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Abstract

We have very limited knowledge of how species interact in most communities and ecosystems despite 

trophic relationships being fundamental for linking biodiversity to ecosystem functioning. A promising 

approach to fill this gap is to predict interactions based on functional traits, but many questions remain 

about how well we can predict interactions for different taxa, ecosystems, and amounts of input data. 

Here, we built a new traits-based model of trophic interactions for European vertebrates and found that 

even models calibrated with 0.1% of the interactions (100 out of 71k) estimated the full European 

vertebrate food web reasonably well. However, predators were easier to predict than prey, especially 

for some clades (e.g. fowl and storks) and local food web connectance was consistently overestimated. 

Our results demonstrate the ability to rapidly generate food webs when empirical data are lacking - an 

important step towards a more complete and spatially-explicit description of food webs.

3

29

30

31

32

33

34

35

36

37

38

39



Introduction

Food webs are collections of trophic interactions describing both the composition and structure of 

communities. Knowing the trophic structure of a food web is critical to understand how energy flows 

through ecosystems (Thompson et al. 2012), how populations respond to perturbations through time 

(Zhao et al. 2019), and how species are distributed in space (Wisz et al. 2013). The food web is also 

critical for conservation efforts (Harvey et al. 2017; Pollock et al. 2020) and can be an indicator of the 

threat of extinction (McDonald-Madden et al. 2016). If food web links are lost more quickly than 

species, then food webs can become simplified and homogenous with fewer trophic levels (Laliberté & 

Tylianakis 2010; Estes et al. 2011; Valiente-Banuet et al. 2015). Despite this central importance of food

webs in ecology and conservation, we have yet to fully understand predator-prey relationships for many

species even in relatively well-studied areas. 

One of the main reasons for this lack of understanding is the Eltonian shortfall – “the lack of 

knowledge about interactions among species or among groups of species” (Hortal et al. 2015). 

Available data on food webs are mostly restricted to the United States and Europe similar to other types

of species interaction networks (Hortal et al. 2015; Cameron et al. 2019; Poisot et al. 2021). 

Compounding the problem even further, the sampling effort to detect interactions far exceeds the effort 

needed to detect species because they require the simultaneous detection of both interacting species and

the interaction (Chacoff et al. 2012; Jordano 2016). Consequently, rare interactions are often missed 

while those of dominant species are overestimated. So, even when available, food web datasets are 

often incomplete and biased. A promising solution is to fill gaps in empirical food webs with expert 

knowledge and literature review (e.g., Piechnik et al. 2008; Maiorano et al. 2020), but this approach 

remains limited to well-studied systems.
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Despite the size of the problem, there is reason to be optimistic about the potential for predicting 

species interactions to fill gaps in food web data. In neutral food webs, the abundances of coexisting 

species predict their probability of interacting (Canard et al. 2012). In many cases, trophic interactions 

can be better predicted if they conform to a predictable set of phylogenetic and functional traits 

(Morales-Castilla et al. 2015). Niche theory predicts that two species interact if the foraging traits of 

the predator match the vulnerability traits of the prey (Williams & Martinez 2000; Gravel et al. 2016). 

This trait-matching framework serves as the basis for most studies aiming to predict interactions (e.g., 

Gravel et al. 2013; Bartomeus et al. 2016; Pichler et al. 2020), which have shown promising results. 

Notably, Eklöf et al., (2013) found that 3-5 traits suffice to predict most trophic interactions, whereas 

Gravel et al., (2013) showed that predictions of trophic interactions in marine ecosystems are robust to 

sampling effort. These findings suggest that we can potentially predict missing trophic interactions 

even when data are sparse.

Yet, there have been few large-scale, multi-clade tests of predictive models of trophic interactions. 

Many studies have used trait-matching models in systems where the relationships between the traits of 

predators and their prey are expected to be strong, such as marine food webs (e.g., Gravel et al. 2013; 

Laigle et al. 2018; Albouy et al. 2019). Other studies have built more complex models which can 

outperform simpler models (e.g., Rohr et al. 2016), but have many parameters, relying on large datasets

that are often unavailable. Therefore, models based on relatively simple trait-matching relationships are

likely the best option for a wide range of taxa that have available trait data, but are they realistic enough

to make good predictions across a diverse set of taxa and ecosystems? We need a better understanding 
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of the amount of data needed to make reliable predictions and how general the matching rules are 

across clades and space.

Here, we built a model to predict trophic interactions based on functional traits that are widely 

available. We designed our model to be a very general model that can be applied across vertebrate 

groups using a Bayesian linear model relating trophic interaction (and non-interactions) to a relatively 

small set of predictor variables. These predictors describe the foraging ability of the predator, the 

vulnerability of the prey, and the trait-match of interacting species. The relatively simplistic model 

structure allows for fitting the model with few training data. We test our model using both the recently 

assembled food web of all terrestrial vertebrates in Europe (Maiorano et al. 2020) and the Global Biotic

Interactions (GloBI) database (Poelen et al. 2014), and use the model to determine: (1) how much data 

are needed to accurately predict the entire European food web, (2) which traits make the best 

predictions, (3) how input data (empirical versus multi-sourced data) influence predictions, (4) which 

taxa are easier or harder to make predictions for, and (5) how well the properties of local food webs can

be predicted across space.

Materials and methods

Study area, species, and functional traits

Our study focuses on trophic interactions among all terrestrial vertebrates of Europe: mammals, 

breeding birds, reptiles, and amphibians. For each species, we extracted five functional traits from 

Thuiller et al. (2015): diet, nesting habitat, activity time, foraging behavior, and body mass (Appendix 

S1). Because body mass was missing for many amphibians - 52% missing for frogs (Anura) and 46% 

for salamanders (Caudata) - we imputed missing body mass from available body length information for
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these two groups separately. These imputations were justified by the strong relationship between body 

mass and length in our study (r2 = 0.75 and 0.84 for frogs and salamanders respectively; Appendix S2), 

and others (Deichmann et al. 2008). In all, we gathered these five functional traits for 1055 species: 

101 amphibians, 507 birds, 267 mammals, and 180 reptiles.

Using diet, nesting habitat, activity time, foraging behavior, and body mass, we calculated seven 

predictor variables for each species pair (Table 1). These predictors of predator-prey interactions can be

categorized into three types: foraging traits, vulnerability traits, and matching traits (Gravel et al. 2016; 

Rohr et al. 2016). Foraging traits (body mass of the predator and its foraging behavior) influence the 

number of prey of a given predator, whereas vulnerability traits (body mass of the prey) influence the 

number of predators of a given prey. Matching traits influence the feasibility of the interaction 

(difference in body mass and diet match) or the encounter rate of species (activity time and habitat 

match).

Interaction data

We extracted interaction data from the trophic metaweb of European terrestrial vertebrates (referred to 

as the Metaweb; Maiorano et al., 2020). A metaweb documents all potential interactions between all 

species at the regional scale (Dunne 2006). Maiorano et al. (2020) compiled all potential trophic 

interactions and non-interactions between all terrestrial vertebrates of Europe from guide books, 

published papers, and completed by expert opinion. As all pairs of species were assessed as to whether 

they could potentially interact, we assumed all zeros are true non-interactions rather than resulting from

missing data. We extracted the interactions and non-interactions between all of the 1 055 species for 
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which we had functional traits. This represents 71 417 potential interactions and 1 041 608 non-

interactions.

Because the Metaweb documents potential trophic interactions, we also used a database of empirical 

observations of species interactions. We extracted all interactions reported in the Global Biotic 

Interactions (GloBI) platform (Poelen et al. 2014). The Metaweb and GloBI are very different in terms 

of data coverage. While the Metaweb documents only trophic interactions in Europe, GloBI aggregates 

trophic (and non-trophic) interactions from anywhere in the world. The absences of interactions in the 

Metaweb can be interpreted as likely to be true absences (i.e., low false negative rate), whereas 

absences of interactions in GloBI cannot (i.e., high false negative rate). Conversely, the presences of 

interactions in the Metaweb are more uncertain (i.e., high false positive rate) than in GloBI. We used 

the package rglobi of the R software to extract all trophic interactions between any of the focal 1 055 

species. In all, we extracted 291 trophic interactions from GloBI involving 194 different species (75 

predator species and 146 prey species).

Predictive model

We modelled the occurrence of a food web interaction for each pair of species as a function of their 

traits using Bayesian generalized linear models (GLM). We assumed that the occurrence of interaction 

between species i and j, Lij, is Bernouilli distributed. The corresponding probability of interaction was 

modelled as the inverse logit of a linear function with a common intercept, α, and a set of linear 

coefficients β  associated with the seven predictors Tij (Table 1):

(Eq. 1)
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We measured the predictive performance of each model on independent validation datasets using the 

area under the receiver operating characteristic curve (AUC). AUC varies from 0.5 to 1 where 0.5 

indicates that the model failed to rank interactions higher than non-interactions (i.e., random 

prediction), and 1 indicates that the model systematically ranked interactions higher than non-

interactions (i.e., perfect prediction). We also measured the area under the precision-recall curve, the 

true positive rate, true negative rate, and true-skill statistics to see if our results were robust to the 

choice of performance metric (Appendix S8).

Before fitting the GLMs, we scaled each continuous predictor by subtracting it by its mean and 

dividing by two times its standard deviation, so that the coefficients of the scaled continuous predictors 

are directly comparable to coefficients of unscaled binary predictors (Gelman 2008). We used Bayesian

inference and Markov chain Monte Carlo algorithm to estimate the model parameters (α and βk). We 

used weakly informative priors for the parameters:

(Eq. 2)

(Eq. 3)

where sd is the standard deviation of the prior distribution. We ran 3 chains, each with 1000 warm-up 

iterations, followed by 5 000 iterations for inference. We diagnosed convergence visually of a few test 

runs, and calculated the potential scale reduction factor, , for all runs (Gelman & Rubin 1992; 

Appendix S3). We conducted the Bayesian analyses using the package greta in R (Golding 2019).

Predicting trophic interactions with models trained on the Metaweb
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We used the model described above to make predictions for predator-prey pairs in the Metaweb, and 

determine the information needed to make reliable predictions. More specifically, we determined: (1) 

the number of trophic interactions needed to calibrate models that could recover most of the Metaweb, 

and (2) which of the predictors made the most important contribution. To determine the information 

needed to make predictions, we trained a set of 75 models with progressively more trophic interactions 

from the Metaweb going from 2 to 5000 pairwise interactions, with 10 000 non-interactions. Each of 

the 75 models used the same set of seven predictors (Table 1). We then measured how well these 

models predicted the Metaweb by comparing the predictions generated by the model to an independent 

validation dataset, which was a sample of 1% of the Metaweb (Metaweb validation dataset; random 

sampling had little effect on predictive performance; Appendix S4). To compare the importance of trait-

based predictor variables, we compared the mean coefficient values of all scaled predictors (Gelman 

2008) from a model calibrated on the entire Metaweb.

We also measured how well each of the models described above predicts the empirical interactions in 

GloBi. To do so, we compared predictions generated by each model to the 291 trophic interactions we 

extracted from GloBi. Because GloBI only includes interactions, we added 3 845 pairs of species that 

do not interact in the Metaweb (non-interactions) to the GloBI validation dataset. We added 3 845 non-

interactions to make the prevalence of interactions in the GloBI validation dataset comparable to the 

prevalence in the Metaweb validation dataset. 

Predicting trophic interactions with models trained on GloBI

We were also interested in how well we could predict the entire Metaweb without using any 

information from the Metaweb itself.  To do this, we combined information on species traits with the 
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observed interactions included in GloBI. We fitted 40 predictive models using a progressively 

increasing number of trophic interactions extracted from GloBI: from 2 to 291 trophic interactions 

combined with 10 000 pseudo-absences. To extract pseudo-absences, we randomly drew pairs of 

species for which no interaction is documented in GloBI. We used pseudo-absences to avoid using any 

information from the Metaweb. We measured performance of these models with respect to the 

Metaweb validation dataset, and to the GloBI validation dataset.

Predictions of interactions for different taxa

In addition to the overall predictive performance of the models, we wanted to identify whether 

interactions between certain clades and different types of species (e.g., specialists versus generalists) 

were more or less predictable with our model. To do this, we first trained a model (master model) with 

10% of the European Metaweb (7 157 trophic interactions and 111 287 non-interactions) and predicted 

all trophic interactions and non-interactions in the entire food web. We measured the performance of 

the model to predict all interactions (i.e., the prey and predators) of every species. We further compared

these performances for individual species to explore whether interactions of specialists (i.e., species 

interacting with few species) were harder to predict than interactions of generalists (i.e., species 

interacting with many species). Specifically, we modelled the performance for each species (the AUC 

value) as a function of the species generality using three bayesian generalized linear mixed models 

(GLMMall, GLMMprey, GLMMpredator) with random intercepts and slopes for the species group (i.e., 

order), and a logit-link function. All species were included in each model, but different representations 

of generality of each species (GLMMall: the number of total interactions; GLMMprey: the number of 

prey; GLMMpredator: the number of predators) were included as fixed effects in the three separate models.
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The fixed effects were log-transformed and scaled before running the GLMMs. We fitted the GLMMs  

using the package greta in R (details in appendix S9).

Finally, we performed a miscalibration analysis to investigate the ecological differences making the 

trophic interactions of some groups less predictable than others. We first trained group-specific models 

for each order of predators. For example, considering frogs (Anura), we trained a predictive model only

using interactions (and non-interactions) involving a frog species as predator. For many orders, most 

species shared very similar foraging behaviors. This caused some group-specific models not to 

converge or to over-fit the data. For this reason, we excluded foraging behaviors from the predictors in 

the miscalibration analysis. We compared the group-specific models to a general model trained on the 

entire Metaweb (71 417 trophic interactions and 1 113 025 non-interactions). Specifically, we 

calculated the differences between the parameters inferred for the general model to the parameters 

inferred for the group-specific models to measure the miscalibration of the general model for each 

group. By doing so, we identified the miscalibrated coefficients causing the general model to 

incorrectly predict the prey of specific predator groups. In contrast to the master model, the general 

model did not include foraging behaviors as predictors to make it comparable to group-specific models.

Predictions of interactions across space

In addition to model performance for different types of species, we also tested how well the model 

performed in different regions and for local assemblages. This tests the generality of how traits can 

predict potential trophic interactions with a range of ecological constraints and species pools. First, we 

used the master model described above to make predictions for ‘local’ food webs based on distribution 

data for each 10km pixel across Europe. Second, we addressed model transferability by training models
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in one region and using that model to predict to another region. If a model trained in the arctic, for 

example, can predict interactions in the Mediterranean with regional specialist species, then this is 

evidence for the generality of trait-interaction relationships and the ability of these models to 

extrapolate. 

We determined the local/regional webs based on species composition data from Maiorano et al. (2013), 

where species distributions are determined by the presence of primary habitat within the known species

distribution range and validated by field data. Species habitat requirements are determined by experts 

based on land cover, elevation and distance to water. Species distribution ranges are extracted from 

atlases (see Maiorano et al. 2013 for the full list of atlases). The original data are 300-m cell range 

maps with three levels: unsuitable, secondary and primary habitat. We upscaled the distributions data to

a 10km pixel equal-area grid, and considered a species present in a cell if it had at least one occurrence 

of primary habitat. 

We created ‘local’ food webs for each 10km pixel across Europe by pruning the Metaweb in every 

pixel based on the species present in that pixel. We assumed that spatial variation in potential food 

webs are simply due to species turnover. We are not taking into account intraspecific trait variation, 

change in abundances or interaction turnovers, which are likely important in the local realization of 

interactions. We predicted the interactions for each local species assemblage by pruning the predictions 

of the entire Metaweb (using the master model) based on the species pool in each pixel and compared 

these to the ‘true’ interactions according to the pruned metaweb. If environmental gradients influence 

the ecological constraints driving trophic interactions, we expect to detect a gradient in the 

predictability of local food webs. We specifically wanted to investigate whether simpler, less connected
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food webs (lower connectance) were easier to predict (evaluated with AUC, true positive and true 

negative rates) than more complex, highly connected food webs.

We created regional food webs by extracting the trophic interactions and non-interactions from the 

Metaweb between species for which the range intersected in at least 1 % of the European bioregions 

(see O’Connor et al. 2020) and trained models for each bioregion individually. To investigate the 

transferability of predictive models across bioregions, we compared the importance of model predictors

in each bioregion (e.g. the linear coefficient associated with predator body mass in the arctic versus in 

the mediterranean bioregion), and how well they could predict the food webs of other bioregions. If 

environmental gradients influence the ecological constraints driving trophic interactions, we expect 

poor transferability of models between bioregions.

Results

How much data are needed to accurately predict the entire European food web?

Most pairwise interactions in the Metaweb were predicted reasonably well by models trained on few 

interactions. Predictive performance increased when more interactions were used to train the model, 

but performance stabilized around AUC=0.92 at 100 training interactions (0.14% of the total number of

interactions in the Metaweb; Fig 1a). Even with as low as 10 interactions (0.014% of all interactions in 

the Metaweb; Fig 1a), the AUC was over 0.90. Training the model on a lot more presences and 

absences did not improve substantially model performance. The master model, which we trained on 

10% of the entire Metaweb to predict the interactions of every species, resulted in an AUC of 0.92, well

above the 0.5 expected from a null model. 
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Which traits best predict interactions? 

All of the traits used as predictor variables in the models were important for predicting interactions: all 

corresponding linear coefficients were different from 0 (i.e., 95% credible interval did not include 0). 

The most important predictors were the match between the diet of the predator and the type of prey 

(median = 2.29, 95%CrI = [2.27, 2.32]), the body mass of the predator (median = 2.08, 95%CrI = 

[2.04, 2.12]), the body mass of the prey (median = -2.00, 95%CrI = [-2.03, -1.96]), and the match 

between the body mass of the predator and the body mass of the prey (median = -1.75, 95%CrI = [-

1.79, -1.70]). All parameter estimates with their 95% credible interval are available in Appendix S5.

How input data (empirical versus multi-sourced data) influences predictions?

We found that results from models trained on the European Metaweb were consistent with models 

trained on interactions from GloBI. Models fitted using all GloBI interactions (291 interactions) 

predicted the Metaweb well (AUC=0.91; Fig 1a). Also, all models performed similarly in predicting the

realized interactions from GloBI compared to the potential interactions of the Metaweb (Fig 1b).

Which taxa are easier or harder to make predictions for? 

Overall, the master model performed well for all groups (AUC > 0.75 for all groups; Fig 2). The 

variation between groups was mostly due to variation in the ability of the model to predict prey (Fig 2).

For example, prey of carnivorans (Carnivora), fowl (Galliformes and Anseriformes), pelicans 

(Pelicaniformes), storks (Ciconiformes), and birds of prey (Falconiformes, Charadriformes, and 

Strigiformes) were harder to predict on average (Fig 2). In contrast, predicting predators was similarly 

easy across all prey groups (AUC > 0.9). One exception to this pattern was amphibians: the prey of 
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Caudata and Anura were easier to predict (AUC = 0.96 and 0.95 respectively) than their predators 

(AUC = 0.85 and 0.78 respectively).

Interactions of specialists tended to be more predictable than interactions of generalists (Fig 3). The 

order of the species and the number of interactions explained 56% (bayesian R2
GLMMall) of the variation 

in the logit-AUC (fixed effect estimate = -0.49; 95%CrI = [-0.54, -0.43]). In general, it is easier to 

predict species’ predators than their prey (Fig 3). Prey of generalist predators tended to be harder to 

predict (GLMMprey fixed effect estimate = -0.30; 95%CrI = [-0.38, -0.22]). Similarly, predators of high 

vulnerability prey were harder to predict (GLMMpredator fixed effect estimate = -0.24; 95%CrI = [-0.28, -

0.20]).

For most groups in which potential prey were difficult to predict, the group-specific model (i.e. model 

calibrated on interactions of one predator order) performed much better, with the AUC increasing by 

0.1 or more (Appendix S6). Our models highlight how some bird groups (e.g., Galliformes, 

Anseriformes, Pelicaniformes) tend to feed on prey active at different times during the day and nest in 

different habitats than the focal predator. This contrasts with woodpeckers (Piciformes) for which the 

matches of activity times and nesting habitats of the prey and the predator are especially important. For 

other groups (e.g., Rodentia, Eulipotyphla, Strigiformes, Passeriformes) the relation between the body 

mass of the predator and the prey is more important to explain interactions than average. We also found

that, for carnivorans (Carnivora), the predictive performance of the group-specific model remained low

(AUC = 0.63). The coefficients of the different predictors were mostly lower (closer to 0) than the 

general model, suggesting that the interactions of carnivorans are difficult to predict from our set of 

traits. The complete results of the miscalibration analysis are available in the Appendix S6.
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How well the properties of local food webs can be predicted across space?

Overall, local food webs with more trophic interactions were less predictable than simpler ones (Fig 4).

This trend resulted in a slight increase in the predictability of local food webs at higher latitudes (Fig 

4). True positive rates were higher than true negative rates across the entire continent which caused the 

predicted connectance (proportion of possible links that are realized) to be systematically overestimated

by 2 to 4 times (Fig 4). All bioregional food webs were similarly predictable (0.89 < AUC < 0.92) by 

the master model and models transferred well from one bioregion to another (Appendix S7). Similarly, 

trait parameters of each bioregional predictive model did not diverge greatly from the master model 

(Appendix S7).

Discussion

In this study, we recovered the entire European food web of tetrapods from a fraction of the entire food 

web and widely available functional traits. Our results indicate that these traits (describing the foraging 

of predators, vulnerability of prey, and the trait-match between predator and prey) are indeed predictive

of the predator-prey pairs that make up large food webs. These trait-interaction relationships appear to 

be general given: (1) the stability of modeled effects (e.g., the positive effect of body mass differences) 

across most vertebrate orders and highly contrasting ecosystems, (2) the consistency of predictive 

power between the complete, yet potential interaction data of the European metaweb and the sparse, 

empirical data from GloBI, and (3) the efficiency of the model to make good predictions with few input

interactions (recovering ~71k interactions with <100 known interactions with an AUC > 0.90). While 

predictions were mostly reliable, there were exceptions including: poor predictions for the prey of some
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predator orders, the trophic interactions of generalists and the tendency to overestimate connectance 

especially in complex food webs, which we discuss further below. 

Overall, this generality in trait-interaction relationships and the ability of the model to extrapolate 

suggests these models could be applied to many ecosystems, even those with very sparse and biased 

datasets. GloBi only documented 291 trophic interactions compared to the 71 417 trophic interactions 

documented in the European Metaweb, which illustrate the sparsity of trophic interactions data even in 

one of the best-studied continents. With very limited data, it is important that models can extrapolate to 

new conditions (Roberts et al. 2017; Santini et al. 2021). Our models produced similar results (e.g., had

similar coefficients for trait variables) when fitted to different bioregions, and predictive performance 

of bioregional models did not decrease when one bioregion was used to predict to another. This 

indicates potential transfer of information from data-rich bioregions to data-poor bioregions. While 

traits have been shown to promote transferring information from one region to the next for species 

distributions (Vesk et al. 2021), here we show how trait-based models can similarly transfer 

information on potential interactions to entirely new areas. We need more studies on the factors 

influencing model transferability in food web interactions to fully appreciate the potential of trait-based

models to predict interactions in data-poor systems or under future conditions (Yates et al. 2018). The 

prediction and transfer of information on realized interactions is likely to be much harder since they are

influenced by local abundances, intraspecific trait variation, and indirect interactions from other species

(Poisot et al. 2015; Pellissier et al. 2018).

While the generality and overall performance of these models are promising, we highlighted some 

systematic biases. For example, our predictive model systematically overestimated the number of links 
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in local food webs (Fig 4). Interactions were better predicted (true positive rate ≈ 0.9) than non-

interactions (true negative rate ≈ 0.8), meaning that predicted interactions includes most realized 

interactions, but also many incorrectly predicted non-interactions (false discovery rate ≈ 0.7; Appendix 

S8). Thus, our predictive model should be viewed as a first step toward a correct description of a 

regional and local food webs by reducing the millions of possible interactions to thousands of feasible 

ones. These predicted interactions could be used to inform targeted sampling or expert elicitation to get 

a more accurate picture of the true food web.

In addition, not all trophic interactions were equivalent. The prey of some taxonomic groups were 

harder to predict than others using a general model (Fig 2). Our miscalibration analysis helped 

understand where the general model failed for these groups and highlighted some ecological 

differences in how predator groups choose their prey (Appendix S6). For example, while the match in 

nesting habitat and activity time of the predator and the prey were not among the important predictors 

in the general model, these predictors were particularly important for some groups. Woodpeckers 

(Piciformes) tend to feed on prey that share similar nesting habitats and are active at similar times. 

Conversely, fowl (Galliformes and Anseriformes), pelicans (Pelicaniformes) and storks (Ciconiformes) 

tend to feed on prey that nest in different habitats and active at different times during the day. These are

not surprising results: woodpeckers generally both forage and nest in and on trees, while many fowl 

and storks forage on water but nest in different habitats (Svensson & Grant 2009). We also found that 

the prey of other predator groups, such as carnivorans (Carnivora), falcons (Falconiformes), and owls 

(Strigiformes), were harder to predict on average. These groups include many relatively generalist 

predators that feed on many prey types: small herbivores, but also ungulates, birds, or other carnivores 

(Svensson & Grant 2009; Hackländer & Zachos 2020). The functional diversity of the diet of generalist
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predators is larger which make it harder to find general matching rules that explain how these generalist

predators choose their prey. Indeed, we found that the interactions of generalist species are harder to 

predict than that of specialists. Interestingly, predicting specialization has been challenging for other 

kinds of interactions (Blüthgen et al. 2008; Calatayud et al. 2016; Olalla-Tárraga et al. 2017). Although

predicting trophic specialization appeared to not be an issue here for terrestrial vertebrates, further 

research is needed to understand the role of traits in predicting specialist and generalist interactions.

The field of species interaction and ecological network prediction has been very active in recent years 

(Strydom et al. 2021b). We presented a predictive model that aims to identify general relationships 

between traits and food web interactions and be used for multi-clade vertebrate groups with very few 

trophic interaction data. For systems in which we have more information, other approaches are 

possible. First, we showed that predators tend to vary in how they choose their prey between taxa, 

making hierarchical models good candidates to improve predictions. Hierarchical models allow some 

variation in the regression coefficients between groups (Ovaskainen et al. 2017; Gelman et al. 2020). 

Because how species choose their prey tends to be evolutionary conserved, phylogenetic relationships 

could inform how regression coefficients correlate across clades (Gómez et al. 2010). Second, 

phylogenetic relationships can directly make predictions given enough interaction data (Elmasri et al. 

2020), or to transfer species interaction knowledge between systems (Strydom et al. 2021a). Third, 

machine learning algorithms have been used to predict interactions within networks (i.e. in sample 

prediction) and oftentimes outperformed linear models (e.g., Desjardins-Proulx et al. 2017; Pichler et 

al. 2020), but often rely on a larger volume of data, and ecological inference can be less 

straightforward. There are also advantages to having relatively simplistic linear responses in terms of 

inference and the potential for better out-of-sample performance (Wenger & Olden 2012). Finally, bio-
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energetic models can infer energy fluxes between organisms and help quantify food webs using body 

mass, metabolic demands, and energy loss (Berlow et al. 2009; Rall et al. 2012). A promising avenue 

of research is to combine trait-based models to other methods, such as expert elicitation or bio-

energetic models, to downscale regional metaweb into local quantitative food webs (Rall et al. 2012; 

Bode et al. 2017). This would allow us to investigate how food webs and species interactions vary in 

space and time, and to forecast the consequences of global changes on the composition and structure of 

ecosystems.
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Table 1: Variables used to predict trophic interactions between all species pairs. The variables are 

grouped as foraging traits, vulnerability traits and matching traits. BM stands for body mass.

*We calculated the Jaccard similarity coefficient for the Activity time and Nesting habitat of the 

predator and the prey. Activity time and Nesting habitat are a set of binary variables (Appendix S1).
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Foraging Vulnerability Matching

Prey body mass Diet Activity time Nesting habitat

Operation log log

Variable type Continuous Continuous Binary Continuous Continuous Continuous

Predator body 
mass

Predator 
foraging 
behavior

Body mass 
difference

Functional 
traits

Body Mass of 
the predator

Foraging 
behavior of the 
predator

Body Mass of 
the prey

Diet of the 
predator and the 
class of the prey

Activity time of 
the prey and 
predator

Nesting habitats 
of the prey and 
the predator

Body mass of the 
prey and the 
predator

Does the diet of 
the predator 
match the type 
of prey (1) or not 
(0) ?

Jaccard 
similarity*

Jaccard 
similarity*

(log(BMpredator) – 
log(BMprey))2

4 binary 
variables
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Figure 1: Effect of the number of interactions sampled on the predictive performance of the model. In 

(a), we measured performance using the European Metaweb validation dataset. In (b), we measured 

performance with interactions using the GloBI validation dataset. In red and blue are the predictive 

models trained with interactions sampled from the European metaweb and GloBI, respectively.
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Figure 2: Differences in predictive performance among groups. Predictive performance is measured 

with the AUC. Each grey point is the predictive performance of the general model for a single species. 

The white points are the group mean, with the associated standard error. From left to right, the panels 

represent the performance of the general model to predict all trophic interactions, the prey, and the 

predators of the focal species. From top to bottom, the groups are Caudata, Anura, Eulipotyphla, 

Carnivora, Rodentia, Squamata, Galliformes, Pelecaniformes, Ciconiiformes, Charadriiformes, 

Falconiformes, Strigiformes, Piciformes, and Passeriformes.
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Figure 3: Effect of generality on model performance. Each grey point is the predictive performance of 

the master model to predict all interactions (left; GLMMall), the prey (center; GLMMprey), and the 

predators (right; GLMMpredator) of a single species. We measured generality as the number of 

interactions (left), the number of prey (center), and the number of predators (right) of a given species. 

The trend lines are the mean effect of the scaled generality (log transformed) on the logit-AUC.
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Figure 4: Spatial variation in predictability of local food webs. The left panel shows the overestimation

of connectance of each 10km-cell food web. The right panels show the true positive rate (TPR; top), 

the true negative rate (TNR; middle), and area under the receiver operating curve (AUC; bottom) in 

relation to the complexity of the local web. 
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