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Abstract—Recently, machine learning systems have gained
prominence in real-time, critical decision-making domains, such
as autonomous driving and industrial automation. Their im-
plementations should avoid overconfident predictions through
uncertainty estimation. Bayesian Neural Networks (BayNNs)
are principled methods for estimating predictive uncertainty.
However, their computational costs and power consumption
hinder their widespread deployment in edge AI. Utilizing Dropout
as an approximation of the posterior distribution, binarizing the
parameters of BayNNs, and further to that implementing them
in spintronics-based computation-in-memory (CiM) hardware
arrays provide can be a viable solution. However, designing
hardware Dropout modules for convolutional neural network
(CNN) topologies is challenging and expensive, as they may
require numerous Dropout modules and need to use spatial
information to drop certain elements. In this paper, we intro-
duce MC-SpatialDropout, a spatial dropout-based approximate
BayNNs with spintronics emerging devices. Our method utilizes
the inherent stochasticity of spintronic devices for efficient
implementation of the spatial dropout module compared to
existing implementations. Furthermore, the number of dropout
modules per network layer is reduced by a factor of 9× and
energy consumption by a factor of 94.11×, while still achieving
comparable predictive performance and uncertainty estimates
compared to related works.

Index Terms—MC-Dropout, Spatial Dropout, Bayesian neural
network, Uncertainty estimation, Spintronic

I. INTRODUCTION

NEURAL NETWORKS are brain-inspired computational
methods that, in some cases, can even outperform human

counterparts [1]. Consequently, applications of NNs have
increased rapidly in recent years and have become the cor-
nerstone of modern computing paradigms. Furthermore, NNs
are commonly deployed in real-time safety-critical tasks such
as computer-aided medical diagnostics, industrial robotics, and
autonomous vehicles.

Conventional (point estimate) Neural Networks (NNs) typ-
ically learn a single point value for each parameter. However,
they do not account for the uncertainty in the data nor in
the model, leading to overconfident predictions and in turnn
to safety violations. This is particularly true when the data
generation process is noisy or the training data is either in-
complete or insufficient to capture the complexity of the actual
phenomenon being modelled. In safety-critical domains where
machine learning systems make human-centered decisions, an
uncertainty measure is essential for informed decision-making.

On the other hand, Bayesian Neural Networks (BayNNs),
which put prior distributions over the model parameters and
learn the posterior distribution using approximation techniques
(e.g., Monte Carlo (MC)-Dropout [2]), present a systematic
method for training uncertainty-aware neural networks. How-
ever, the computational costs and high-performance require-
ments of BayNNs can be prohibitive for edge devices.

Therefore, dedicated NN hardware accelerators such as
Compute-in-Memory (CiM) architectures with emerging Non-
Volatile resistive Memories (NVMs) have been explored. CiM

architectures enable the Matrix-Vector Multiplication (MVM)
operation of NNs to be carried out directly inside the mem-
ory, overcoming the memory limitations of traditional von-
Neumann architectures. Among the NVM technologies, Spin-
Transfer-Torque Magnetic Random Access Memory (STT-
MRAM) is particularly appealing due to its nanosecond la-
tency, high endurance (1012 cycles), and low switching energy
(10 fJ) [3].

Additionally, algorithmic approaches, such as Binarization
which typically reduces the bit precision of NNs to 1-bit, lead
to smaller computational time and model size. Therefore, they
are an attractive options for BayNNs to mitigate their inherent
costs. Moreover, this approach allows for the direct mapping
of BayNN parameters to STT-MRAM-based CiM hardware.

Existing work [4], [5] proposed to binarize the parameters
of BayNNs and implement them on STT-MRAM-based CiM
hardware resulting in a highly efficient solution. Although
this approach can achieve high algorithmic performance and
hardware efficiency compared to existing works, designing
Dropout modules in the case of convolutional NN (CNN)
topologies is challenging and expensive due to the nature of
implementation.

In this paper, we present an algorithm-hardware co-design
approach that not only solves the challenges of implementing
the Dropout-based BayNNs approach, but also reduces the
number of Dropout modules required per layer. The main
contributions of this paper are as follows:

• We propose MC-SpatialDropout, which uses spatial
Dropout for Bayesian approximation. Our method is
mathematically equivalent to the MC-Dropout-based ap-
proach, enabling uncertainty-aware predictions.

• We present an STT-MRAM-based CiM architecture for
the proposed MC-SpatialDropout-based BayNNs. Our
approach leverages the inherent stochasticity of STT-
MRAM for the Dropout module and deterministic be-
havior for parameter storage. This allows the reuse of
the array designed for conventional binary NNs (BNNs),
and only the peripheral circuitry is adapted for Bayesian
inference.

• We also propose reliable and adaptable sensing scheme
for stochastic STT-MRAM specifically designed to im-
plement the dropout concept for both linear and convo-
lutional layers.

Our method is targeting CNN topologies and reduces the
number of Dropout modules in a layer by 9× and energy con-
sumption by 94.11×, while maintaining comparable predictive
performance and uncertainty estimates.

The remainder of this paper is organized as follows: Section
II provides the background for our work, Section III describes
the proposed MC-SpatialDropout, Section IV presents both the
algorithmic and hardware results for our approach and finally,
in Section V, we conclude the paper.
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II. BACKGROUND

A. Spintronics
MRAM have gained significant attention due to their fast

switching, high endurance, and CMOS compatibility [6]. The
main component of MRAM devices is the Magnetic Tunnel
Junction (MTJ), which comprises two ferromagnetic layers:
the reference layer and the free layer, separated by a thin
insulating layer. The magnetization of the reference layer
is fixed in one direction, while the free layer can have its
magnetization reversed between two stable positions: parallel
or antiparallel to that of the reference layer. The resistance
of the stack depends on the relative orientations of the layer
magnetizations, with a high resistance state in the antiparallel
configuration and a low resistance state in the parallel config-
uration.

B. Uncertainty in Deep Learning
Uncertainty estimation is vital in deep learning, especially

for safety-critical applications, as it provides insight into the
model’s confidence in its predictions, enhancing the trust-
worthiness of decision-making. There are two main types of
uncertainty: epistemic, which results from the limitations of
the model and can be reduced with more data or improved
architectures, and aleatoric, which arises from noise in the
data and cannot be mitigated. Obtaining uncertainty estimates
bolsters robustness by identifying out-of-distribution (OOD)
data points and avoiding overconfident predictions. OOD data
refers to data whose distribution is completely different from
the training (in-distribution (ID)) data. In this paper, we
focus on aleatoric uncertainty estimation and evaluate the
effectiveness of our method for OOD detection.

C. Bayesian NNs
BayNNs offer a principled approach to uncertainty estima-

tion in neural networks. Several approximation methods exist
for BayNNs, such as variational inference and Markov Chain
Monte Carlo methods.

One popular approximation technique is Monte Carlo
Dropout (MC-Dropout), which leverages dropout for Bayesian
inference. Dropout [7] is a common regularization technique
used to reduce overfitting and neuron co-adaptation by ran-
domly setting neuron outputs to zero during training. The
dropout operation can be described as Ẑ = M ⊙ Z, where
M is a binary mask generated by sampling from a Bernoulli
distribution, ⊙ represents element-wise multiplication, and Z
and Ẑ are intermediate activation and dropped out intermediate
activation of a layer, respectively.

MC-Dropout provides an approximation of the true poste-
rior distribution with relatively low computational and memory
overhead compared to other methods such as variational infer-
ence (VI) [8] and the ensemble approach [9]. This is because
the ensemble approach requires inference in multiple NNs, and
VI requires learning the parameters of the variational distribu-
tion, which require storage. Since the MC-Dropout method has
the same number of parameters as conventional NNs, it leads
to minimal additional computation and memory requirements,
making it suitable for a wide range of applications, including
those with limited resources.

The optimization objective for MC-Dropout can be repre-
sented as

L(θ)MC-Dropout = L(θ,D) + λ

L∑
l=1

||θl||22 (1)

where L(θ,D) represents the task-specific loss function, such
as categorical cross-entropy for classification or mean squared
error for regression, and ∥θ∥22 is the regularization term. Also,
θ summarizes all learnable parameters, i.e., θ = {Wl,bl |
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Fig. 1. a) Input feature map of a convolutional layer, b) moving windows
from all the input feature maps are flattened for the conventional mapping, c)

l = 1, · · · , L}, where Wl denote the weight matrices and
bl the biases for the layer l. During inference, dropout is
applied multiple times, and the outputs are averaged to obtain
the predictive distribution. Hence, the posterior predictive
distribution over the output y, i.e.,

p(y|x,D) =

∫
p(y|x,θ)p(θ|D)dθ (2)

is approximated by

p(y|x,D) ≈ 1

T

T∑
t=1

p(y|x,θ,Mt) with Mt ∼ B(ρ). (3)

Here, D denotes the dataset, x is the input, y is the output, and
the entries of Mt are independently sampled from a Bernoulli
distribution with (dropout) probability ρ.

D. Mapping of Convolutional Layers to CiM Architecture
To perform the computation inside the CiM architecture,

a critical step is the mapping of the different layers of the
NN to crossbar arrays. Standard NNs contain mainly Fully
Connected (FC) layers and convolutional layers. While the
mapping of FC layers is straightforward in a crossbar array
as the shape of the weight matrices is 2D (Rm×n), mapping
convolutional layers is challenging due to their 4D shapes
(RK×K×Cin×Cout ). Here, K denotes the shape of kernels, and
Cin represents the number of input channels. Implementing
convolutional layers requires implementing multiple kernels
with different shapes and sizes.

There are two popular mapping strategies for mapping the
convolutional layer exists. In the mapping strategy 1⃝, each
kernel of shape K ×K × Cin is unrolled to a column of the
crossbar [10]. On the other hand, in the mapping strategy 2⃝,
each kernel is mapped to K × K smaller crossbars with a
shape of Cin × Cout [11].

III. PROPOSED METHOD

A. Problem Statement and Motivation
The convolution operation is performed differently in CiM

architectures compared to GPUs. In CiM architectures, moving
windows (MWs) with a shape of K × K are applied to
each input feature map (IFM) in one cycle (see Fig. 1(a)).
In the next cycle, the MWs will ”slide over” the IFMs with
a topology-defined stride S for N cycles. Assuming K > S,
some of the elements in the MWs for the next K − S cycles
will be the same as in the previous cycles, a concept known as
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weight sharing. This is illustrated by the green input feature
(IF) in Fig. 1(a).

The Dropout module designed in [4], [5] drops each element
of the MWs with a probability P in each cycle. Therefore,
it essentially re-samples the dropout mask of each MW of
IFMs in each cycle. Consequently, the dropout masks of
the shared elements in the MWs will change in each input
cycle, leading to inconsistency. An ideal Dropout module
should only generate dropout masks for new elements of the
MWs. Designing a Dropout module that drops each element
of the MWs depending on the spatial location of the MWs
in the IFMs is challenging and may lead to complex circuit
design. Additionally, the number of rows in crossbars typically
increases from one layer to another due to the larger Cin.
Consequently, the number of Dropout modules required will
be significantly higher.

Furthermore, the MWs are reshaped depending on the
weight mapping discussed in Section II-D. For mapping strat-
egy 1⃝, the MWs from IFMs are flattened into a vector of
length K×K×Cin. However, for mapping strategy 2⃝, IFMs
are flattened into K × K vectors of length Cin, as depicted
in Fig. 1(a) and (b). As a result, designing a generalizable
Dropout model is challenging.

B. MC-SpatialDropout as Bayesian Approximation
In an effort to improve the efficiency and accuracy of

Bayesian approximation techniques, we propose the MC-
SpatialDropout method. The proposed MC-SpatialDropout
technique expands upon the MC-Dropout [2] and MC-
SpinDrop [4], [5] methods by utilizing spatial dropout as a
Bayesian approximation. Our approach drops an entire feature
with a probability p. This means that all the elements of a
feature map in Fig. 1(a) are dropped together. However, each
feature map is dropped independently of the others. As a result,
the number of Dropout modules required for a layer will be
significantly reduced, and the design effort of the dropout
module will also be lessened.

The primary objective of this approach is to address the
shortcomings of MC-Dropout arising from its independent
treatment of elements of the features. In contrast, MC-
SpatialDropout exploits the spatial correlation of IFs, which is
particularly advantageous for tasks involving image or spatial
data. By doing so, it facilitates a more robust and contextually
accurate approximation of the posterior distribution. This en-
ables the model to capture more sophisticated representations
and account for dependencies between features.

In terms of the objective function for the MC-
SpatialDropout, Soyed et al. [4], [5] showed that minimizing
the objective function of MC-Dropout (see Equation (1))
is not beneficial for BNNs and suggested a BNN-specific
regularization term. In this paper, instead of defining a separate
loss function for MC-SpatialDropout, we define the objective
function as:

L(θ)MC-SpatialDropout = L(θ,D) + λ

L∑
l=1

||Wl||22. (4)

Therefore, the objective function is equivalent to Equation (1)
for MC-Dropout. However, the second part of the objective
function is the regularization term applied to the (real valued)
”proxy” weights (Wl) of BNN instead of binary weights. It
encourages Wl to be close to zero. By keeping a small value
for the λ, it implicitly ensures that the distribution of weights
is centered around zero. Also, we normalize the weights by

W̄l =
Wl − µW

l

σW
l

, (5)

to ensure, the weight matrix has zero mean and unit variance
before binarization. Where µW and σW are the mean and vari-
ance of the weight matrix of the layer l. This process allows

Conv BN Activation 
Function

Conv Layers Extracted 
Feature Maps

Spatial-
Dropout

FlatteningClassifier

Adaptive Avg. 
Pooling

a)

b)

Spatial-Dropout

Fig. 2. Block diagram of the location of the proposed MC-SpatialDropout in
a) a layer-wise fashion, b) a topology specific fashion.

applying L2 regularization in BNN training and [12] showed
that it improves inference accuracy by reducing quantization
error. Since our work is targeted for BNN, regularization is
only applied to the weight matrixes.

The difference is that our method approximate Equation (2)
by:

p(y|x,D) ≈ 1

T

T∑
t=1

p(y|x,θ, M̂t) with M̂t ∼ B(ρ). (6)

Here, during training and Bayesian inference, the dropout
mask M̂t sampled spatially correlated manner for the out-
put feature maps (OFMs) of each layer from a Bernoulli
distribution with (dropout) probability ρ. The dropout masks
correspond to whether a certain spatial location in the OFMs
(i.e., a certain unit) is dropped or not.

For Bayesian inference, we perform T Monte Carlo sam-
pling to approximate the posterior distribution. Each Monte
Carlo sample corresponds to forward passing the input x
through the NN with unique spatial dropout masks M̂t t =
1, · · · , T , resulting in a diverse ensemble of networks. By
averaging the predictions from the Monte Carlo samples, we
effectively perform Bayesian model averaging to obtain the
final prediction.

Proper arrangement of layers is important for the MC-
SpatialDropout based Bayesian inference. The Spatial Dropout
layer can be applied before each convolutional layer in a
layerwise MC-SpatialDropout method. Additionally, the Spa-
tial Dropout layer can be applied to the extracted features
of a CNN topology in a topology-wise MC-SpatialDropout
method. Fig. 2 shows the block diagram for both approaches.

C. Designing Spatial-SpinDrop Module
As mentioned earlier, in the proposed MC-SpatialDropout,

feature maps can independently be dropped with a probability
p. Due to the nature of input application in CiM architectures,
this implicitly means dropping different regions of crossbars
depending on the mapping strategy. These challenges are as-
sociated with designing the Dropout module for the proposed
MC-SpatialDropout based BayNN.

For the mapping strategy 1⃝, as depicted in Fig. 1(b), each
K×K subset of input comes from a feature map. This means
that if an input feature is dropped, the corresponding K ×K
subset of input should also be dropped for all Cout and N
cycles of inputs. This implies that dropping each K × K
row of a crossbar together for N cycles is equivalent to
applying spatial dropout. However, each group of rows should
be dropped independently of one another. Additionally, their
dropout mask should be sampled only in the first cycle. For
the remaining N −1 cycles of input, the dropout mask should
remain consistent.

In contrast, in the mapping strategy 2⃝ (see Fig. 1(c)), the
elements of a MW are applied in parallel to each K × K
crossbar at the same index. As a result, dropping an IF
would lead to dropping each index of rows in all the K ×K
crossbars together. Similarly, each row of a crossbar is dropped
independently of one another, and the dropout mask is sampled
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at the first input cycle and remains consistent for the remaining
N − 1 cycles of input.

Furthermore, if the spatial dropout is applied to the extracted
feature maps of a CNN (see Fig. 2), then depending on the
usage of the adaptive average pool layer, the design of the
Spin-SpatialDrop will differ. If a CNN topology does not use
an adaptive average pool layer, then H ×W groups of rows
are dropped together. This is because the flattening operation
essentially flattens each IF into a vector. These vectors are
combined into a larger vector representing the input for the
classifier layer. However, since input for the FC layer is applied
in one cycle only, there is no need to hold the dropout mask.
The Spin-SpatialDrop module for the mapping strategy 1⃝ can
be adjusted for this condition.

Lastly, if a CNN topology does use an adaptive average
pool layer, then the SpinDrop module proposed by [4], [5]
can be used. This is because the adaptive average pool layer
averages each IF to a single point, giving a vector with total
Cout elements.

Therefore, the Dropout module for the proposed MC-
SpatialDropout should be able to work in four different
configurations. Consequently, we propose a novel spintronic-
based spatial Dropout design, called Spatial-SpinDrop.

The Spatial-SpinDrop module leverages the stochastic be-
havior of the MTJ for spatial dropout. The proposed scheme is
depicted in Fig. 3. In order to generate a stochastic bitstream
using the MTJ, the first step involves a writing scheme
that enables the generation of a bidirectional current through
the device. This writing circuit consists of four transistors,
allocated to a ”SET” and a ”RESET” modules. The ”SET”
operation facilitates the stochastic writing of the MTJ, with a
probability corresponding to the required dropout probability.
On the other hand, the ”RESET” operation restores the MTJ
to its original state. During the reading operation of the MTJ,
the resistance of the device is compared to a reference element
to determine its state. The reference resistance value is chosen
such as it falls between the parallel and anti-parallel resistances
of the MTJ.

For the reading phase, a two-stage architecture is employed
for better flexibility and better control of the reading phase
for the different configurations discussed earlier. The module
operates as follows: after a writing step in the MTJ, the signal
Vpol allows a small current to flow through the MTJ and
the reference cell (REF), if and only if the signal hold is
activated. Thus, the difference in resistance is translated into
a difference in voltages (VMTJ and Vref ). The second stage
of the amplifier utilizes a StrongARM latch structure [13] to
provide a digital representation of the MTJ state. The Ctrl
signal works in two phases. When Ctrl = 0, Out and Out are
precharged at VDD. Later, when Ctrl = 1, the discharge begins,
resulting in a differential current proportional to the gate
voltages (VMTJ and Vref ). The latch converts the difference
of voltage into two opposite logic states in Out and Out.
Once the information from the MTJ is captured and available
at the output, the signal hold is deactivated to anticipate the
next writing operation. To enable the dropout, a series of AND
gates and transmission gates are added, allowing either access
to the classical decoder or to the stochastic word-line (WL).

As long as the hold signal is deactivated, no further reading
operation is permitted. Such a mechanism allows the structure
to maintain the same dropout configuration for a given time
and will be used during N − 1 cycles of inputs to allow the
dropping of the IF in strategies 1⃝ and 2⃝. In the first strategy,
the AND gate receives as input K ×K WLs from the same
decoder, see Fig. 4(a). While in strategy 2⃝, the AND gate
receives one row per decoder, as presented in Fig. 4(b).

For the last two configurations, the hold signal is activated
for each reading operation, eliminating the need to maintain

GND VDD

GNDVDD

SET RESET

(a)

VDD

Vpol

hold

hold

Vref

GND

VDD

GND

Vref
VMTJ

VMTJ

Out
Out

WLDecoder

Dropped

Dropout

Enable

WLn
Path enable

Out

Ctrl

Ctrl Ctrl

MTJ REF

(b)
Fig. 3. (a) Writing and (b) reading schemes for the MTJ.

Fig. 4. Crossbar design for the MC-SpatialDropout based on mapping strategy
(a) 1⃝ and (b) strategy 2⃝. In (b), only the Dropout module and WL decoder
are shown, Everything else is abstracted.

the dropout mask for N − 1 cycles.

D. MC-SpatialDropout-Based Bayesian Inference in CiM

The proposed MC-SpatialDropout-Based Bayesian infer-
ence can be leveraged on the two mapping strategies discussed
in Section II-D. In both strategies, one or more crossbar arrays
with MTJs at each crosspoints are employed in order to encode
the binary weights into the resistive states of the MTJs.
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Specifically, for the mapping strategy 1⃝, we divide the WLs
of the crossbar into K ×K groups and connect one dropout
module to each group, as shown in Fig.4(a). In Fig. 3(b), this
strategy involves connecting K × K WLs to an AND gate.
The AND gate receives the signal delivered by the decoder as
its input. This configuration allows for the selective activation
or deactivation of a group of WLs. To facilitate the activation
of multiple consecutive addresses in the array, an adapted WL
decoder is utilized. The bit-line and source-line drivers were
used to manage the analog input and output for the MVM
operation. Also, a group-wise selection of WLs is performed
concurrently and the intermediate result for MVM operation
is accumulated into an accumulator block until all the WLs
are selected for each layer. We utilized MUXes to select the
different bit-lines that are sensed and converted by ADC. The
shift-adder modules are used to shift and accumulate the partial
sums coming from the array. Finally, a digital comparator and
averaging block are used to implement the activation function.
For the last layer, the average operation is performed with an
averaging block.

For the mapping strategy 2⃝, a similar architecture to
strategy 1⃝ is employed. The key distinction relies upon the
utilization of K ×K crossbars in parallel to map the binary
weights of a layer. Also, the dropout modules are connected
to a similar WL index in each of the crossbar arrays, as shown
in Fig. 4(b). Here, the same AND gate in the Dropout module
receives signals from different decoders and the result is sent to
each row of the K×K crossbars. For instance, the first WL of
each crossbar of a layer connects the same Dropout module.
All the WLs decoders are connected to a dropout block in
gray in Fig. 4(b) comprising Cin dropout modules. It is worth
mentioning that the dropout is used during the reading phase
only, therefore, the dropout module is deactivated during the
writing operation and WL decoders are used normally.

IV. RESULTS

A. Simulation Setup
We evaluated the proposed MC-SpatialDropout on pre-

dictive performance using VGG, ResNet-18, and ResNet-20
topologies on the CIFAR-10 dataset. All the models were
trained with SGD optimization algorithm, minimizing the pro-
posed learning objective (4) with λ chosen between 1× 10−5

and 1 × 10−7, and the binarization algorithm from [12] was
used. Also, all the models are trained with ρ = 15% dropout
probability. The validation dataset of the CIFAR-10 is split
80:20 with 20% of the data used for the cross-validation and
80% used for evaluation.

To assess the effectiveness of our method in handling uncer-
tainty, we generated six additional OOD datasets: 1) Gaussian
noise (D̂1): Each pixel of the image is generated by sampling
random noise from a unit Gaussian distribution, x ∼ N (0, 1),
2) Uniform noise (D̂2): Each pixel of the image is gener-
ated by sampling random noise from a uniform distribution,
x ∼ U(0, 1), 3) CIFAR-10 with Gaussian noise (D̂3): Each
pixel of the CIFAR-10 images is corrupted with Gaussian
noise, 4) CIFAR-10 with uniform noise (D̂4): Each pixel of the
CIFAR-10 images is corrupted with uniform noise, 5) SVHN:
Google street view house numbers dataset, and 6) STL10: a
dataset containing images from the popular ImageNet dataset.
Each of these OOD datasets contains 8000 images, and the
images have the same dimensions as the original CIFAR-10
dataset (32×32 pixels). During the evaluation phase, an input
is classified as OOD or ID as follows:{

OOD, if max
(
Q
(

1
T

∑T
t=1 yt

))
< 0.9

ID, otherwise.
(7)

TABLE I
PREDICTIVE PERFORMANCE OF THE PROPOSED MC-SPARIALDROPOUT

METHOD IN COMPARISON WITH SOTA METHODS ON CIFAR-10.

Topology Method Bit-width (W/A) Bayesian Inference Accuracy

ResNet-18

FP 32/32 No 93.0%
RAD [14] 1/1 No 90.5%

IR-Net [12] 1/1 No 91.5%
SpinDrop [4], [5] 1/1 Yes 90.48%

Proposed 1/1 Yes 91.34%

ResNet-20

FP 32/32 No 91.7%
DoReFa [15] 1/1 No 79.3%

DSQ [16] 1/1 No 84.1%
IR-Net [12] 1/1 No 85.4%
Proposed 1/1 Yes 84.71%

VGG

FP 32/32 No 91.7%
LAB [17] 1/1 No 87.7%

XNOR [18] 1/1 No 89.8%
BNN [19] 1/1 No 89.9%
RAD [14] 1/1 No 90.0%

IR-Net [12] 1/1 No 90.4%
SpinDrop [4], [5] 1/1 Yes 91.95%

Proposed 1/1 Yes 90.34%

Here, yt is the softmax output of the stochastic forward pass
at MC run t with T MC runs, the function Q(·) calculates
the 10th percentile across a set of values, and the function
max(·) determines the maximum confidence score across
output classes. Overall, OOD or ID is determined by whether
the maximum value from the 10th percentile of the averaged
outputs is less than 0.9 (for OOD) or not (for ID). The intuition
behind our OOD detection is that the majority of confidence
score of the T MC runs is expected to be high and close to
one another (low variance) for ID data and vice versa for OOD
data.

The hardware-level simulations for the proposed method
were conducted on the Cadence Virtuoso simulator with
28nm-FDSOI STMicroelectronics technology library for the
respective network topologies and dataset configurations.

B. Predictive Performance and Uncertainty Estimation
The predictive performance of the approach is close to the

existing conventional BNNs, as shown in Table I. Furthermore,
in comparison to Bayesian approaches [4], [5], our proposed
approach is within 1% accuracy. Furthermore, the application
of Spatial-SpinDrop before the convolutional layer and at the
extracted feature maps can also achieve comparable perfor-
mance (∼ 0.2%), see Fig. 2. This demonstrates the capa-
bility of the proposed approach in achieving high predictive
performance. However, note that applying Spatial-SpinDrop
before all the convolutional layers can reduce the performance
drastically, e.g., accuracy reduces to 75% on VGG. This is
because at shallower layers, the number of OFMs is lower
in comparison, leading to a high chance that most of the
OFMs are being omitted (dropped). Also, as shown by [4],
[5], BNNs are more sensitive to the dropout rate. Therefore,
a lower Dropout probability between 10− 20% is suggested.

In terms of OOD detection, our proposed method can
achieve up to 100% OOD detection rate across various model
architectures and six different OOD datasets (D̂1 through D̂6),
as depicted in Table II. There are some variations across
different architectures and OOD datasets. However, even in
these cases, our method can consistently achieve a high OOD
detection rate, with the lowest detection rate being 64.39% on
the ResNet-18 model with D̂4 dataset and Spatial-SpinDrop
applied to extracted feature maps. However, when the Spatial-
SpinDrop is applied to the convolutional layers of the last
residual block, OOD detection rate on D̂4 dataset improved
to 97.39%, a 33.00% improvement. Therefore, we suggest
applying the Spatial-SpinDrop to the last convolutional layers
to achieve a higher OOD detection rate at the cost of a
small accuracy reduction. Consequently, the result suggests
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TABLE II
EVALUATION OF THE PROPOSED MC-SPATIALDROPOUT METHOD IN

DETECTING OOD.

Topologie D̂1 D̂2 D̂3 D̂4 D̂5 D̂6

ResNet-18 99.56% 99.94% 96.1% 81.68% 83.02% 64.39%
ResNet-18i 100% 100% 100% 92.26% 99.98% 97.39%
ResNet-20 97.2% 100% 90.79% 87.94% 99.03% 99.81%

VGG 99.99% 100% 92.9% 78.91% 99.81% 100%

i Spatial-Dropout applied to final two convolutional layers.
TABLE III

LAYER-WISE OVERHEAD ANALYSIS OF THE PROPOSED METHOD IN
COMPARISON TO SPINDROP [4], [5].

Layer-wise application of spatial Dropout

Method
Mapping
Strategy

# of Dropout
Modules Area

Power
Consumption

Sampling
Latency

SpinDrop
1⃝ K ∗K ∗ Cin 79833.6µm2 51.84mW 15ns
2⃝ K ∗K ∗ Cin 79833.6µm2 51.84mW 15ns

Proposed 1⃝ Cin 8870.4µm2 5.76mW 15ns
2⃝ Cin 8870.4µm2 5.76mW 15ns

Topology-wise application of spatial Dropout

Method
Adaptive
Avg. Pool

# of Dropout
Modules Area

Power
Consumption

Sampling
Latency

SpinDrop Used Cout 17740.8µm2 11.52mW 15ns
Not Used K ∗K ∗ Cout 159667.2µm2 103.68mW 15ns

Proposed Used Cout 17740.8µm2 11.52mW 15ns
Not Used Cout 17740.8µm2 11.52mW 15ns

that the MC-SpatialDropout method is a robust and reliable
approach to OOD detection across various model architectures
and datasets.

C. Overhead Analysis

The proposed Spatial-SpinDrop modules were evaluated
for the area, power consumption, and latency as shown in
Table III and compared with the SpinDrop approach presented
in [4], [5]. These evaluations were conducted using a crossbar
array with dimensions of 64 × 32 and scaled for the VGG
topology. In layer-wise application of spatial Dropout, the
Dropout modules applied to convolutional layers of the last
VGG block. Also, for topology-wise application of spatial
Dropout, Dropout modules are applied to the extracted feature
maps. In our evaluation, a configuration of Cin = 256, K = 3
and Cout = 512 is used.

At first, in terms of area, the SpinDrop method requires one
dropout module per row in the crossbar structure, while our
method only requires one dropout module per K ×K group
of rows. Therefore, the area and the power consumption of
dropout modules are reduced by a factor of 9. In terms of
latency for the dropout modules, we achieve 15ns in all cases.
Indeed, to generate 1 bit, for a given number of rows, the
dropout module needs to be written, however, such latency
can be further decreased by increasing the writing voltages of
the MTJ. Furthermore, in the case, the adaptive average pool
layer is not used, the power consumption and the area for
the SpinDrop approach increases greatly (×9). While in the
proposed approach, the adaptative Average pool layer does not
impact the total energy and area, as mentioned in Section III-C
and shown in Table III.

Table IV compares the energy consumption of the proposed
approach with the State-Of-The-Art implementation based on
the MNIST dataset. For the evaluation, we used NVSIM,
and we estimated the total energy for a LeNet-5 architecture
to be consistent with the approach presented in [4]. When
compared to the SpinDrop approach in [4] our approach is
2.94× more energy efficient. Furthermore, when compared
to RRAM technology, our solution is 13.67× more efficient.
Finally, in a comparison with classic FPGA implementation,
the proposed approach achieves substantial energy savings of
up to 94.11×.

TABLE IV
ENERGY EFFICIENCY COMPARISON OF HARDWARE IMPLEMENTATIONS

Related works Technology Bit resolution Energy
R.Cai et al. [20] FPGA 8-bit 18.97 µJ/Image
X.Jia et al. [21] FPGA 8-bit 46.00 µJ/Image
H.Awano et al. [22] FPGA 7-bit 21.09 µJ/Image
A. Malhotra et al. [23] RRAM 4-bit 9.30 µJ/Image
S.T.Ahmed et al. [4] STT-MRAM 1-bit 2.00 µJ/Image
Proposed implementation STT-MRAM 1-bit 0.68 µJ/Image

V. CONCLUSION

In this paper, we present MC-SpatialDropout, an efficient
spatial dropout-based approximation for Bayesian neural net-
works. The proposed method exploits the probabilistic nature
of spintronic technology to enable Bayesian inference. Imple-
mented on a spintronic-based Computation-in-Memory fab-
ric with STT-MRAM, MC-SpatialDropout achieves improved
computational efficiency and power consumption.
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