. These results are indicated with the suffix corr in Fig. 5.

In the case of BL-BCD-MDF, all optimizations reached the optimal solution, once the tolerances
were adjusted for each of them. However, BL-BCD-WK failed to reach the final target for some
starting points, regardless of the choice made regarding the BCD loop tolerance. The specific chal-
lenge for BL-BCD-WK is that the BCD loop simultaneously controls the couplings and the local
design variables convergence. It is typical that coupling variables require a higher level of accuracy
than design variables. Consequently, achieving a high convergence accuracy for optimizations is
more challenging than for couplings by a MDA.

With regard to the computational cost of utilising the newly proposed bi-level architectures, the
BCD variant necessitates 10 times more discipline calls than bi-level IRT. However, this is justified
by its enhanced robustness. In comparison to gradient-free MDF, the cost may be multiplicative
by 100 to 1000. However, the SSBJ test case is a small MDO problem that was selected for its
relevance in terms of block decomposition. It is not representative of the dimensions of real MDO
problems, in which hundreds of design variables and thousands of constraints are involved. In
the latter, a derivative-free MDF resolution is expected to fail, in contrast to bi-level strategies
using disciplinary gradients such as in [15]. A further benchmark is then proposed in order to
address the question of scalability with respect to the number of local variables, couplings, and
constraints. This will be discussed in the next section.

This benchmark illustrates the function of BCD-based architectures. The discrepancy error re-
duction enables for a much wider range of convergence, albeit at the cost of a significantly greater
computation cost. It also indicates that a dynamic update of the tolerances for the BCD loop and
the nested block optimization should be present to avoid unnecessary block optimization. This
should lead to further researches.

4.2 Scalability study
First, a concise description of the equations that guide the Sellar optimization problem is pre-
sented, with minor modifications to allow for both a block decomposition of the lower problem
and to specify the number of local design variables, couplings, and constraints. Finally, this block-
scalable version is employed to compare both the BL-BCD-MDF and MDF architectures with
a gradient-free optimizer when local variables, couplings, and constraints are introduced. The
results demonstrate that the bi-level paradigm becomes increasingly effective as the number of
non-shared variables are increase compared to monolithic architectures. This is due to the use
of gradient-based algorithms within the blocks, rather than at the system level. In contrast, the
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monolithic architecture was unable to utilize coupled derivatives, in order to emulate industrial
constraints as previously outlined.

4.2.1 A block scalable version of the Sellar problem

The original Sellar problem [34] has been slightly modified to allow for a block decomposition
in the local variables. A dependency on a newly created variable x2 has been added to the
objective function and the y2 analysis function. This modification has been made in order to
create a symmetry in both blocks, and does not change the optimum in the shared variables x0.
Subsequently, each local variable, constraint and coupling has been vectorized to be considered as
an n dimensional vector. This modified n-dimensional block Sellar problem is described by:

minimize f(x0,1, x0,2, x1, x2, y1, y2) =
‖x1‖2

n
+

‖x2‖2

n
+ x0,2 +

‖y1‖2

n
+ e−ȳ2

subject to : − 10 ≤ x0,1 ≤ 10, 0 ≤ x0,2 ≤ 10

0 ≤ x1,i ≤ 10, 0 ≤ x2,i ≤ 10 i = 1, . . . , n

c1,i(y1,i) = 3.16− y21,i ≤ 0 i = 1, . . . , n

c2,i(y2,i) = y2,i − 24 ≤ 0 i = 1, . . . , n

y1,i − y1,i(x0,1, x0,2, x1,i, y2,i) = 0 i = 1, . . . , n

y2,i − y2,i(x0,1, x0,2, x2,i, y1,i) = 0 i = 1, . . . , n

Discipline 1 : y1,i(x0,1, x0,2, x1,i, y2,i) =
√
(x0,1)2 + x1,i + x0,2 − y2,i.

Discipline 2 : y2,i(x0,1, x0,2, x2,i, y1,i) = |y1,i|+ x0,1 + x0,2 − x2,i.

This transformation preserves the global minimum of the one-dimensional version (in R2n for the
local variables) and the optimal objective value (f∗ = 3.1833) and constraints. The global optimal
design for the MDF architecture is obtained in x∗

0 = [0.0, 1.977639] and x∗
1 = x∗

2 = 0Rn .

Considering the hypothesis : at the shared variables optimal design x∗
0, (Plow)’s MDF solution is

effectively obtained in x∗ = [x∗
1, x

∗
2] which is an over constrained optimum as all lower bounds are

active, as-well as the constraint c1. Consequently the linear independence constraint qualification
is not verified. Nevertheless, the MFCQ is satisfied and a Lagrange multipliers vector that verifies
both the first- and the second-order KKT necessary conditions for (Plow) is easily found. Both
blocks verify the Unique Block Minimizer (Definition 3.1) near x∗

0. Furthermore, the solution
obtained by each block corresponds to the coupled optimal primal-dual pair of MDF, thereby
validating the Definition 3.2 assumption.

4.2.2 Scalability comparisons

For purpose of visibility, only the monolithic gradient-free MDF architecture and the BL-BCD-
MDF architecture are considered. Fig. 6 depicts the average total number of disciplines required
to reach the final target, fixed at 3.19 with n ∈ [1, 5, 20, 50] the optimal value being 3.1833. A
total of 150 distinct starting points were utilized in the testing process.

The results indicate that the average number of disciplines executed to reach the final target
remains relatively constant for the BCD-based architectures,due to the relatively low dimensions
of the sub-problems addressed with gradient-based optimizers. In contrast, the MDF architecture
exhibits the expected curse of dimensionality for gradient-free approaches, resulting in a rapid
increase in computational cost with the problem problem.

The variance for BCD-based architectures is significantly higher than that of the two others in the
number of disciplines executions for low-dimensional problems. These variations are attributed to
the overall BCD-loop convergence, which could enhanced through further work on the algorithms.
For higher-dimensional problems, here exceeding 40 variables, the variances between MDF and
BL-BCD-MDF are comparable.

24



2 10 40 1002 10 40 1002 10 40 1002 10 40 1000

5000

10000

15000

20000

25000 BCD

2 10 40 1002 10 40 1002 10 40 1002 10 40 100

WK

2 10 40 1002 10 40 1002 10 40 1002 10 40 100

IRT

2 10 40 1002 10 40 1002 10 40 1002 10 40 100

MDF

Total size of the couplings, local variables and constraints (2*n)

To
ta

l n
um

be
r o

f d
isc

ip
lin

e 
ca

ll

Figure 6: Scalability study on Sellar

In general, bi-level architectures iare more efficient than gradient-free MDF when the number of
local design variables exceeds 40.

5 Conclusion
The proposed distributed MDO architectures, derived from MDF (BL-BCD-MDF and BL-BCD-
WK) were designed to address MDO problems where the coupled adjoint is not available and where
shared design variables are far less numerous than the local variables. Both architectures handle
shared design variables at the upper level with a gradient-free optimizer and local design variables
at the lower level. In the event that a block decomposition exists for the lower optimization
problem, a block coordinate descent algorithm has been proposed for the purpose of solving the
lower optimization problem. This is achieved by successively minimizing the objective function
along each block, with the use of a gradient-based approach. Local convergence of the block
coordinate descent algorithm towards the assumed unique minimizer of the lower problem has been
demonstrated under justifiable assumptions, which allows for a better regularity of the upper-level
functions. Both architectures have been compared to the bi-level IRT and a gradient-free MDF
approach. As anticipated, the proposed architectures exhibit superior convergence properties in
exchange for a higher number of discipline calls. This trad-off can be offset by the scalability
study, which demonstrate that the architectures become more computationally efficient than the
gradient-free MDF approach as soon as the number of local variables, couplings, and constraints
is too high, typically above 40 for the considered benchmarks.

Further research is necessary to validate the hypothesis proposed for proving the local convergence
results. This is particularly important in the case where some block-optimization are infeasible. In
practice, problems were solved that do not satisfy this hypothesis. However, it is likely that these
hypothesis are sufficient but not necessary. Additionally, efforts must be made to have a better
control over the tolerances of the BCD loop and nested block optimization, which is the most costly
part of the algorithm. The implementation of dynamic tolerances would facilitate a more precise
control over the cost/precision trade-off in the resolution of the lower problem and in the overall
optimization process, as exemplified by the approach proposed in [38]. Finally, experiments are
being conducted on more complex real-world problems within the targeted applications, including
high-dimensional/high-fidelity aerostructural applications [21] as well as a comparison with other
classical distributed architectures.
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Appendix
This section gather XDSM diagrams for the 3 bi-level architectures considered in this paper. The
MDO problem considered is a generic 2 strongly coupled disciplines for readability.
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    XDSM v2

1, 12-2:Optimizer System

2, 5-3:MDAGaussSeidel

3, 8:Discipline 1

4, 9:Discipline 2

6:Optimization Block 1

6:Optimization Block 2

7, 10-8:MDAGaussSeidel

11:Functions
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Optimization Block 1

1, 4-2:Optimizer
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Optimization Block 2
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Figure 8: XDSM of disciplinary block optimizations executed in parallel within the BL-IRT
architecture
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    XDSM v2

1, 15-2:Optimizer System

2, 5-3:MDAGaussSeidel

3, 11:Discipline 1

4, 12:Discipline 2

6, 9-7:BCD loop

7:Optimization Block 1

8:Optimization Block 2

10, 13-11:MDAGaussSeidel

14:Functions
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Figure 10: XDSM of the MDF block optimizations within the BCD loop of the BL-BCD-MDF
architecture
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