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Spatial heterogeneity of driving factors-induced impacts for global 

long-term surface urban heat island 

A series of empirical analytical tools have been adopted to investigate the driving 

mechanisms of surface urban heat islands (SUHI) on a global scale, among which 

spatial heterogeneity is yet to be fully elucidated. In this study, we investigated the 

spatial non-stationarity of the driving factors concerning surface properties, 

climate conditions, and urbanisation processes for global long-term SUHI. First, 

the potential impact on SUHI was explored using global ordinary least squares 

regression. Geographically weighted regression (GWR) and multi-scale GWR 

(MGWR) from local perspectives were employed for comparison. The results 

show that the MGWR has the highest goodness of fit at 0.87, 0.73, 0.90, 0.74, 0.85, 

and 0.76 for annual day/night (AD/AN), summer day/night (SD/SN), and winter 

day/night (WD/WN) scales, respectively. Although both global and local schemes 

exhibit similar influencing magnitudes and signs on the SUHI, the MGWR is better 

at capturing spatial non-stationarity. Globally, for AD, AN, SD, SN, WD, and WN, 

the coefficients of the urban-rural vegetation index difference (ΔEVI) and surface 

albedo difference (ΔWSA), urban mean precipitation (MAP), wind speed (WS), 

population density (PD), and urban area (UA) are -0.50, +0.30, +0.16, +1.31, -0.03, 

and +0.03, respectively at daytime, and -0.38, -0.33, -0.39, -0.10, +0.18, and +0.08, 

respectively at nighttime. Given the spatial heterogeneity of multiple factors, ΔEVI 

exhibits a strong mitigation effect on the SD SUHI especially in arid zones. The 

negative influence of ΔWSA on nighttime SUHI demonstrates a strong latitudinal 

disparity and greater sensitivity in the lower equatorial zone. The positive 

correlations between MAP and AD/SD SUHI have evident latitudinal and 

longitudinal variations. The mitigation effect of WS displayed distinct coastal 



amplification, especially in WD. In contrast, PD and urban area UA presented 

prominent positive impacts on nighttime SUHI with less seasonal contrast. 
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Introduction 

With the rapid development of global economic integration and population growth, 

urbanisation has become a worldwide historical process (United-Nations 2019). Urban 

growth gradually transforms the original natural surfaces of vegetation, water, soil, and 

so forth into impervious urban areas that are mainly composed of built-up areas and 

infrastructure, accompanied by a large number of human activities (Vitousek et al. 1997). 

This changes the local meteorology, regional climate conditions, and energy exchange 

mode at the interface of the surface and the atmosphere between urban and surrounding 

suburban and rural areas (Grimm et al. 2008; Oke 1982). Consequently, urban or 

metropolitan regions become hotter than surrounding rural areas, leading to the surface 

urban heat island (SUHI) phenomenon (Oke 1988; Weng, Lu, and Schubring 2004). The 

advantages and disadvantages of SUHI has been proved hard to discern, though, it can 

reduce the consumption of energy significantly for mid-high latitude cities in winter while 

exhibits adverse effect to increase the frequency of heat disasters during heat waves 

(Bründl and Höppe 1984; Mohajerani, Bakaric, and Jeffrey-Bailey 2017). It is widely 

known that SUHI can negatively impacts energy use, urban population health, and air 

quality thus the considerable attention from scientific research teams, urban planners, and 

government departments (Zhao, Liu, and Zhou 2016; Santamouris et al. 2015). It is 



necessary to enhance the theoretical research on drivers for global SUHI to support 

effective mitigation strategies in urban management (Zhou et al. 2019). 

As a vital phenomenon reflecting the urban thermal environment, SUHI is the 

consequence of the combined effects of surface properties, human activities, and 

meteorological and climate conditions (Li, Si, and Leng 2020). Urbanisation is the 

primary cause of alterations in surface attributes. Modifications in the LULC and surface 

structure constantly alter the surface physical properties and lead to differences in the 

surface energy redistribution modes between urban and rural areas, which further 

determines the spatiotemporal pattern of the SUHI (Mika et al. 2018; Feranec et al. 2019; 

Lee et al. 2011; Zhao et al. 2014). Human activities have dramatically increased energy 

consumption and generated a large amount of waste heat, leading to additional surface 

heat flux, which affects the urban climate and near-surface temperature (Jin et al. 2019; 

Meng and Dou 2016; Yan et al. 2016). Background meteorology and climate conditions, 

such as differences in surface turbulence, precipitation, air temperature, wind, and cloud 

conditions, over urban and suburban areas often vary across different geographical 

regions or background climate zones (Zhao et al. 2014; Zhao 2018; Manoli et al. 2019; 

Sun et al. 2019; Li, Zha, and Wang 2020), which also has a strong impact on the SUHI. 

Although the driving factors for the characteristics of SUHIs have been thoroughly 

explored for several decades (He 2018; Deilami, Kamruzzaman, and Liu 2018; Zhou et 

al. 2019), many inconsistencies exist in the current findings owing to different time 

ranges, regional scopes, and analysis methods (Clinton and Gong 2013; Zhou, Rybski, 

and Kropp 2017; Zhou et al. 2014). Globally, there has been minimal investigations on 

the disparity in response mechanisms for SUHI over different regions and at different 

temporal scales out of annual-summer-winter and day-night aspects. Therefore, revealing 



the spatial heterogeneity of the driving factors of global SUHI from a local perspective is 

necessary and beneficial in the proposal of targeted mitigation guidance. 

To investigate the causality of SUHI, model-based schemes and statistical methods 

are used universally in the analytical aspect of the driving factors. Based on the surface 

energy balance (SEB), the underlying mechanisms of SUHI can be scientifically and 

physically determined (Zhao et al. 2014; Li et al. 2019). However, either the model 

simulation or the numerical deduction process is time-consuming and difficult to conduct 

on a global scale. Therefore, statistical models are more commonly used in SUHI studies 

(Li, Si, and Leng 2020), wherein a series of analysis tools have been adopted, such as 

correlation analysis (Zhou et al. 2016; Weng 2001; Tran et al. 2006), linear regression 

models (Dissanayake et al. 2019), spatial association analysis (Chen, Jiang, and Xiang 

2016), and geographically weighted regressions (Buyantuyev and Wu 2010; Deilami and 

Kamruzzaman 2017). However, spatial heterogeneities of relationships generally exist 

between global SUHI and associated influencing factors, which are hardly detected by 

traditional statistical methods (Chakraborty and Lee 2019; Chakraborty et al. 2020; Peng 

et al. 2012). Few studies have focused on the global heterogeneity of impacts on SUHI, 

the driving mechanisms of global SUHI from global to local perspectives still require 

further investigation. Advanced spatial statistical models such as the commonly used 

geographically weighted regression (GWR) are recommended to better reveal the spatial 

heterogeneity of the driving factors for global SUHI (Li, Zha, and Zhang 2020b), 

however, due to the limitation of fixed bandwidth of the GWR model, improved 

analytical tools should be introduced to better quantify the global variation of multiple 

drivers for SUHI. 

To this end, this study aims to explore the potential driving factors of the dynamic 

surface properties (surface vegetation condition and albedo), climatic conditions 



(precipitation and wind), and urbanisation processes (population and urban size) for the 

spatial variation of global long-term SUHI with an improved spatial statistical model. The 

two analytical perspectives of global and local aspects were considered simultaneously 

as a primitive attempt to reveal the driving mechanisms of SUHI. Meanwhile, the spatial 

heterogeneity of the driving factors for global daytime/nighttime SUHIs on the annual, 

summer, and winter average scales were also disclosed by an advanced spatial statistical 

model. 

 

Data 

The land surface temperature was extracted from the LST products (MOD11A1 and 

MOD11A1, Version 6) onboard the Terra and Aqua satellites, either of which is a daily 

surface temperature/emissivity product dataset with a spatial resolution of 1 km. Annual 

land cover types were extracted from the MODIS land cover product (MCD12Q1, 

Version 6). The Enhanced Vegetation Index (EVI) was extracted from the vegetation 

index product (MOD13A2 and MYD13A2, Version 6) onboard the Terra and Aqua 

satellites, with a spatial resolution of 1 km. Surface albedo was extracted from the 

MCD43A3 (version 6) dataset. Daily images were generated using 16 days of data 

(centred on a given date) with a spatial resolution of 500 m. The white-sky albedo (WSA) 

was selected in this study as it is linearly related to black-sky albedo and demonstrates a 

similar impact on SUHI (Peng et al. 2012). The surface elevation was extracted from the 

GTOPO30 dataset, with a spatial resolution of 1 km, from the US Geological Survey. The 

meteorological elements were extracted from the monthly climate and climatic water 

balance datasets for global terrestrial surfaces - TerraClimate with a spatial resolution of 

2.5 arc minutes (~ 5 km). Monthly averaged precipitation and wind speed datasets were 



selected for this study. The population density in the years 2000, 2005, 2010, 2015, and 

2020 was obtained from the Gridded Population of the World (GPW, v4.11) population 

grid density estimation data with a spatial resolution of 30 arc seconds (~ 1 km). For all 

available datasets, the time span was from January 2003 to December 2019, and the 

spatial resolution was resampled to 1 km with a sinusoidal projection. For years with 

missing data between 2003 and 2019, the annual global population density was 

constructed by borrowing the dataset of its neighbouring years. 

 

Methodology 

Definition of SUHII 

The instantaneous SUHI intensity (SUHII) was defined as the LST difference between 

the urban and rural regions as in Equation (1). 

                                                 (1) 

where the subscript  represents the four time points when Terra transitions at 10:30 and 

22:30 and Aqua transitions at 13:30 and 01:30, respectively.  and  were the 

mean LSTs for urban and rural regions, respectively. Subsequently, the SUHIIs from the 

MOD and MYD were averaged to obtain the daily mean daytime and nighttime SUHIIs. 

Surface elevation data were used to filter the rural pixels which had an elevation 

difference of more than 50 m from the mean urban elevation. Urban and rural boundaries 

were defined by a dynamic urban-extent method, where the urban regions were identified 

by city cluster algorithms with yearly land cover data, and the rural boundaries are defined 

as the equal-areal buffers after excluding water and impervious surfaces (Peng et al. 2012; 

Si et al. 2022). Finally, the SUHII at the annual, summer, and winter scales was averaged 

from daily quantification. The summer months of summer (June, July, and August) and 

winter (December, January, and February) for the Northern Hemisphere are opposite to 

_ _t t urban t ruralSUHII T T= -

t
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that for the Southern Hemisphere. 

Driving factor indices 

Compared with the natural surface in rural areas, the surface energy sources in urban 

areas have extra radiation from anthropogenic heat, in addition to solar radiation and 

atmospheric downward radiation. The energy received by the earth's surface is used for 

heat exchange between the earth and atmosphere in the form of turbulent flow, as well as 

for soil heat exchange. Taking rural LST as a reference, changes in the net surface short-

wave radiation will cause changes in the emission of surface long-wave radiation, which 

in turn will cause the redistribution of surface energy. The LST change in urban areas can 

be deduced by a combination of the urban-rural difference of each term related to 

Equation (1) (Lee et al. 2011). Correspondingly, the difference in surface radiation input 

and energy distribution directly leads to LST differences between urban and rural areas, 

that is, the SUHI phenomenon. However, as surface energy flux data with high spatial 

and temporal resolution and accuracy are difficult to retrieve, several proxy indicators are 

commonly used to reflect energy variance. Generally, changes in urban atmospheric 

conditions, surface properties, and climate factors cause differences in net surface 

shortwave net radiation and surface downward longwave radiation between urban and 

rural regions.  

Based on the findings of previous studies (Li, Si, and Leng 2020; Sun et al. 2016; 

Yang, Huang, and Tang 2019; Sun et al. 2019; Manoli et al. 2019), several potential 

factors associated with surface properties, background climate conditions, and 

urbanisation were selected to analyse the driving mechanisms of global SUHII at multiple 

temporal scales. The surface EVI and WSA differences between the urban and rural 

regions (ΔEVI, ΔWSA) were calculated using the same method as that in Equation (1). 

The monthly accumulated precipitation (MAP) and wind speed (WS) in the urban region 



were averaged to represent the climatic conditions. As for the factors related to 

urbanisation, the mean urban population density (PD) was assumed to be invariant within 

a year, and the PD for the years lacking the GPWv411 data was derived from the nearest 

year, while the urban area (UA) was calculated according to the previously recognised 

urban clusters. Thereafter, ΔEVI, ΔWSA, MAP, WS, PD, and UA were averaged at annual, 

summer, and winter scales. 

Analytical method 

From a global perspective, multiple regression analysis was used to analyse the 

driving factors of SUHI across cities on annual, summer, and winter averaged scales. In 

a traditional global regression model, ordinary least squares (OLS) methods are typically 

used, thus the OLS regression was used by a step-wise process to obtain the influencing 

factors of multiple drivers at global scale. The long-term average SUHII and each 

indicator were averaged by time and the regression were conducted by annual, summer, 

and winter scales, respectively. 

Spatial regression models 

Considering the spatial variability of the driving mechanism for SUHI from a local 

perspective, the relationship between SUHI and the related driving factors in different 

regions also varies with geographical location, which is called spatial non-stationarity. An 

advanced spatial statistical model can fully consider the first law of geography and detect 

the non-stationarity of the spatial relationship between variables. Therefore, GWR and 

multi-scale geographically weighted regression (MGWR) models were simultaneously 

introduced to further explore the driving factors of global SUHI at multiple spatial and 

temporal scales.  

GWR is a modelling method for local relationships that helps explain spatial 

relationships under spatial heterogeneity or spatial non-stationary conditions 



(Fotheringham, Brunsdon, and Charlton 2003). In contrast to OLS, which can only 

estimate coefficients in the global sense, GWR uses the local weighted least-squares 

method to estimate point-by-point parameters by incorporating the spatial position of the 

observation into the equation. The weight is a function of the distance between the 

regression point and other observation points, resulting in a continuous and smooth 

parameter estimation surface (Brunsdon, Fotheringham, and Charlton 1996). The GWR 

model extends the traditional global regression model and adds geographic location 

parameters, as follows: 

                            (2) 

where,  is the coordinate representing the position,  is the intercept at 

position ,  is the local estimation parameter of the independent variable , 

 is the number of variables,  is the residual at position . Considering distance 

attenuation, the GWR model executes the modification by weighting the observations 

around all sample points. Commonly used weight matrix models include the distance 

threshold, k-neighbour, quadratic kernel function, and Gaussian kernel function matrices. 

The most frequently used Gaussian kernel function is chosen as the weight function which 

embodies the bandwidth for controlling the local regression. 

Previous studies have proven that GWR is not sensitive to the choice of weight 

function, but is very sensitive to the bandwidth of the weight function. In view of the 

heterogeneous distribution of global SUHI and its drivers, the adaptive variable 

bandwidth was employed in this study, and the corrected Akaike Information Criterion 

( ) was introduced to determine the optimal model (Fotheringham, Brunsdon, and 

Charlton 2003). To evaluate the credibility of the model, it was necessary to further 

calculate the spatial autocorrelation coefficient of the residuals. The global Moran's I 
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index with a value range of [-1,1] was selected. A negative value indicates a negative 

spatial correlation, that is, high and low values will accumulate in a cluster; a positive 

value indicates a positive spatial correlation, that is, a cluster of high and high values, or 

low and low values, will accumulate in a cluster. A higher absolute value of the spatial 

autocorrelation coefficient indicates stronger spatial autocorrelation (Moran 1950). 

With respect to the fact that the GWR model has a scale effect, that is, the effects of 

certain variables may vary on different scales, while others at the same location may be 

spatially stable (Goodchild 2001). Accordingly, Fotheringham et al. (2017) proposed the 

MGWR model whose essence was designed by relaxing the assumption that all the 

spatially varying processes in a model operate at the same spatial scale. An optimal 

bandwidth vector takes place for each particular geographical process considering in 

reality the discrepancy occurs between micro- and macroprocesses or between local and 

global processes (McMaster and Sheppard 2004). Specifically, the spatial scale at which 

the conditional relationship between the dependent and each predictor was confirmed to 

produce a more powerful spatial model MGWR. The mathematical theory behind is to 

replace the fixed bandwidths in GWR as flexible for each independent variable indicating 

different processes as follows: 

                            (3) 

where the subscript  in  indicates the bandwidth used for calibration of the  

conditional relationship. 

Whereas the GWR model constrain the local relationships within each model to vary 

at the same spatial scale, MGWR allows the conditional relationships between the 

response variable and the different predictor variables to vary at different spatial scales, 

which is closer to the real-world geographic processes (Yang 2014). Therefore, the 

MGWR model was introduced to compare with the GWR model which were exploited 
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within the MGWR software (Oshan et al. 2019) to analyse the spatial non-stationarity of 

the driving factors for SUHII, and the results were compared with the findings from 

traditional multivariate regression schemes. 

 

Results 

Model diagnosis 

Collinearity analysis 

In statistical models, the linear correlation between two or more predictors is called 

multicollinearity (Alin 2010). Due to the non-independence of predictor variables, 

multiple variables may synchronously explain a certain underlying mechanism, resulting 

in larger deviations in model parameter estimates. In order to avoid the influence of 

multicollinearity, the Variance Inflation Factor (VIF) is usually used to judge whether 

multicollinearity exists between the selected predictor variables before the regression 

analysis. Generally, the closer the VIF is to 1, the smaller the collinearity (Dormann et al. 

2013). The VIF of the aforementioned six driving factors (ΔEVI, ΔWSA, MAP, WS, PD, 

and UA) are listed in Table 1. Because there is no day-night variation in the selected 

variable, the day-night VIF is equal. The VIF value of each variable was close to 1 and 

far below the threshold value of 10. Therefore, it can be considered that there is no 

prominent multicollinearity between the selected factors, which can be used for the 

subsequent analysis of the multiple regression model. 

Table 1 Variance inflation factor (VIF) of explanatory variables 

 ΔEVI ΔWSA MAP WS PD UA 

Annual daytime 1.38 1.25 1.47 1.24 1.10 1.04 

Annual nighttime 1.38 1.25 1.47 1.24 1.10 1.04 

Summer daytime 1.11 1.22 1.30 1.29 1.06 1.03 

Summer nighttime 1.11 1.22 1.30 1.29 1.06 1.03 



Winter daytime 1.39 1.21 1.22 1.16 1.12 1.05 

Winter nighttime 1.39 1.21 1.22 1.16 1.12 1.05 
Diagnostic Information 

The model fitting and diagnosis information for the multivariate regression, GWR, 

and MGWRs models at the average annual, summer, and winter scales are shown in Table 

2. The diagnosis results of the OLS, GWR, and MGWR models change with day-night 

and seasonal variations. For each temporal scale, the AICs values of the OLS, GWR, and 

MGWR models gradually decreased, and the lower AICs of GWR and MGWR models 

indicate a reduction of model complexity which can better avoid the model overfitting 

than that of OLS. The coefficients of determination (R2) of the OLS regression models 

are 0.57, 0.24, 0.67, 0.24, 0.34, and 0.31, respectively, which are worse than those of the 

GWR and MGWR models for the different temporal scales. The R2 values of the MGWR 

model are 0.87, 0.73, 0.90, 0.74, 0.85, and 0.76, respectively. Moreover, compared with 

the OLS model, the absolute values of Moran’s I for the GWR and MGWR models are 

closer to 0, indicating that they can effectively capture the spatial non-stationarity of the 

driving factors, and that MGWR performs better than GWR. In general, the explanatory 

factors of the SUHII have spatial non-stationarity, and the MGWR model has the optimal 

performance for the interpretation of global SUHI from a local perspective. 

Table 2 Diagnostic Information of OLS, GWR and MGWR models 

 Annual 
daytime 

Annual 
nighttime 

Summer 
daytime 

Summer 
nighttime 

Winter 
daytime 

Winter 
nighttime 

OLS diagnostics 

AICs 3407.272 4398.981 2975.548 4401.896 4170.915 4235.052 

R2 0.575 0.240 0.670 0.237 0.335 0.310 

R2 adjusted 0.573 0.238 0.669 0.234 0.333 0.307 

Moran’s Index 0.521 0.440 0.668 0.451 0.572 0.489 

GWR diagnostics 

AICs 2029.597 3415.593 1697.603 3264.442 2404.918 3147.025 



R2 0.867 0.731 0.889 0.760 0.856 0.757 

R2 adjusted 0.843 0.668 0.869 0.700 0.820 0.707 

Moran’s Index 0.033 0.074 0.045 0.038 0.033 0.059 

MGWR diagnostics 

AICs 1926.200 3258.350 1613.605 3237.352 2276.312 3057.863 

R2 0.871 0.733 0.897 0.743 0.846 0.759 
R2 adjusted 0.850 0.682 0.878 0.689 0.818 0.714 
Moran’s Index -0.032 -0.001 0.006 0.004 -0.012 -0.003 

 

Model comparison for regression coefficients 

Table 3 shows a comparison of the regression coefficients of the OLS, GWR, and 

MGWR methods. The regression coefficients of the OLS model are unique on a global 

scale. For the GWR and MGWR models, the global average and variance of the local 

coefficients are provided. The OLS model has an insignificant parameter fitting at a 95% 

confidence interval on several scales. Given the results of the three models, the regression 

coefficients of ΔEVI are all negative, the regression coefficients of ΔWSA and MAP are 

positive during the day and negative at night, and the regression coefficients of WS are 

all negative, while the regression coefficients of PD and UA are positive in most cases. 

The sign of the influence of each factor on the SUHII is consistent with the results of 

previous studies, while the magnitudes vary between different models due to different 

fitting process, which indicates the reasonability and reliability of the regression models 

for characterising the drivers for SUHII (Si et al. 2022; Peng et al. 2012; Chakraborty and 

Lee 2019) . 

 

 

 

 

 



 

Table 3 Regression coefficients of OLS, GWR and MGWR models 

 Annual 
daytime 

Annual 
nighttime 

Summer 
daytime 

Summer 
nighttime 

Winter  
daytime 

Winter 
nighttime 

OLS global regression 

Intercept -0.000 -0.000 0.000 0.000 0.000 0.000 

ΔEVI -0.544 -0.182 -0.719 -0.216 -0.469 -0.111 

ΔWSA 0.152 -0.184 0.241 -0.068 -0.024* -0.392 

MAP 0.243 -0.452 0.047 -0.427 0.211 -0.297 

WS -0.037 -0.264 -0.076 -0.012* -0.141 -0.259 

PD -0.065 0.147 -0.058 0.106 -0.028* 0.125 

UA 0.152 0.026* 0.143 0.085 0.107 0.001* 

GWR local regression (mean ± std) 

Intercept 0.032 ± 0.548 0.000 ± 0.781 0.104 ± 0.533 -0.877 ± 4.485 -0.071 ± 0.711 -0.264 ± 1.042 

ΔEVI -0.500 ± 0.256 -0.302 ± 0.372 -0.584 ± 0.241 -0.335 ± 0.314 -0.356 ± 0.432 -0.130 ± 0.380 

ΔWSA 0.305 ± 0.218 -0.300 ± 0.316 0.313 ± 0.166 -0.127 ± 0.251 0.391 ± 0.459 -0.412 ± 0.434 

MAP 0.201 ± 0.240 -0.429 ± 0.611 0.132 ± 0.397 -1.140 ± 4.118 0.199 ± 0.842 -0.860 ± 1.597 

WS -0.106 ± 0.190 -0.079 ± 0.346 -0.077 ± 0.167 -0.090 ± 0.315 -0.074 ± 0.274 -0.058 ± 0.377 

PD 0.030 ± 0.339 0.151 ± 0.383 0.021 ± 0.214 0.108 ± 0.255 0.053 ± 0.279 0.204 ± 0.332 

UA -0.009 ± 0.235 0.237 ± 0.559 0.008 ± 0.218 0.193 ± 0.405 -0.057 ± 0.348 0.211 ± 0.514 

MGWR local regression (mean ± std) 

Intercept -0.081 ± 0.363 -0.037 ± 0.589 0.127 ± 0.399 -0.725 ± 1.078 -0.189 ± 0.408 -0.130 ± 0.302 

ΔEVI -0.497 ± 0.232 -0.380 ± 0.290 -0.589 ± 0.248 -0.341 ± 0.197 -0.362 ± 0.359 -0.160 ± 0.245 

ΔWSA 0.302 ± 0.186 -0.331 ± 0.314 0.286 ± 0.147 -0.146 ± 0.204 0.419 ± 0.429 -0.425 ± 0.291 

MAP 0.156 ± 0.025 -0.394 ± 0.440 0.147 ± 0.247 -1.086 ± 1.493 0.177 ± 0.218 -0.632 ± 0.647 

WS -0.131 ± 0.195 -0.100 ± 0.116 -0.075 ± 0.110 -0.165 ± 0.174 -0.095 ± 0.030 -0.056 ± 0.275 

PD -0.030 ± 0.124 0.177 ± 0.163 -0.003 ± 0.132 0.122 ± 0.062 -0.036 ± 0.136 0.216 ± 0.204 

UA 0.031 ± 0.017 0.080 ± 0.137 0.019 ± 0.114 0.136 ± 0.345 -0.020 ± 0.236 0.067 ± 0.150 
(*Insignificant, p>0.05) 

 

Spatial non-stationarity 

Figure 1–Figure 6 show the spatial distribution of the regression coefficients of each 



driving factor obtained from the MGWR model, corresponding to the daytime and 

nighttime conditions in annual, summer, and winter scales. The colour symbols represent 

different coefficient intervals, whereas the grey circles represent points where the 

estimation is insignificant (p>0.05). It is clear that the regression coefficients for each 

driving factor show a large spatial variance. 

For the annual daytime SUHII in Figure 1, ΔEVI has a significant negative 

contribution in most cities around the world, indicating that the increase in vegetation 

activity means a greater daytime evapotranspiration, which leads to a decrease in SUHII. 

In arid regions, such as North Africa and the Middle East, where cities with cold islands 

are distributed (Si et al. 2022), the negative contribution of ΔEVI is more evident. There 

is a positive correlation between ΔWSA and annual daytime SUHII, and the coefficients 

vary across different latitude zones. The MAP is positively correlated with the annual 

daytime SUHII for most cities, and South America displays the largest coefficient 

magnitude. The WS shows a significant negative contribution in some cities. PD has the 

largest positive correlation in cities on the east coast of Australia, followed by cities in 

Southeast Asia and northeastern China. Significant negative correlations appear in some 

cities in North America, Western Europe, and Africa. UA has significant positive 

correlations mainly in North America, South America, Africa, and Western Europe in the 

Western Hemisphere, where PD shows a large proportion of negative contributions. 



 

Figure 1 The spatial variation of coefficients of multi-independents for annual daytime SUHII. 

According to Figure 2, for the annual nighttime SUHII, the correlation of ΔEVI in 

most cities is significantly reduced. ΔWSA has a negative correlation with the annual 

nighttime SUHII, whose magnitude gradually decreases from the equatorial region to 

high latitudes, and a few positive contributions arise in the Southern Hemisphere. 

According to Equation (4), ΔWSA and solar radiation regulate nighttime SUHII by 

influencing the net surface shortwave radiation during the daytime. Normally, the 

intensity of solar radiation in the equatorial region is higher than that at high latitudes; 

thus, equatorial SUHII is more sensitive to changes in ΔWSA. MAP is negatively 

correlated with annual nighttime SUHII, while the number of cities with a significant 

correlation decreased compared with daytime cases. WS shows negative correlations, 

while the absolute value of the coefficients is lower than that during the daytime. It is 

inferred that the WS has a smaller impact on the impedance at night, which leads to a 



weaker regulation effect on the sensible heat flux than during the day. For PD in 

developed countries such as the United States, Europe, and other regions, the positive 

correlation at night is greater than in developing countries, while it is relatively minimal 

in India. The positive effect of UA in North America and South America is weaker at 

night than during the day, whereas the impact on the SUHII in the Middle East and India 

has increased significantly, which may be related to the emission of more heat fluxes from 

human activities in these areas. 

 
Figure 2 The spatial variation of coefficients of multi-independents for annual nighttime SUHII. 

Figure 3 and Figure 4 show the spatial distribution of the regression coefficients of 

the summer daytime and nighttime SUHII, respectively. The negative correlation of ΔEVI 

with summer daytime SUHII is more evident than that in the annual cases. The latitudinal 

variations of the correlation with ΔWSA are not that obvious during the daytime, and the 

negative correlation at nighttime is also lower than the annual average cases. The daytime 



positive correlation and nighttime negative correlation with MAP in the Northern 

Hemisphere are significantly higher than those in the Southern Hemisphere. This may be 

related to the stronger vegetation activities in the Northern Hemisphere during summer. 

Precipitation not only regulates the evaporation ratio by affecting the surface soil moisture 

but also promotes the growth of vegetation, making summer SUHII in the Northern 

Hemisphere more sensitive to changes in MAP. The negative influence of WS on summer 

SUHII at night is stronger than that during the daytime. PD had a significantly higher 

impact on SUHII at night than during the day. UA is significantly positively correlated 

with summer daytime SUHII in North America and Western Europe in the Western 

Hemisphere, while in India, the impact of UA is stronger on nighttime SUHII. 

 
Figure 3 The spatial variation of coefficients of multi-independents for summer daytime SUHII.	



 

Figure 4 The spatial variation of coefficients of multi-independents for summer nighttime SUHII.	

Figure 5 and Figure 6 show the spatial distribution of the regression coefficients of 

the winter daytime and nighttime SUHII, respectively. Compared with the results in 

summer, the negative contribution of ΔEVI in the daytime is relatively weaker, which 

may be related to the weakening of vegetation activities in winter. The positive correlation 

of ΔWSA with winter SUHII shows limited significance during the daytime, while the 

negative correlation at nighttime shows a decreasing magnitude from the equator to 

higher latitudes. In winter, the positive correlation between MAP and daytime SUHII is 

more obvious in the equator and arid zone, while the magnitude of the negative 

correlation between MAP and nighttime SUHII decreases from the equator to the poles. 

WS shows a negative correlation, which is more evident during the daytime than at 

nighttime. PD and UA had significant positive contributions, especially at night. In most 

cities in the Northern Hemisphere, PD is more positively correlated with nighttime SUHII. 



The positive contribution of UA at night is greater in areas such as East Africa and India. 

 
Figure 5 The spatial variation of coefficients of multi-independents for winter daytime SUHII.	



 
Figure 6 The spatial variation of coefficients of multi-independents for winter nighttime SUHII. 

 

Discussion 

As one of the most severe urban thermal environmental problems, the SUHI phenomenon 

based on remote sensing technology acts as a bridge between research on satellite product 

algorithms and urban remote sensing applications. In view of the uncertainty of the 

driving mechanisms and the deficiency of heterogeneity of the influencing effect for 

global long-term SUHI, this study proposes the necessity of exploring the spatial and 

temporal variation of influencing magnitude and signs by introducing advanced spatial 

statistical models. First, the global daily instantaneous daytime and nighttime SUHII 

dataset from 2003 to 2019 were generated and averaged over different seasons. Second, 

the driving factors for the global SUHII were analysed from a global perspective, which 

was further compared with the GWR and MGWR models at the local scale. The results 



and findings are expected to provide target indications for mitigation policies in urban 

management in different geographic regions. 

Impact of multiple factors 

Based on the regression from the three schemes, the results prove that the average 

contributions of the different statistical models show consistent evidence. Generally, 

ΔEVI is negatively correlated with daytime SUHII, which is mainly caused by the effect 

of vegetation activity on the latent heat flux. ΔWSA mainly regulates nighttime SUHII 

by affecting the net surface shortwave radiation during the day and surface heat storage 

at night. The MAP was positively correlated with daytime SUHII and negatively 

correlated with nighttime SUHII, which mainly affects the specific heat capacity, surface 

impedance, and other parameters related to the surface heat flux in rural natural land 

surface, resulting in different rates of LST increase during the day and LST decrease at 

night to regulate the daytime and nighttime SUHII. WS mainly contributes negatively to 

SUHII by disturbing the surface impedance and regulating the sensible heat flux. The 

positive correlation between PD and UA with SUHII was more significant at nighttime, 

mainly due to anthropogenic heat emissions amplifying SUHII. 

Although we have compared three different analytical methods, the execution of 

each model was simultaneously used one by one in order to keep the consistency for 

impact analysis on global cities. Previously, most SUHI studies have focused on a single 

city or representative cities and urban clusters on a national or regional scale (Sun, Wang, 

and Wang 2020; Li, Zha, and Zhang 2020a; Hu et al. 2019; Yue et al. 2019; Sun et al. 

2019; Lai et al. 2021), whereas the impact analysis on long-term SUHI at a global scale 

has been less conducted (Wu and Ren 2019). Specifically, the relationship between 

spatially distributed SUHII and associated drivers may not necessarily be consistent due 

to the different definition of urban and rural regions, various analytical approach, and 



even different data source (Li et al. 2023). For example, studies at the global scale show 

that city size has a positive impact on SUHI (Zhou, Rybski, and Kropp 2017), while 

studies at the regional scale showed no significant correlation between them (Zhou et al. 

2014). To avoid this inconsistency as much as possible, this work presented a 

comprehensive study across global cities with long-term time span and based on identical 

analysis method.  

Spatial non-stationarity 

The limited global studies (Zhang et al. 2010; Peng et al. 2012; Clinton and Gong 

2013) did not completely analyze the spatial variation of impacts on SUHI. In this study, 

we revealed the spatial heterogeneity of multiple factor-induced impact on global long-

term SUHI. Under the combined effect of multiple factors, the driving mechanism of the 

global SUHII is spatially nonstationary for different seasons. During the day, larger 

differences in vegetation activity between urban and rural areas generally produce a 

stronger intensity of cold islands in arid regions, where the evaporative heat flux 

dominates more significantly and shows a larger negative coefficient on ΔEVI. At night, 

the influence of ΔEVI was weak across the globe. The contribution of ΔEVI is mainly 

from the summer scale. 

As for ΔWSA, the insignificant positive correlations with daytime SUHII were not 

apparent globally. The negative magnitude of its coefficient at night has a latitudinal effect, 

indicating global solar radiation distribution. The magnitude of the contribution is larger 

in equatorial regions, where higher solar radiation exists and decreases at higher latitudes. 

Generally, the ΔWSA in winter shows a more obvious negative contribution than in 

summer, and the nighttime SUHII is dominated by the negative effect of ΔWSA in the 

higher latitudinal zone where snow cover appears more frequently. 



The positive correlations between the daytime SUHII and MAP showed latitudinal 

and longitudinal variations. At the annual scale, there is a trend of decreasing correlations 

from low latitudes to high latitudes and from the Western to Eastern hemisphere. The 

highest contributions were distributed in the equatorial regions of South America. At night, 

the negative contribution of MAP also shows a larger magnitude in the Northern 

Hemisphere, with a limited number of significant correlations compared to daytime 

conditions. Specifically, in summer, the disparity between the Northern and Southern 

Hemispheres is obvious both during the day and night. In the Northern Hemisphere with 

higher vegetation activity, the LST is more sensitive to surface soil moisture and 

vegetation growth, thus has a larger contribution to SUHII from MAP. In winter, the 

influence of MAP is weak compared with in summer. 

As for WS, its negative contribution in some cities also displays spatial variability, 

and the magnitude of the effect is relatively larger in coastal cities. Regarding the 

summer-winter contrast, the WS in winter daytime shows significant and larger cooling 

effects on SUHI in most cities across the globe. At night, the WS shows negative 

correlations, while the absolute value of the coefficients is lower than that of during the 

day. It is inferred that the WS has a smaller impact on the impedance at night, which leads 

to a weaker regulation effect on the sensible heat flux at night than during the day. 

PD showed significant positive correlations with daytime SUHII in cities in the 

Eastern hemisphere, while negative correlations appeared in regions with larger positive 

UA contributions, mainly distributed in some Western cities. At night, the sign and 

magnitude of PD are even larger in Western developed countries, where the positive 

contribution of UA becomes weaker, which shows contrary regulation as that at daytime. 

There was no significant summer-winter difference in the influencing effect of PD and 

UA on its spatial heterogeneity. 



Implications and prospects 

The driving factors for SUHI have been fully investigated for several decades; 

however, SUHI is typically quantified using land surface temperature, which is a spatial 

variable at the local scale. Assessing the spatial heterogeneity of the driving mechanisms 

for global long-term SUHI at multiple temporal scales is usually not a point of focus. In 

this study, we presented a comprehensive investigation on the influencing effects of 

multiple factors on global SUHI from global to local perspective and distinguished the 

day-night and summer-winter contrast with an improved MGWR model. To the best of 

our knowledge, this work has been paid little intention in previous global SUHI studies. 

This proves to be a significant consideration in further detection of global SUHI and its 

underlying mechanisms. Meanwhile, our findings exhibit magnitudes and signs of drivers 

consistent with the results from a global perspective in previous studies, indicating that 

different quantification schemes of driving mechanism assessment may not affect the 

average pattern of influencing factors for global SUHI. The findings on global SUHI 

variation and its associated factors are assumed to have implications for urban planning. 

Furthermore, it is necessary to assess additional potential driving factors of anthropogenic 

activities (e.g. air pollution and human heat flux) and urban landscapes (Cao et al. 2016; 

Li et al. 2018; Liu and Weng 2009; Lu and Weng 2006; Weng and Lu 2008; Huang and 

Wang 2019). 

Generally, spatial non-stationarity is assessed using advanced spatial statistical 

models, which can also be applied to SUHI research. To further reveal the temporal 

heterogeneity of global long-term SUHI, we analysed the disparity of spatial non-

stationarities of driving factors by distinguished temporal scales, that is, day-night and 

summer-winter contrast. With the development of more advanced simultaneous 



spatiotemporal GWR models in the future, the findings of this study are expected to be 

further validated using other schemes. 

Conclusions 

Revealing the driving mechanisms for the global SUHI effect, especially at multiple 

spatial and temporal scales, is essential in the provision of more targeted mitigation 

policies for improving the urban thermal environment. This study explored the driving 

factors and spatial non-stationarity of the global long-term SUHI at multiple temporal 

scales. Based on the previously proposed dynamic urban-extent method, the daily 

instantaneous daytime and nighttime SUHII was quantified for global cities from 2003 to 

2019. The driving indices concerning the surface properties, climate conditions, and 

urbanisation process were constructed by referring to the SEB model. By employing 

multilinear regression, the influencing magnitude and sign of multiple drivers for SUHI 

were preliminarily uncovered from a global perspective. From a local perspective, to 

further recover the driving mechanisms and spatial heterogeneity of multiple factors, the 

advanced spatial statistical models GWR and MGWR were introduced and compared 

with the OLS method. The model comparison showed that advanced GWR and MGWR 

schemes exhibited a better model fitting effect, and the latter performed best and 

uncovered the spatial heterogeneity of driving factors for global SUHI. Finally, the spatial 

non-stationarity of each factor, that is, the global pattern of the coefficients for annual, 

summer, and winter SUHIIs, at daytime and nighttime, respectively, was further revealed 

by the MGWR model.  

This study mainly draws the following findings: 

(1) The results from the MGWR model provide an optimal estimation of the 

contribution coefficients compared to the GWR and OLS models. For MGWR diagnosis, 

the R2 values were the highest (0.87, 0.73, 0.90, 0.74, 0.85, and 0.76), and the absolute 



values of Moran’s I were closest to 0 for different temporal scales. The contribution of 

multiple factors to global SUHI is spatially non-stationary. 

(2) ΔEVI was negatively correlated with daytime SUHII, which is more sensitive in 

arid regions. The summer-winter contrast of its influence is evident.  

(3) The day-night difference for ΔWSA mainly comes from the insignificant positive 

and significant negative coefficients of the daytime and nighttime SUHIIs, respectively. 

The latitudinal variation in the negative contribution of ΔWSA is more obvious in winter 

and more sensitive to larger solar radiation in the lower latitudinal zone compared with 

in summer. 

(4) Evident latitudinal and longitudinal variation appears in the positive correlations 

between MAP and annual and summer daytime SUHII, which decreases from lower to 

higher latitude zones and from the Western to Eastern Hemisphere. At night, the negative 

contribution of MAP is superior in the Northern Hemisphere, but with limited significant 

cases.  

(5) The WS is mainly a negative contribution to daytime and nighttime SUHII, 

which shows a more evident effect along coastal cities and a significant summer-winter 

contrast with a larger contribution during winter daytime.   

(6) The positive correlations between PD and UA with SUHII are more significant 

at night, with less seasonal contrast. The day-night disparity mainly originates from the 

daytime negative correlations from PD, accompanied by a larger positive UA contribution 

in some Western cities, and vice versa at nighttime. 
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