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Abbreviations 

ALD: alcohol-related liver diseases 

AR: androgen receptor 

BEC: biliary epithelial cell 

DBD: DNA binding domain 

ER: estrogen receptor 

FDA: Food and Drug AdministrationFXR: farnesoid X receptor 

HNF4A: hepatocyte nuclear factor 4 alpha 

HSC: hepatic stellate cell 

KC: Kupffer cell 

LBD: ligand binding domain 

LSEC: liver sinusoidal endothelial cell 

LXR: liver X receptor 

MASLD: metabolic dysfunction-associated liver disease 

MASH: metabolic dysfunction-associated steatohepatitis 

NR: nuclear receptor 

PBC: primary biliary cholangitis 

PPAR: peroxisome proliferator-activated receptor 

PXR: pregnane X receptor 

RAR: retinoic acid receptor 

RXR: retinoid X receptor 

TF: transcription factor 
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ABSTRACT 

 Nuclear receptors (NRs) are ligand-dependent transcription factors required for liver 

development and function. As a consequence, NRs have emerged as attractive drug targets in a wide 

range of liver diseases. However, liver dysfunction and failure is linked to loss of hepatocyte identity 

characterized by deficient NR expression and activities. This might at least partly explain why several 

pharmacological NR modulators have proven insufficiently efficient to improve liver functionality in 

advanced stages of diseases such as Metabolic dysfunction-Associated Steatotic Liver Disease 

(MASLD). In this perspective, we review the most recent advances in the hepatic NR field and discuss 

the contribution of multi-omic approaches to our understanding of their role in the molecular 

organization of an intricated transcriptional regulatory network, as well as in liver inter-cellular 

dialogues and inter-organ cross-talks. We discuss the potential benefit of novel therapeutic approaches 

simultaneously targeting multiple NRs, which would not only reactivate the hepatic NR network and 

restore hepatocyte identity, but also impact inter-cellular and inter-organ interplays whose importance 

to control liver functions is being further defined. Finally, we highlight the need of considering 

individual parameters such as sex and disease stage in the development of NR-based clinical strategies. 
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What is a nuclear receptor? 

 Liver functions rely on hepatocytes, which sense incoming signals and adapt their activities to 

maintain energy and iron homeostasis, promote detoxification, coagulation or acute phase responses. 

Even though these processes are controlled at multiple levels, modulation of hepatocyte gene expression 

is a well-defined primary regulatory layer underlying the ability of this organ to execute its functions 1, 

2. In this context, the importance of nuclear receptors (NRs) has been firmly established. The NR 

superfamily is one of the largest families of transcription factors (TFs) comprising 48 members in 

humans 3. NRs are modular proteins molecularly characterized by two well-conserved domains across 

members. First, NRs have a highly conserved DNA binding domain (DBD) allowing for recognition of 

highly similar DNA recognition motifs. Since most NRs operate as dimers, their actual DNA binding 

sites are composed of two copies of this motif, which can be differently organized in terms of orientation 

(direct or inverted repeats) and/or spacing 4. NR DNA binding occurs after heterodimerization with the 

obligatory retinoid X receptor (RXR; NR2B) partner, homodimerization or the still poorly characterized 

formation of higher order oligomers 5. While this allows to introduce some specificity, NR recruitment 

to common DNA sequences within gene expression regulatory regions is widespread 4. Second, and of 

utmost importance since this discriminates NRs from other TF families, NRs possess a ligand binding 

domain (LBD) granting them the ability to directly sense the presence of small molecules including not 

only natural ligands, but also xenobiotics 6. Among natural NR ligands are lipophilic molecules 

including steroid hormones, thyroid hormones, retinoids and (dietary) lipids. While the three-

dimensional organization of the LBD is globally conserved across NRs, slight variations in its structure 

create NR-specific ligand binding pockets and therefore underlie NR ligand specificity. Reciprocally, 

ligands induce structural re-arrangements of the LBD structure, which influence protein-protein 

interactions and the transcriptional regulatory signals conveyed by NRs 3 (Fig.1). Indeed, NRs control 

gene expression through interaction with other transcriptional regulators. In particular, NRs serve as 

protein-protein interaction platforms for the recruitment of coregulators. These coregulators comprise 

enzymes which modulate the chromatin structure and recruitment of RNA polymerase to control gene 

expression. Leveraging on the ability of NRs to avidly bind small molecules, drugs have been designed 

to bind to the LBD pocket of NRs to mimic or block (part of) endogenous ligand responses. As an 
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example, a recently developed class of NR targeting drugs is based on PROteolysis Targeting Chimera 

(PROTAC)-mediated degradation, which might prove of primary interest to suppress pro-oncogenic NR 

activities 7. Emergence of advanced structural biology techniques, such as nuclear magnetic resonance 

crystallography and cryo-electron microscopy, has allowed for a refinement of our understanding of NR 

structure-function relationships, including quaternary structure and interdomain communication 8, 9, 

hence improving the search for novel ligands/drugs targeting these NRs (e.g. 10). However, no ligands 

have so far been identified for some NRs, which therefore remain labelled as “orphan” NRs. Among 

those, a subset lacks a proper LBD binding pocket 3. 

 For classical ligand-dependent NRs, structurally distinct ligands can induce different 

conformational changes upon LBD binding. As a consequence, distinct ligands differentially affect NR 

interaction with transcriptional coregulators (coactivators or corepressors) to activate or repress NR 

target gene expression. Some ligands display gene and/or cell-type specific activities owing to their 

effects on the LBD structure, triggering different functional outputs according to, for example, the 

relative concentration of different coregulatory complexes 11, 12. Indeed, continued advances in 

proteomic analyses of transcriptional regulatory complexes involving NRs have further revealed the 

breadth and complexity of interactions at play within protein mega-complexes 13, 14. These multiple 

interactions occur in a highly dynamic process intimately coupled with nuclear architecture and gene 

expression 15. Another key related concept, which is still under functional investigation, is that a 

substantial number of NR-recruiting DNA regulatory regions are distal enhancers and that the three-

dimensional chromatin folding is crucial to connect promoters and enhancers. Functionally, this would 

relate to NRs operating in sub-nuclear spaces where transcriptional regulators and their targeted genes 

are highly concentrated 16, 17. Finally, other recent advances in our understanding of NR activities have 

expanded the wealth of activities of these proteins beyond their role as TFs. For instance, so called non-

genomic activities have been reported where NRs, often through non-nuclear localization, modulate 

signaling pathways such as phosphorylation cascades (Box1). While the pathophysiological role of NR 

non-genomic activities has been established for example in endothelial healing 18, their relevance with 

regards to the control of liver functions remains to be defined 18. Also, a subset of NRs has been ascribed 

with RNA binding activities empowering these factors with regulation of mRNA stability and translation 



6 
 

19. These findings raise novel questions such as how natural and pharmacological ligands modulate these 

non-TF functions and how those additional activities of NRs relate to their gene expression modulatory 

functions to impact liver pathophysiology (Fig.1).  

 

NRs control liver development and function 

 Historically, liver gene expression has been studied using the whole organ. Considering that 

hepatocytes constitute by far the most substantial fraction of liver cells, the scientific community has 

primarily gained knowledge on hepatocyte gene expression. In this context, interest in NRs stems from 

the observation that many of them display high hepatic expression levels and were subsequently shown 

to regulate liver functions. For instance, hepatocyte nuclear factor 4 alpha (HNF4A; NR2A1) is a master 

regulator of hepatocyte differentiation and required to maintain functional adult hepatocytes [20, 21; 

reviewed in 22]. Many additional NRs exert key functions in adaptative liver gene regulation, especially 

with regards to energy homeostasis. For instance, NRs whose ligands are molecules derived from 

intracellular cholesterol or lipid metabolism, such as peroxisome proliferator-activated receptor alpha 

(PPARA) and farnesoid X receptor (FXR; NR1H4), or sensors of circulating steroid hormones, such as 

the glucocorticoid receptor (GR; NR3C1), the androgen receptor (AR; NR3C4) and the estrogen 

receptor alpha (ESR1 also known as ERa; NR3A1) as well as the heme-regulated REVERB alpha 

(REVERBA; NR1D1) and REVERB beta (REVERBB; NR1D2), which are at the cross-road between 

nutritional sensing and the core circadian machinery, are instrumental regulators of liver functions 23. 

Importantly, many of these NRs cooperate to finely tune the hepatic metabolic response to e.g. 

fluctuating nutritional availability 24. This is exemplified by PPARA cooperating with GR to orchestrate 

the liver’s adaptation to prolonged fasting 25. In addition, several of these NRs exist in multiple isoforms 

that exert distinct, but complementary actions in the regulation of liver function. For instance, HNF4A 

isoforms issued from its alternative promoters P1 and P2, which give rise to proteins harboring or 

lacking an N-terminal transactivation domain characterized by different abilities to interact with DNA 

and transcriptional cofactors [26-29; reviewed in 22], have different roles in the maintenance of energy 

homeostasis. Indeed, P1-HNF4A drives gluconeogenesis, whereas P2-HNF4A is required for hepatic fat 

storage as well as ketogenesis 30. FXR is another example of how different NR isoforms coordinate liver 
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functions, with bile acid homeostasis being modulated by the isoforms FXRα1-4, but carbohydrate and 

lipid metabolism being controlled by FXRα2/4 31. Of note, while many of the above-mentioned NRs are 

expressed in a wide variety of tissues and regulate physiological processes that extend far beyond hepatic 

metabolism, some NRs such as HNF4A, the liver X receptor alpha (LXRA; NR1H3) or the constitutive 

androstane receptor (CAR; NR1I3) are predominantly expressed in hepatocytes and contribute to the 

orchestration of their function. As an example, CAR serves as a xenobiotic receptor and its function has 

later been extended to the regulation of gluco-lipid metabolism 23. 

 The development of functional genomics, which occurred within the last two decades, allowed 

to study genome-wide NR activities and prompted the scientific community to revisit NR modes of 

action. Indeed, recent developments of multi-omics approaches empowered our understanding of NR 

activities by combining transcriptomic, epigenomic and interactomic data revealing that NRs are 

functionally interconnected at least at two main levels (Fig.2). First, NRs are involved in an intricated 

cross-regulatory network of mutual regulation, defined as the hepatic core transcriptional regulatory 

circuitry (CoRC) 32. The hepatic CoRC is built-up during the course of liver development and hepatocyte 

differentiation, but is also essential in adulthood to maintain hepatocyte identity. Indeed, CoRC TFs 

ensure self-sustained high expression of its members through extensive auto- and cross-regulatory loops 

33. While the concept of CoRC by definition implied that hepatocyte identity is controlled by a limited 

set of NRs, including the most hepatocyte-specific ones, recent re-assessment revealed that this CoRC 

is actually embedded into an extended network involving additional NRs with more intermediate 

cell/tissue expression specificity including the thyroid hormone receptor beta (THRB; NR1A2) 34. The 

second layer of NR functional interconnections relates to NRs sharing many effector target genes 

(defined as genes carrying out hepatocyte-specific activities) 35, largely explained by the previously 

described binding to shared DNA binding motifs 4. In addition, NR co-recruitment through atypical 

heterodimers or through tethering (where only one of two interacting NRs directly binds to the DNA) 

might also be involved 4. A few specific pairs of hepatic co-recruited NRs have been functionally 

assessed such as GR and PPARA 25, but overall, how multiple NR co-recruitment results in context-

specific effects on gene transcription modulation remains poorly understood. For instance, redundancy 

versus specificity as well as cooperative regulations by different NRs are still ill-defined. In this context, 
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a more refined understanding might in the future come from computational modeling, which has recently 

gained significant attention in the liver field 36, 37, including in NR-related studies 38. 

 Recent considerations of the role of the other liver cell-types beyond hepatocytes resulted in a 

refined and more complex picture of the role exerted by NRs in this organ (Fig.2), as exemplified by the 

effects of FXR and PPARA activation on hepatic stellate cell (HSC) and Kupffer cell activities, although 

it is still unclear whether their anti-fibrotic and anti-inflammatory activities result from direct actions on 

those cells or are indirectly mediated via hepatocyte-specific effects [39, 40; reviewed in 41]. Of note, 

expanding our understanding of NR functions in the liver beyond hepatocytes has notably been enabled 

by technological breakthroughs, especially those related to purification of individual liver cell-types 

and/or single-cell/nuclei resolution analyses of gene expression, which allowed researchers to better 

appreciate cellular heterogeneity and inter-cellular dialogues. This will be further enhanced by the rapid 

development of spatial transcriptomics allowing to monitor the transcriptome of cells in situ 42, 43 

 

NR activities are disrupted in liver diseases 

 Owing to the aforementioned instrumental role exerted by NRs in the liver, disruption of their 

activities defines a key event underlying liver dysfunction [e.g. 44-46; reviewed in 22, 47]. While inherited 

mutations in NRs, such as HNF4A, FXR or the pregnane X receptor (PXR; NR1I2), are linked to liver 

disease predisposition and progression 22, 48, perturbed NR activity is mostly due to environmental factors 

involved in the development of acute or chronic liver diseases. Indeed, associated with perturbed blood 

flow and (para)sympathetic innervation, alterations in the hepatocyte micro-environment characterizes 

liver diseases 49, 50. These alterations include heightened inflammatory cytokine levels and extracellular 

matrix remodeling associated with excessive and/or unresolved cellular stress which trigger impaired 

hepatic NR activities. Interleukin 1, tumor necrosis factor alpha and the pro-fibrotic transforming growth 

factor beta as well as endoplasmic reticulum stress trigger a yet to be fully understood intricated cellular 

response which compromises maintenance of fully functional hepatocytes by NRs 44-46 (Fig.3). Indeed, 

recent system-wide assessment of rodent liver injury models and of human hepatic biopsies has revealed 

that the hepatic NR network is disrupted as a whole in severely injured livers, i.e. the expression of 

interconnected NRs is dampened 33, 34, 44 (Box 1). This occurs in acute liver injury, such as sepsis-related 
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liver failure, as well as in the most advanced stages of chronic liver diseases, including MASLD and 

alcohol-related liver diseases (ALD). This phenomenon led to the identification of loss of hepatocyte 

identity as one of the molecular mechanisms underlying impaired liver functions [44, 45, 51-55; reviewed in 

44, 47. Disrupted NR activities in loss of hepatocyte identity does not only stem from impaired expression 

of their encoding genes, but also involves changes in isoforms, subcellular localization and interacting 

partners through alterations in RNA splicing and protein post-translational modifications (Fig.3). An 

emerging concept suggests that functional compensation can occur, at least transiently, in injured livers 

through induction of alternative transcriptional regulators in hepatocytes 56, 57. An additional mechanism 

of primary importance might be the modulation of endogenous NR ligand availability. Indeed, changes 

in lipid, thyroid hormone or retinoid metabolism occur in liver diseases 58, 59. Of interest, a transient rise 

in retinoic acid may promote activation of the retinoic acid receptor (RAR; NR1B) to maintain 

hepatocyte gene expression 59, 60. Since liver injuries are controlled through intense inter-cellular 

communications, retinoic acid release by activated HSCs might orchestrate the liver response to injury 

by triggering transcriptional effects in multiple additional surrounding liver cell populations including 

biliary epithelial cell (BECs), liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) 61. 

Indeed, many NRs are expressed in liver cells besides hepatocytes 62, where alterations in their activities 

may also modulate liver diseases. This includes a role for NRs in HSCs, as exemplified by FXR and 

thyroid hormone receptor alpha (THRA; NR1A1) signaling to repress their fibrogenic activity 40, 63-65. 

Extending on this notion, the recent literature indicates the need to take into account the role of inter-

organ cross-talks in controlling NRs activities in the liver. For instance, signaling molecules or 

metabolites issued from the gut or adipose tissues have the ability to modulate the activities of hepatic 

FXR or PPARs [e.g. 66, 67; reviewed in 68, 69] and could contribute to their dysfunction in liver diseases. 

 

Targeting NRs to treat liver diseases today and tomorrow  

 With the pandemic rise in obesity and type 2 diabetes, MASLD has become a major health 

burden affecting approximately one-quarter of the global adult population and a leading cause of liver 

failure and cancer worldwide 70, 71. In this context, identifying therapeutic treatments for MASLD 

remains a major challenge 70, 72, 73. The initial interest in targeting NRs in MASLD and its more advanced 
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form metabolic dysfunction-associated steatohepatitis (MASH) stems from their central role in the 

control of energy homeostasis including glucose and lipid metabolism. In this context, pharmacological 

ligands for the NRs FXR and THRB have been developed. In a phase 3 clinical trial, the FXR agonist 

obeticholic acid improved fibrosis, but failed to improve MASH and was furthermore associated with 

safety concerns 74, prompting the U.S. Food and Drug Administration (FDA) to recommend against 

approval. On the other hand, the THRB agonist resmetirom showed a significant benefit on both key 

endpoints in a phase 3 trial – improvement in fibrosis without worsening of MASH in 26% of patients 

receiving the highest of two doses of resmetirom compared with 14% on placebo, and resolution of 

MASH without worsening fibrosis in 30% of patients treated with the highest dose of resmetirom 

compared with 10% of patients on placebo 75. Thus, resmetirom became very recently the first FDA-

approved treatment for MASH. Although these results are encouraging, it should be noted that the 

improvement in both primary endpoints occurred in less than 50% of patients. Moreover, since THRA 

but not THRB defines the main active thyroid hormone receptor in HSCs 64, resmetirom may only 

indirectly and sub-optimally target HSC activities. Therefore, new strategies may become necessary to 

increase the percentage of responders as well as to augment the magnitude of response to THRB agonists 

76. In light of the disruption of the NR network observed in injured liver discussed above, it might be 

hypothesized that decreased NR expression/activity in liver disease may contribute to an inefficient 

response to NR agonists, especially in the most advanced stages of MASLD. In this scenario, loss of 

hepatocyte identity would desensitize hepatocytes to the beneficial pharmacological effects of NR 

ligands. In this context, considerations may be given to strategies aiming at correcting deficient NR 

expression/activity, which would therefore go along improving or restoring NR ligand sensitivity. Here, 

the potential for combined modulation of several NRs is to be mentioned. Indeed, since hepatic NRs are 

organized into a cross-regulatory network, targeting several NRs simultaneously may help facilitate the 

reactivation of this network, hence restoring NR expression and activity. Additionally, simultaneous 

pharmacological targeting of independent NRs may allow to trigger beneficial effects by targeting 

different liver cell-types and/or different organs. This is exemplified by the increased performance of 

pan-PPAR agonists over agonists targeting only one member of the PPAR family in tackling the various 

histological characteristics of MASLD including steatosis, inflammation and fibrosis 77, 78. Lanifibranor, 
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an agonist of the three PPAR isotypes, i.e. PPARA, PPARG and PPARD, is currently in a phase 3 clinical 

trial in adults with MASH and liver fibrosis. The benefits of lanifibranor might be explained by the 

PPAR isotypes’ expression territories allowing to target simultaneously different liver cell-types and 

organs such as the adipose tissue [79-84; reviewed in 85]. Following up on the notion of different organs 

being intrinsically linked in MASLD, this disease is clinically associated with a high risk of adverse 

cardiovascular events (atherosclerosis, heart failure). Indeed, the risk for major adverse cardiovascular 

events increases with worsening disease severity across all stages of MASLD 86. In our opinion, this 

observation needs to be better apprehended when considering future drug development. More 

specifically, besides monitoring cardiovascular risk factors and adverse events, potential beneficial 

effects of NR ligands on the cardiovascular system should also be taken into account in the decision-

making process. Favorable effects might arise from direct NR actions on heart and vessels [87-89; 

reviewed in 90] and/or occur secondary to systemic changes in gluco-lipid homeostasis via modulation 

of NR activities in metabolic tissues such as the adipose tissue and skeletal muscle. Altogether, in light 

of our growing understanding of the role exerted by the dialogue between liver cell-types and multiple 

organs in liver diseases, the contemporary vision of pharmacological intervention for treating MASLD 

now needs to embrace its intrinsic multi-cellular and multi-organ nature (Fig.4)(Box 1).  

 In line with the general concept of personalized-medicine, better stratifying MASLD patients is 

also required to improve the efficacy of carefully selected drugs. In this context, computational modeling 

and artificial intelligence are beginning to be leveraged to define how patients could be better stratified 

to inform the decision-making process for the best treatment option(s) 91. Artificial intelligence might 

additionally be used to assist pathologists with histological analyses in order to reduce the impact of 

scoring variability in the diagnosis and follow-up of MASLD patients in clinical trials 92. Another key 

consideration will be to translate to the clinic our growing understanding of MASLD being a sexually 

dimorphic condition exhibiting sex-specific liver gene dysregulation 93. Indeed, sex hormone signaling 

through their cognate NRs, i.e. AR and ERa, has emerged as a key factor in the sex differences in 

MASLD prevalence and progression [94-98; reviewed in 99, 100]. Taking advantage of the well-established 

anti-steatotic and anti-fibrotic effects of estrogens, the ER ligand 17β-estradiol is currently being 

investigated as a therapeutic option for post-menopausal women with MASH 101. 
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 Finally, targeting REVERBA and REVERBB as well as the RORA nuclear receptors may appear 

as an alternative or complementary therapeutic strategy. These NRs are components of the molecular 

clock and REVERBA agonists display anti-fibrotic activities in various settings [102-104; reviewed in 105]. 

The molecular clock is a transcriptional network ensuring the rhythmic accumulation of gene transcripts 

and effector proteins with a period of about 24 hours, and is required for the liver (and other organs) to 

anticipate daily fluctuations in activity and to maintain whole-body homeostasis [106-108; reviewed in 109]. 

MASH patients display perturbed time-of-day-dependent accumulation of gene transcripts and 

metabolites 110. Dyssynchrony of the molecular clock triggered by, for example, the disruption of the 

sleep-wake schedule is associated with metabolic abnormalities including liver steatosis and MASH. 

Therefore, chrono pharmacology might increase the therapeutic success rate in liver diseases 111. 

 Importantly, synthetic NR ligands originally developed as drugs targeting MASH may, in some 

instances, benefit in the treatment of rare liver diseases. Indeed, owing to their key regulatory roles in 

hepatocytes and other liver cell-types, drug-repurposing strategies have been implemented for the 

treatment of rare liver diseases in need of novel therapeutic approaches such as Primary Biliary 

Cholangitis (PBC). In this context, the dual PPARA/PPARD agonist elafibranor, which was initially 

developed and assessed for the treatment of MASH 112, was recently shown to improve disease indicators 

in patients with PBC not sufficiently responding upon treatment with ursodeoxycholic acid, the universal 

first-line standard of treatment 113. In this context, obeticholic acid and novel FXR agonists may also 

prove useful to extend therapeutic opportunities for PBC, although increase in pruritus and LDL 

cholesterol are also observed. 

 

Final discussion 

 NRs are undoubtedly central players in the physiological regulation of liver gene expression and 

the modulation of pathological responses. Many unknowns related to our understanding of their precise 

mechanisms of action preclude us from refining strategies to better pharmacologically modulate their 

activities to treat liver diseases. In particular, understanding NR activities at the transcriptomic, 

epigenomic and interactomic levels needs to be improved, including how different NRs combine 

functions in a given cell and how NRs’ activities are integrated in a context of liver inter-cellular 
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dialogues and inter-organ cross-talks. Efforts such as the Virtual Liver Network 37, 114 may help pave the 

way towards this goal. This might further accelerate successful drug repurposing for the treatment of 

rare liver diseases as exemplified by elafibranor for PBC 113. Moreover, in the perspective of the 

precision-medicine era, predictive factors for drug efficiency including the influence of genetics, sex, 

disease etiology and stage will need to be refined. 

 While in general NRs constitute a unique TF family amenable to pharmacological modulation, 

some NRs such as the master hepatocyte regulator HNF4A remain vexingly untargetable. In this context, 

alternative non-pharmacological strategies based on other properties of NRs, including molecules 

interfering with NR dimerization or interaction with coregulators, may be developed 115, 116.  
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Box 1 Current considerations regarding liver NR activities and pharmacological modulation 

Recent updates to our understanding of NRs’ activities in liver pathophysiology 
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- Control of gene expression by NRs can involve regulatory activities beyond their archetypal 

role as TFs due to their RNA binding potential or non-nuclear localizations  

- NRs form an intricated regulatory network in hepatocytes, whose disruption triggers loss of 

hepatocyte identity and liver dysfunction 

- NRs are expressed and active in multiple liver cell-types and organs, thereby orchestrating 

integrated responses through inter-cellular and/or inter-organ dialogues  

Steps towards improving NR pharmacological targeting for treatment of liver diseases 

- Besides normalization of metabolic parameters and/or inflammation, NR pharmacological 

activation in liver failure may serve to restore the hepatic network expression/activity and 

hepatocyte identity and function 

- Strategies to simultaneously modulate different NRs expressed in distinct liver cell-types and/or 

organs might prove beneficial considering the importance of inter-cellular and inter-organ cross-

talks in development and progression of liver diseases 

 

Legends to Figures 

Fig.1 Control of gene expression by NRs 

The archetypal function of NRs is to serve as ligand-controlled transcription factors through recruitment 

to the chromatin. Recent findings indicate that at least a subset of NRs also control gene expression 

through additional means involving modulation of intracellular signaling (e.g. kinase cascades) or 

through RNA binding-mediated control of mRNA stability and/or translation. 

 

Fig.2 Control of liver gene expression and functions by NRs 

The core NR network, i.e. the most hepatocyte-specific NRs, connect to additional NRs such as THRB 

or the sex steroid receptors ERa and AR to conjointly drive expression of effector genes, which encode 

for proteins involved in hepatocyte homeostatic functions. Arrows are illustrative and not mean to 

extensively define functional connections between individual NRs. Functions of NRs in additional liver 

cell-types is being given greater attention towards understanding how a multi-cellular response to NR 

ligands promoted adaptative gene regulation and liver activities. 
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Fig.3 Impaired hepatic NR network expression/activity in liver dysfunction and failure 

In diseased liver, alterations to the hepatocyte micro-environment such as inflammation as well as 

hepatocellular stress lead to modulation of NR activities including a failure to maintain their expression, 

ultimately disrupting the hepatic NR network resulting in a loss of hepatocyte identity and further 

compromising liver function. 

 

Fig.4 Targeting multiple NRs as a novel therapeutic approach for MASLD  

(A) Existing strategies targeting individual NRs have shown promising anti-steatotic and anti-

inflammatory effects but failed to efficiently tackle the fibrotic process. This might relate to decreased 

NR expression and activity in diseased liver, resulting in identity loss and desensitization to the 

beneficial effects of NR pharmacological ligands. (B) Novel therapeutic approaches might include the 

simultaneous targeting of multiple NRs, as this will reactivate the hepatic NR network thereby increasing 

their expression/activity and improving ligand sensitivity. In addition, multiple NR targeting might 

prove beneficial as this strategy takes into account inter-cellular dialogues and inter-organ cross-talks. 
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