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Internally Driven β-plane Plasma Turbulence Using the Hasegawa-Wakatani System

Ö. D. Gürcan
Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, Sorbonne Université,

Université Paris-Saclay, Observatoire de Paris, F-91120 Palaiseau, France

General problem of plasma turbulence can be formulated as advection of potential vorticity (PV),
which handles flow self-organization, coupled to a number of other fields, whose gradients provide
free energy sources. Therefore, focusing on PV evolution separates the underlying linear instability
from the flow self-organization, and clarifies key spatial scales in terms of balances between various
time scales. Considering the Hasegawa-Wakatani model as a minimal, nontrivial model of plasma
turbulence where the energy is injected internally by a linear instability, we find that the critical
wavenumber kc = C/κ where C is the adiabaticity parameter and κ is the normalized density gradi-
ent separates the adiabatic (or highly zonostrophic) behavior for large scales from the hydrodynamic
behavior at small scales. In the adiabatic range the non-zonal part of the wave-number spectrum
goes from E (k) ∝ γkU

−1k−2 around the peak to E (k) ∝ ω2
kk

−3 in the “inertial” range, where
γk and ωk are the linear growth and frequency and U is the rms zonal velocity. This proposed
spectrum fits very well for the large kc case, where the bulk of the spectrum is in the adiabatic
range. In contrast for small kc, we get the usual forward enstrophy cascade with E (k) ∝ ϵ

2/3
W k−3,

where ϵW is the enstrophy dissipation. In contrast for kc ≈ 1, the system transitions to hydrody-
namic forward enstrophy cascade right after the injection range, with zonal flows at large scales
and forward enstrophy cascade at small scales. Note that kc, can also be used as a proxy for the
scale at which the system switches from wave-dominated (i.e. E (k) ∝ ω2

kk
−3) to hydrodynamic

(i.e. E (k) ∝ ϵ
2/3
W k−3) spectra usually denoted by kβ in geophysical fluid dynamics. It is argued

that the ratio Rβ ≡ kβ/kpeak ≈ kc/kpeak where kpeak is the peak wave-number can be defined
as the zonostrophy parameter, and that the abundance of zonal flows vs. eddies in near and far
from “marginality” that is commonly formulated in terms of the Kubo number in plasma problems
can also be understood in terms of the zonostrophy parameter, since Rβ increases as we approach
marginality.

I. INTRODUCTION

Understanding plasma turbulence and its self-
regulation through generation of large scale flows is an
important challenge in predicting and controlling tur-
bulent transport in fusion devices. Micro-instabilities,
driven by background gradients, inevitably present in a
magnetic confinement device, generate collective, fluc-
tuating electric fields that can transport particles, heat
and momentum towards the walls. These fluctuations
also generate large scale flows, called zonal flows through
Reynolds stresses[1]. Zonal flows can then suppress the
turbulence that drives them through a mechanism of
shear suppression[2], thus allowing the turbulence to self-
regulate. This mechanism of flow self-organization is well
known, and generally understood in terms of the non-
linear dynamics of potential vorticity[3], and is closely
related to the similar mechanism of layer formation in
geophysical fluid dynamics (GFD) [4, 5].

On the other hand, fluctuations in plasma turbu-
lence, especially in scales where the instability mecha-
nism is active are known to be roughly quasi-linear, where
the phases between fluctuations are dictated by linear
relations[6]. This justifies our approach of separating the
instability mechanism, which is almost linear, from flow
self-organization through the PV equation, which is com-
pletely nonlinear. Note that a generalization of the QLT
is also commonly used in the GFD community[7], ex-

cept that while plasma QLT works beter when there are
no zonal flows, the GFD type gQLT works best when
the zonal flows are the strongest. The current letter, in
addition to providing theoretical estimates of the wave-
number spectra in different limits, intends to bridge this
gap between the two communities.
β-plane model of plasma turbulence: Consider an

equation for the potential vorticity (PV) ζ, which can
be written in general as:

∂tζ + ẑ×∇Φ · ∇ζ + κ∂yΦ̃ = −µζ + ν∇2ζ , (1)

where κ is its normalized background gradient Φ = Φ+Φ̃
where Φ is the zonally averaged part of the properly nor-
malized electrostatic potential playing the role of the
stream function, µ and ν are large scale friction and
small scale dissipation respectively, which serve to reg-
ularize the equation and could also be replaced by hypo
and hyper viscosities. Note that if one considers a self-
consistent, internally driven model such as the Hasegawa-
Wakatani system[8, 9] (with the standard modified re-
sponse), a large scale friction is not necessary for steady
state, and we can set µ = 0, however if we only consider
a linear dispersion relation in order to close (1), the in-
verse cascade becomes an issue and one has to include
large scale friction and hypodiffusion.

The definition of PV in terms of various fields of the
system, and its inversion (i.e. writing Φ in (1) in terms of
ζ , or writing ζ in terms of Φ alone so that we have a sin-
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gle field) gives us the details of the physics problem. For
example for dissipative drift waves ζ = n−∇2Φ, where n
is the electron density and the inversion requires that we
solve the continuity equation for density along with Eqn.
(1). For ion temperature gradient driven (ITG) turbu-
lence, pressure P also enters the definition of PV through
ζ = n−∇2Φ−P/Γ where Γ is the specific heat ratio, and
we need to solve an equation for pressure as well, which is
in turn coupled to a parallel velocity equation[10]. Even
the gyrokinetic equation can be defined in terms of a
potential vorticity conservation through the gyrocenter
density[11], or the zeroth moment of the gyrokinetic dis-
tribution function, where the inversion problem becomes
the solution of all the other moments.

It may be possible in some cases to write a linear in-
version for the other fields. For example, the Hasegawa-
Wakatani system could be inverted approximately using
the linear relation nk → σkΦk with σk ≈ κky+iC

ωk+iC so that:

Φ̃k =
(
σk + k2

)−1
ζ̃k , (2)

where ωk is the unstable solution of the linear disper-
sion relation, which can be written in the inviscid limit
as ω2

kk
2 + iCωk

(
1 + k2

)
= iκkyC, with C the adiabatic-

ity parameter. Note that substituting (2) into (1) and
linearizing, we get back the linear dispersion relation.
However linear inversion is problematic in particular be-
cause the resulting system lacks the key saturation mech-
anism involving the backreaction of the flow on the linear
growth. This can be remedied in part by using a quasi-
linear inversion, or eventually, fully nonlinear inversion,
which requires solving the continuity equation:

∂tn+ ẑ×∇Φ · ∇n+ κ∂yΦ̃ = C
(
Φ̃− ñ

)
+D∇2n (3)

making it necessary to consider the full Hasegawa-
Wakatani system [i.e. Eqns. (1) and (3)], even if we
are only interested in PV evolution since this is the only
way we can infer Φ̃ that appears in (1). Note that from
the perspective of PV evolution, the energy injection in
plasma turbulence is around ky ≈ 1 (or smaller) and dis-
plays characteristics of forward cascade either through
potential enstrophy cascade carried by waves, or enstro-
phy cascade through eddies. The inverse energy “cas-
cade” is usually not important, since the scale at which
the zonal flows form is usually slightly larger than the
injection scale, and they can turn off the underlying in-
stability drive. However if one uses only the linear dis-
persion relation (instead of the full nonlinear problem),
to invert PV, while PV can still flatten, it can not turn of
the underlying instability drive, and thus the system be-
comes pathological, necessitating large scale friction, but
the behaviour of the system with linear inversion and
large scale friction is different from that of self-consistent
saturation without or with little friction.

The key spatial scale in plasma β plane turbulence,
is the transition scale between adiabatic and hydrody-

E (k) Spectrum Time scale balance range

Uγkk
−2 √

Ukγk ∼ τ−1
nℓ k ∼ kpeak ≪ kc

ω2
kk

−3 ωk ∼ τ−1
nℓ kpeak < k < kc

ε2/3k−3 ε1/3 ∼ τ−1
nℓ k > kpeak ≲ kc

Table I. Limiting forms of the wave-number spectra, corre-
sponding time scale balances [here τ−1

nℓ ≡ E1/2 (k) k3/2] and
the range of wave-numbers for which they are applicable.

namic behavior. For the case of the Hasegawa-Wakatani
model, this is a linear scale defined as kc = C/κ. More
generally one can define this scale as the scale where
σkr ≈ σki , (i.e. basically if we define σk ≈ 1 + iδk this
is the scale where δk ≈ 1). This suggests that for scales
larger than this scale, we have the adiabatic behavior (i.e.
nk ≈ Φk) whereas for scales smaller than this scale, the
hydrodynamic behavior follows. In three dimensions, the
argument can be extended by noting that C goes like k2∥
[12]. Note that kc is closely related to kβ , commonly used
in GFD as the scale at which the system switches from
inverse cascade to Rossby wave turbulence (recall that,
there the energy injection is at small scales). Since the
behavior of the spectra are completely different in the
adiabatic vs. hydrodynamic regimes (See table I for a
detailed classification), we characterize everything with
respect to kc first.

Considering first kc ≫ 1 (e.g. C ≫ 1 with κ ≈ 1), with
a general growth rate γk which has the most unst<able
mode that has a finite ky = ky0 ≈ O (1) and vanishing
kx (the usual case in plasma turbulence), we can discuss
some features of the nonlinear saturation. Since strong
zonal flows are formed in this state, we can define the
usual time scale associated with the zonal flows as τ−1

Z =
Uk where U is the rms zonal velocity, and a hybrid time
scale of the form τ−1

gz ≈ (Ukγk)
1/2.

We argue that, as long as the peak region is such that
kpeak < kc it is this hybrid scale which is balanced by
the nonlinear time τ−1

nℓ ∝ E (k)
1/2

k3/2 around the peak
of the spectrum, yielding the quasi-linear spectrum:

E (k) ≈ Uγkk
−2 , (4)

valid for γk > 0. Note that wile the rms velocity U is an
emergent feature, we can estimate it from the momentum
balance between the waves and flows, using something
like U ≈ [ωk/ky]max. For example for the standard form
of ωk ∝ κky/

(
1 + k2

)
, we get U = κ. However a more

general form of the momentum balance, which can be
written as U ≈ [ωk/ky]max − (∂xn)rms +

(
∂xΩ

)
rmscan not

be solved in terms of linear quantities alone.
For kc > 0.1, The linear growth peaks around ky ≈ 1

and is fairly localized to wavenumbers around its peak
and becomes negative at large k due to viscosity. If the
wave-number where γk < 0 is smaller than kc, we con-
tinue with adiabatic wave-turbulence and this time, it
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(Eqn. 6)

Figure 1. E (k) in Hasegawa-Wakatani turbulence for C = 10 to 1 to 0.1 from left to right with κ = 1, so that the transition
scale kc is varied by two orders of magnitude. Here the blue region is adiabatic, light orange is hydrodynamic and dark
orange is dissipative regions, and the wavenumbers for which γk is maximum are shown with little black arrows. The solid
black curve is the kinetic energy spectra E (k) computed as E (k) =

∑
k∈k±∆k k

2Φ2
kx,ky

, averaged over time in the saturated
phase of simulations up to t = 5000, with a padded resolution of 40962. The light red curve corresponds to the zonal spectra
EZ (kx) =

∑
kx∈kx±∆kx

k2
xΦ

2
kx,0 whereas ENZ (k) = E (k) − EZ (k). Note that the solid orange curves corresponding to

the theoretical spectra (as given by Eqn. 5, or the Kraichnan-Kolmogorov forward enstrophy cascade with ε2/3k−3) are not
multiplied by any additional factors, they naturally fall on the numerical spectra.

is the linear frequency ωk which balances the nonlinear
time, giving a k-spectrum of the form:

E (k) ≈ ω2
kk

−3 . (5)

The two solutions can actually be put together by using
γk → γk + νk2 (which corresponds to the inviscid part of
γk, which asymptotes to zero instead of becoming nega-
tive), so that we can write:

E (k) ≈
ω2
kU

(
γk + νk2

)
(ω2

kk
2 + U (γk + νk2) k3)

. (6)

The spectrum of Eqn. (6), appears to be a very good
match to the results of numerical simulations as can be
seen in Figure 1. It seems that this form of the wave-
number spectrum for plasma turbulence with zonal flows
is rather generic in the adiabatic (or high zonostrophy)
limit. In the complete opposite limit of kc ≪ 1, we get 2D
Navier-Stokes dynamics with injection around ky ≈ 1,
and a forward cascade of enstrophy, but with no dis-
cernible inverse cascade of energy (a key difference to
linear inversion, or forced β-plane[13]), where the spec-
trum in the inertial range has the form E (k) ∝ ϵ

2/3
W k−3,

where the coefficient ϵ2/3W can be computed directly from
enstrophy dissipation ϵW ≡

∑
k νk

4E (k), which comes
mainly from small scales since E (k) drops slower than
k−4. Note that the faster than k−3 drop of the hydrody-
namic spectra in Fig. 1 can be attributed to interactions
with large scales, a spectrum of the form E (k) ∼ k−4/U ,
which may be related to the Saffmann spectrum as a con-
sequence of sharp vorticity gradients[14], seems to be a
good fit as well, especially towards the dissipative range.

In between the two limits is C ≈ 1, which is probably
the more challanging, and interesting case, in which we

can still argue for the standard forward enstrophy cas-
cade picture for small scales (or k−4 due to sharp vortic-
ity gradients), but since now we have the injection scale
and the transition scale kc basically on top of each-other
with zonal flows forming at slightly larger scales, we can
have a steady state with large scale zonal flows, more or
less governed by adiabatic limit of the equations and the
small scale eddies that are governed by 2D hydrodynam-
ics. The stationarity of this state with very strong zonal
flows is extremely intriguing. A local linear analysis sug-
gests that the gradient of vorticity provides a feedback
loop which reduces the linear growth rate for negative
vorticity gradient by flattening the PV profile, and intro-
duces a hypodiffusion like term for positive vorticity gra-
dient, providing a large scale energy sink in the troughs of
the zonal velocity profile, which allows the underlying 2D
hydrodynamic turbulence to reach a steady state, which
explains the steadyness of the fluctuations. The station-
arity of large scale zonal flows suggests that the 2D tur-
bulence evolves towards exact solutions of the 2D Euler
equations, such as Kida vortices[15], since those can sur-
vive in sheared flows without any net momentum trans-
fer, or dipole vortices[16], which are known to be abun-
dant in similar structure dominated turbulent states[17]
with deplated nonlinearity due to selective decay[18, 19]
relevant also in plasma edge[20]. In other words, in or-
der to have stationary zonal flows with eddies, the eddies
must minimize their Reynolds stress on large scale flows.

The Zonostrophy parameter A key parameter that de-
fines the strength of the zonal flows to small scale eddies,
is the so called zonostrophy parameter Rβ . In the con-
text of the usual (say forced) β plane turbulence, Rβ is
defined as the ratio of the Rhines scale LR to the tran-
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Figure 2. The snapshot of vorticity and the corresponding PV staircase, for C = 10, C = 1.0 to C = 0.1 from left to right, for
Hasegawa Wakatani turbulence. As we scan C the transition scale kc = C/κ, changes also changing the zonostrophy parameter
(i.e. here effectively R ∝ kpeak/kc). We go from clean staircases for large C to a corrugated dirt hill to an almost unmodified
PV gradient. Comparing the relative overall levels of the zonal to non-zonal spectra shown in Figure 1, around the peak of the
nonzonal component shows this trend clearly.

sition scale ℓβ [21], which denotes the scale of transition
from 2D inverse cascade at small scales to Rossby wave
turbulence at larger scales. Basically if we have a large
range of scales between the ℓβ and the LR, the zonal flows
dominate over eddies, whereas if the two scales are close
together it is the other way around.

In the generalized beta plane perspective of the plasma
turbulence with internal drive, the zonostrophy parame-
ter can be defined as Rβ ≈ kβ/kpeak or kc/kpeak, using
kc as a proxy for kβ . Snapshots of the vorticity field
and the resulting PV staircase in Figure 2 shows clearly
that as we change kc by two orders of magnitude while
keeping kpeak mostly unchanged, the zonostrophy param-
eter and the resulting ratio of zonal vs. nonzonal energy
around the peak region changes substantially. Note that
since kpeak and kβ are roughly the scales at which the
linear growth and linear frequency are balanced by the
nonlinear decorrelation time respectively (see table I), if
γk ≈ ωk (i.e. far from marginal) around the most unsta-
ble mode, the two scales are basically on top of one an-
other, which makes the zonostrophy parameter small. In
contrast if γk ≪ ωk for the most unstable mode, the two
scales are well separated, which makes Rβ rather large.
This explains the ubiquitous observation of abundance of
zonal flows near marginality (i.e. γk ≪ ωk), and eddies
far from it (i.e. γk ≳ ωk) in plasma turbulence. The
time scale comparison also explains the relation to Kubo
number, which is the ratio of the turbulence decorrelation
time (i.e. either γ−1 or τnℓ ) to the nonlinear time.

Results and Conclusions Plasma turbulence is inter-
preted as a β-plane model with nonlinear inversion, giv-
ing the original dispersion relation when fully linearized,

or a β-plane model with a linear growth rate, when only
the inversion is linearized, or the fully self-consistent non-
linear problem when the inversion is fully nonlinear. It
was observed that linear inversion while giving a simple
β plane model with growth rate from a linear dispersion
relation, lacks the key saturation mechanism involving
the backreaction of the flow on the linear growth. It was
noted that kc = C/κ, the scale at which the linear sys-
tem switches from adiabatic to hydrodynamic, plays the
role of kβ for this system. In the adiabatic limit, a weak
wave turbulence spectrum in the form E (k) ∝ ω2

kk
−3is

shown to be combined with the peak in the form of Eqn.
(6), which matches the observed spectra from direct nu-
merical simulations for k < kc. In contrast for k > kc
it was observed that a Kraichnan-Komogorov spectrum
of the form ε2/3k−3 was observed in the “inertial” range.
It was argued that the ratio kβ/kpeak can be defined as
the zonostrophy parameter Rβ , which explains the ap-
pearance of zonal flows near marginality and eddies away
from it, since Rβ increases as we approach marginality.
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