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Introduction  
 
 In the field of transportation, one of the European strategies being considered to mitigate 
climate change is the deployment of electric vehicles (EVs). In France, fleet electrification is rather 
slow, but it seems to be intensifying: EVs and Plug in HEV account for 22% of new car sales in 
France in 2022. Indeed, electric mobility has proven to be a powerful technology for 
decarbonization of the transportation sector (Kouridis, 2022). In comparison to conventional 
vehicles, EVs have either zero or lesser tailpipe greenhouse gas emissions. However, their 
carbon emissions are shifted from the exhaust pipe to the electric generators. Therefore, EVs are 
more eco-friendly the lower the carbon intensity of the electricity generation mix (De Angelis, 
2020).  
 As more electric vehicles are introduced into the fleet, the consumption of electric energy 
increases. The amount of electric energy consumed is often simply assessed by considering that 
a typical personal electric car consumes 20kWh per 100km on average. However, some papers 
focus on the evaluation of EVs electric consumption (EC): (Zhang, 2015) proposes an estimate 
from driving cycles, (Al-Wreikat, 2021) analyses experimental data to understand the relevant 
factors that influence EC during operation, (Fiore, 2019) looks at impact of traffic conditions on 
fuel and electric consumption by modelling it from various speed profiles. 
 In this paper, the issue is to assess EC at the scale of an urban network with a fleet of 
vehicles including an increasing share of EV. Is a flat rate estimate sufficient? What is the 
appropriate description of traffic conditions in order to provide a more accurate estimate? Our 
objective is to compare on a large urban area, namely L63V (3 districts in the metropole of Lyon) 
(i) an estimate using detailed speed profiles directly derived from simulated trajectories and (iii) 
an estimate using average flow velocity per road section, (ii) an estimate using average flow 
velocity per Iris zone. 

Case study: Lyon63V 

The case study is the Lyon63V1 network, a 15 km2 urban area divided into 75 sub-areas 
(fig.1). The supply specification covers the various transportation modes: light, heavy vehicles, 
and public transport (metro, tram and bus). The demand specifications are defined dynamically 
on morning peak hour (from 6.30 am to 10.30 am), for each vehicle category and each OD pair. 
This baseline demand profile has been calibrated on loop detectors measurements.   

Figure 1. L63V network : road sections and 75 IRIS areas (uniform subdivision of the popultaion 
for statistical purposes, INSEE2) 

 
1 3rd and 6th districts of Lyon and Villeurbanne 
2 French national institute of statistics and economic studies 
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The traffic microsimulation was implemented in the SYMUVIA platform3. Vehicle movements at 
the microscopic scale are governed by a set of rules, including car-following modelling (Leclercq, 
2007a, 2007b), lane-changes (Laval and Leclercq, 2008) and specific movements at intersections 
(Chevallier and Leclercq, 2007). The platform also copes with the cohabitation on the network of 
vehicles with different kinematics, including passenger cars, buses and heavy-duty vehicles.  

In this first study, we have decided to focus on passenger cars. We will consider three levels of 
information in order to study the impact of traffic dynamics level of description on the evaluation 
of electricity consumption: (i) vehicle trajectories, (ii) traffic variables at link scale and (iii) at IRIS 
zone scale.  In the first case, we consider each individual vehicle, so the output of the traffic 
simulation is characterized by its instantaneous speed profile. In the other cases, a spatio-
temporal element is considered (i.e., the road section for 10min or the zone for 10min) and the 
micro-simulation outputs are aggregated to obtain the associated average speeds and distance 
travelled. 

According to the fleet composition published by Citepa4 in December 2022, the share of electric 
vehicles is 0.64% of passenger cars in France. However, this share is constantly growing. In 
2023, 23.5% of new vehicle registrations were for electric vehicles (European Alternative Fuels 
Observatory5). For the purposes of this study, we assume that all vehicles are electric, in order to 
avoid introducing biases by randomly selecting vehicles. We will therefore focus on the relative 
differences between the proposed options. The passenger car electric fleet considered is 
composed of Tesla model 3, Renault Zoe and Citröen C0, three EVs with different sizes and 
autonomy ranges. For more realistic case study, one must consider the actual French EVs share.  

Finally, two different simulations are used to evaluate and compare the energy consumption of 
the EV fleet in the considered area. In the first option, accurate EV simulation energetic models 
are used based on VEHLIB software description and the different generated trajectories (Vinot, 
2008), while for the second and the third options, a curve of EC in function of the average speed 
has been previously built using the same models and speed profiles databases. 

Electrical consumption assessment 

Energy consumption of electric vehicles depends on several internal (vehicle features) and 
external (environment) parameters. The most impacting vehicle characteristics are the weight, 
the aerodynamic drag, the frictions and the efficiency of the components such as the battery and 
the electric drive systems. The environment parameters that influence the energy consumption 
are related to the infrastructure (road type, slopes, lights), the traffic and the weather conditions. 
Consequently, a precise calculation of the consumed energy during a trip is a complex task. 

The Accurate Dynamic Model (ADM) 

For more than two decades, LICIT-ECO7 lab has been developing VEHLIB, an energy 
consumption software dedicated to all types of vehicles, including EVs. VEHLIB is now an open-
source software available on the Gitlab platform (Jeanneret & al, 2021). Two types of simulation 
are possible, namely forward simulation and backward simulation. The first is based on Simulink 
blocks and allows to simulate in a causal way the power flow in each component of the vehicle 
using speed control and a driver model. The second uses Matlab scripts and an inverse causality, 
i.e upstream from the effect to the cause (e.g. from the speed to the forces that cause it). Both 
need the instantaneous speed profile as input and allow the calculation at each time of the power 
going through the different systems of the vehicle. As no driver model and control loop is needed 
in the backward model, this makes it faster and fairer for comparison as the speed profile is 
supposed to be exactly followed. The forward model is on the other hand more adapted to develop 
components and vehicle controls and is often used in real time experiments such as hardware in 
the loop tests. We suggest in this paper to use the backward model for the “microscopic” 

 
3 https://github.com/licit-lab/Open-SymuVia 
4 https://www.citepa.org/en/ 
5 https://alternative-fuels-observatory.ec.europa.eu 
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simulations (first option) and this will be considered as the reference for the energy comparison 
of the different simulation options because of its proven validity when compared to vehicle test. 

The pre-processed interpolated model (PIM) 

The previous model requires as input the instantaneous speed profile, at least second by second, 
and the detailed vehicle parameters data. For a global calculation of a whole fleet of vehicle in a 
given area and during significant period of time this imposes two constraints that are firstly the 
availability of the huge amount of instantaneous data and secondly the computation time that can 
exceed the capacity of standard computers. 

Therefore, one solution to accelerate simulation, in order to consider larger spatial and time 
scales, could be the use of the accurate model to generate pre-processed consumption results 
for each vehicle. The approach is to use ADM VEHLIB based model of the EV and a 
representative set of speed profiles (here we considered data from Hyzem, Artemis and WLTC 
speed profiles). The speed data so gathered is divided into sequences, each one represents an 
elementary speed profile from the vehicle start until the next stop. The ADM model of the EV is 
then executed on each sequence to calculate the corresponding EC. In this paper, the described 
method is applied to the three electric vehicles considered (Tesla, Zoe and C0). The EC of each 
sequence is plotted in blue function of the average speed of the sequence for the three vehicles 
(fig 2). To obtain a mathematic function of the EC to be used in the aggregated options (option 2 
and 3), we considered an exponential interpolation function plotted in red on the same figures. 

 

  

         a)                                                  b)                                                c)  

Figure 2. Energy consumption according to the average speed and the vehicle model: (a) Tesla 
model3, b) Renault Zoe, c) Citroen C0    

 

Results and discussion 

Global energy consumption 

Using the traffic simulation software SYMUVIA and the two energy models (ADM for option1 and 
PIM for options 2 and 3) the total energy consumed during the simulation period (from 6.30 am 
to 10.30 am) is calculated for each vehicle then for the whole fleet. The vehicle fleet is supposed 
to be composed equally of Tesla, Renault Zoe and Citroen C0. The results are depicted in Table 
1. As total energy consumption is the energy consumed by the battery, we add a column 
corresponding to the total energy need that includes the energy lost during charging with a charge 
efficiency value of 90%.  
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Table 1: Global Electric Energy Consumption of the three simulation options  

 

[Simulation 
Options] 

Distance  
(km) 

Total EC 
(kWh) 

Total Energy 
 need (kWh) 

  Error in % 
Ref option1 

Mean EC 
(kWh/100km) 

Error in % 
Ref option1 

Option 1 323202 47758   53 064       0 16.4       0 
Option 2 326012 44742   49 713      -6  14.9      -9 
Option 3 328754 42260   46 955      -11 14.3     -13 

We can notice that the three options do not lead exactly to the same distance as this variable 
calculation method is different from an option to another (integral of speed for option 1 and sum 
of the length of different segments for option 2 and 3).  

As shown in Table 1, options 2 and 3 underestimate the total energy requirement by 6 and 11% 
respectively. If we include the distance calculation effect, the average difference in energy 
consumption reaches 9 and 13% error compared to the reference option1. 

In terms of computation time, option 1 runs in a parallel mode with 4 workers on a laptop I7-
7820HQ CPU @ 2.90GHz processor and lasts almost 5 hours to achieve the whole simulation 
for the 3 vehicles. Options 2 and 3 need only one worker and last less than one second on the 
same computer. 

As the PIM model is average speed dependant, and in order to understand the error origin for the 
options 2 and 3, we plotted in figure 3 the speed distribution according to the distance for the 3 
options.   

 

  

a) Option1                                 b) Option2                                  c) Option3 

Figure 3. Speed distribution according to the distance for the three options of simulation 

As shown in figure 3 a), the option 1 with instantaneous speed distribution includes two main 
classes around 50 and 90 km/h corresponding to the two speed limits encountered (urban and 
rapid loop speeds). These classes have less weight in option 2 and almost equal to the other 
classes in option 3. This is due to the average speed estimation on each link for the two options 
(full link and iris zone use respectively). As the PIM model uses these speeds to determine the 
energy consumption according to the mathematic model presented in figure 2, it seems coherent 
that EC is lower for option 2 and the lowest for option 3 (90 km/h has high EC). 

 

Impact of the traffic  

One advantage of the proposed model coupling (SYMUVIA+VEHLIB) is to evaluate the impact 
on the energy consumption of the traffic intensity according to the time of the day. Figure 4 
presents a temporal simulation in the morning (from 6.30 am to 10.30 am) in the considered area 
(L63V) using option 2 methodology. Although the effect of a higher traffic density around the peak 
hours (8.40 to 9.40) is clearly registered on the energy consumption (without charging efficiency), 
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the difference between the peak value and the lowest value of the consumed energy is only about 
3 %. 

  
Figure 4. Electric Energy Consumption per vehicle and per 100km of the Evs fleet simulated on 
L63V according to the time. a) tesla model 3 vehicle b) average of the three vehicles 

Conclusion 

In order to assess energy consumption in a large urban area considered infrastructure network 
and traffic constraints a new methodology based on traffic simulation tool and energetic vehicle 
modeling coupling is presented. Three options using this coupling have been set and compared. 
The first one, taken as reference, uses instantaneous description of the speed profile and a high-
fidelity energetic vehicle model. It gives in theory the most reliable results. The second and the 
third option are derived from the traffic description with mean speed values for each segment. 
The third option, compared to the second, is based on area subdivisions to further reduce spatial 
description. The simulation results showed a deviation from the baseline of the total energy 
consumed with options 2 and 3 of 6 and 11% respectively. Depending on the objective of the 
various studies, these values could be considered satisfactory or not because, on the other hand, 
options 2 and 3 allow a drastic reduction in the calculation time. This opens up prospects for 
assessing energy consumption on a large scale as: 

- Enlarging the spatial area to cover a whole town or metropolitan area and further study 
the scale effect.   

- Using large scale traffic simulations or real census data. 

However, studying power constraints on components is important for EVs. For example, the 
battery is a key component and its thermal behavior during use impacts its lifetime. In this case 
the option 1 is the only alternative to highlight and further control these phenomena. 
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