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ARTICLE INFO ABSTRACT

Keywords: This paper presents a novel high-performance solver for the isogeometric analysis of lattice struc-
isogeometric analysis tures, designed to jointly exploit distributed-memory computing architectures and the specific
lattice structures nature of the problem. This work breaks with conventional approaches that primarily focus on
multigrid methods multiscale homogenization or structural elements like beams and shells. Instead, it introduces a
domain decomposition methods solver capable of meeting the overwhelming computational demands of full high-fidelity, fine-
inexact FETI-DP scale simulations of lattice structures. The solver features a two-level geometric preconditioner

with a fine-level smoother based on overlapping domain decomposition, and a coarse-level
correction utilizing an algebraic multigrid method. By leveraging the multiscale nature of the
lattice structures, a matrix-free approach is employed at the fine level to perform matrix-vector
products and apply transfer operators based on spline k-refinement. The structural similarities
of the cells are also exploited through a reduced-order modeling procedure applied within each
subdomain, which is used to efficiently compute the corresponding local solves within the fine-
level smoother. A series of numerical experiments in both 2D and 3D, spanning various micro-
and macro-geometries, are conducted to evaluate the efficiency of the solver in terms of memory
usage, computational time, and robustness with respect to mesh refinement, spline degree, and
problem size. Notably, an industrially representative spiral channel regenerative cooling thrust
chamber lattice structure, consisting of over 66,000 cells, is simulated in minutes using thousands
of processes.

1. Introduction

In the field of structural mechanics and materials, architected cellular materials are currently gaining significant
momentum in both the scientific and industrial communities [8]. They rely upon a simple idea: mimicking nature,
such as bones, to create a material or a structure mostly filled with voids but capable of bearing significant loads [71].
The advent of additive manufacturing has revolutionized their design and fabrication, making it possible to fabricate
so-called lattice structures. These structures are created by tiling a well-designed unit-cell through geometrical
deformation into a macro-shape structure, see Fig. 2 which will be detailed further in Section 2. These finely tuned
multiscale heterogeneous structures offer unprecedented weight savings while maintaining stiffness and strength.
Additionally, they can be engineered to be highly stretchable and auxetic, which is advantageous for applications
such as energy absorption and vibration reduction [61]. Moreover, they can incorporate multi-functionality. All these
characteristics make these structures valuable assets for many demanding applications, such as in aerospace [78],
automotive manufacturing [43], and biomedical engineering [75].

In this work, we focus on the numerical simulation of the mechanical response of lattice structures, specifically at
the design stage of a product, thus neglecting possible process-induced defects at this stage. As interest in designing
representative lattice structures grows, along with the improvement of manufacturing technologies enabling their
fabrication, the number of cells and their complexity have significantly increased. Consequently, the computational
cost in terms of memory and time has become very demanding, or even intractable, if standard methods are applied as
black-boxes.
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Multilevel method for isogeometric analysis

Due to this complexity, most current computational methods used for simulating lattice structures rely on specific
modeling techniques that avoid fine-scale computations at the architecture level, i.e., at the scale of the strut/beam
of the cells. One primary approach involves leveraging multiscale methods based on homogenization that have
been developed over the years for multiscale heterogeneous structures, and are now being enhanced with data-based
techniques. These strategies aim to compute homogenized macro-scale behavior from heterogeneous microstructures
through various scale-interchange methods. Such techniques include multilevel finite element methods (FEM), e.g.,
FE?-type [7, 82], multiscale FEM (MsFEM [83]), global/local coupling [79], and direct numerical homogenization
[30, 42, 54]. However, these methods often require a clear scale-separation, which is usually not the case with lattice
structures since 3D printers constrain the achievable length-scale range of cells, and the macro-shape often follows a
rather slender geometry, hence with few cells in one direction. Another class of approaches consists in using advanced
beam or shell models (modeling the lattice architecture as a network of beams or shells) [51, 63, 80]. But connecting
different beams or shells is challenging [13, 65] and, in any case, this may not suit all types of cell geometries
(thick beams, etc.). As a result, it appears that focusing on efficient and scalable solvers capable of dealing with the
high-fidelity, fine-scale problem, i.e., considering a volumetric model at the architecture scale, is desirable for lattice
structures.

In view of performing high-performance computing (HPC), we begin with accurately modeling lattice geometries
by adopting the computer-aided design (CAD) approach known as spline composition, as introduced in [24]. This
methodology involves composing two scales, see again Fig. 2 which will be detailed further in Section 2: a microscopic
model representing the lattice heterogeneities at the reference unit-cell level (see left-hand side of Fig. 2), and a
macroscopic model representing the overall structure shape without these heterogeneities (see right-hand side of
Fig. 2). Both models utilize smooth spline parametrization from CAD, employing linear combinations of B-spline
or non-uniform rational B-spline (NURBS) shape functions, and thus offering great flexibility in describing locally
and globally lattice structures. Additionally, this geometrical modeling is fully consistent with isogeometric analysis
(IGA). In particular, it is possible to consider the (microscopic) spline space generating the cells to compute the
deformation of the lattice structure within a Galerkin approach during numerical simulations [3, 33]. IGA, initially
proposed in [18, 39], aims to bridge the gap between CAD and FEM, essentially serving as a natural extension of FEM
with high-order and high-regular spline basis functions. Utilizing these splines allows for a more precise and lighter
representation of curved geometries. Moreover, the inherent smoothness of these basis functions often yields greater
accuracy per degree of freedom compared to traditional FEM approaches [25], proving advantageous across various
applications, see [40, 44, 49, 58] to name a few.

Nevertheless, these advantages must be weighed against the computational cost associated with (i) the formation
of operators and (ii) solving linear systems resulting from IGA discretizations. Spline functions, being of high-order,
naturally lead to operators with a higher number of non-zero entries compared to standard low-order FEM. Moreover, it
is recognized in IGA that the increased smoothness of spline functions induces poor conditioning numbers for the mass
and stiffness matrices [28, 29]. Consequently, the standard element loop and Gauss quadrature are known to be far from
optimal in IGA [15, 31, 41], and direct solvers and standard iterative methods may not offer efficient solutions [16, 17].

To address the substantial memory and computational cost requirements associated with solving representative
problems in IGA and the poor conditioning of corresponding matrices, it appears essential to develop (i) dedicated
fast assembly procedures and (ii) preconditioned iterative solvers. For the first point, a multitude of alternative
formation procedures taking advantage of the tensor-product nature of spline patches have emerged, such as sum
factorization [2, 11], weighted quadrature rules [15, 70], use of lookup tables [52, 62], and low-rank tensor
techniques [53, 57]. Following this trend, a fast multiscale assembly procedure for lattice structures modeled by
spline composition has recently been proposed in [33]. This method utilizes lookup tables with precomputed integrals
associated with the cell pattern and macro-fields that encode the mechanical behavior related to the macro-shape. Given
its efficiency, this strategy constitutes the starting point of our approach for the analysis of lattice structures. At this
stage, it thus remains necessary to develop a solver that benefits from this specific data structure by allowing a matrix-
free procedure, and that is suited to distributed-memory architectures. In this context, domain decomposition (DD)
methods and multigrid methods as preconditioners for iterative solvers for IGA have garnered significant interest over
the past decade.

The application of DD methods to IGA began with the adaptation of well-known DD methods from FEM to
IGA, including finite element tearing and interconnecting (FETT) [48], balancing domain decomposition by constraints
(BDDC) [6], and overlapping Schwarz methods [5]. Subsequently, several enhancements and variants of these methods
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Table 1

Comparison of multigrid preconditioners for IGA in the literature. Although many interesting works have been performed,
particularly from a mathematical perspective, the current state-of-the-art may appear limited from an application
standpoint, specifically regarding the practical solution of very large-scale problems in parallel.

.. Robustness Parallel Multi-dimension e e .
Reference Preconditioner Smoother . Main limitation
with 4, p  solver solver

Gahalaut et al. [29] h-multigrid ~ Gauss—Seidel /o X X X Not robust with p

Preconditioned Krylov

Donatelli et al. [22] h-multigrid ~ smoother based on 4 X v Sequential implementation
spectral information

Hofreither et al. [38] h-multigrid Mass matrix Wlth. o/ X X Difficult extension to d > 2
boundary correction

Additive subspace

Limited to single patch

Hofreither and Takacs [37]  h-multigrid  splitting correction o/ X v .

(ASSC) geometries
N e e A R et ol
de Prenter et al. [20] h-multigrid zﬂru::(t:ligiltiti:\:i\slihwarz v/, = X v Sequential implementation
de la Riva et al. [19] h-multigrid gﬁ:;ﬁz:f/e o/ X X Extension to parallel not

Schwarz method straightforward

Tielen et al. [76] p-multigrid ~ Gauss—Seidel o X X X Not robust with p

Tielen et al. [77] p-multigrid ILUT 4 X X Difficult extension to parallel

have been proposed, such as a non-conforming version of the one-level FETI [32], a deluxe variant of BDDC [81], and
several inexact FETI alternatives [9, 36, 56] that incorporate inexact local patch solves to possibly facilitate matrix-
free procedures. For our specific case of spline composition-based lattice structures, an inexact FETI-DP strategy
assisted with reduced order modeling (ROM) has recently been introduced in [34]. This solver leverages similarities
between cells in a domain, enabling the approximation of many local (cell- and subdomain-wise) problems by solving
only a few principal local problems. Combined with the fast assembly procedure developed in [33], this approach has
demonstrated significant reductions in both memory consumption and computational time for the numerical simulation
of lattice structures. However, due to the ROM strategy being applied across the entire domain, extending this method
to a parallel solver compatible with distributed-memory architectures is not straightforward.

Multigrid methods, introduced several decades ago [27], quickly became one of the most efficient solvers for FEM
applied to elliptic problems due to their optimal complexity. That is, the computational cost to solve the linear system
grows only linearly with the number of degrees of freedom (DOFs). The first application of multigrid methods to IGA
was studied in [29], where it was observed that standard smoothers, such as Gauss—Seidel iteration, result in a rapidly
increasing condition number of the stiffness matrix with high-order splines. Further research [22] showed that the
spectral radius of multigrid iteration matrices based on standard smoother approaches exponentially 1 as the spline
degree p increases. Therefore, significant efforts have been made to achieve robustness with respect to the spline degree,
primarily through A-multigrid methods. In A-multigrid, the grid hierarchy is generated by using coarser and coarser
mesh sizes while keeping the same spline degree, combined with non-standard smoothers [19, 20, 22, 35, 37, 38, 74].
Additionally, p-multigrid methods have been proposed, where the grid hierarchy is generated by using lower and lower
discretization orders while keeping the same mesh characteristic length, also employing both standard and non-standard
smoothers [76, 77]. A comparison of all these multigrid solvers in terms of their main properties, such as numerical
robustness, is provided in Table 1. From the latter, it appears that further work may be necessary to truly achieve
high-performance from an application point of view, that is, to be able to solve efficiently large-scale problems in
parallel.

Building on the aforementioned state-of-the-art techniques, our approach to perform isogeometric analysis of lattice
structures involves developing a two-grid method based on a low-order correction, similar to p-multigrid methods, that
aims to be robust with respect to mesh refinement A, spline degree p, problem size, and, last but not least, to be
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compatible with distributed-memory architectures. In order to ensure robustness with respect to spline degree, we opt
for a non-standard fine-level preconditioner (or smoother) based on an overlapping domain decomposition method.
Practically, we decompose the computational domain into overlapping subdomains made of several cells which are
assigned to different processes in a distributed-memory framework (using MPI), and consider a restricted additive
Schwarz (RAS) method [14]. Then, the crucial point to solve efficiently the sub-problems (local to each subdomain,
or equivalently, each MPI process) is to take advantage of the similarities between cells inside each subdomain thanks
to the fast assembly procedure from [33] and the ROM-based solver introduced in [34]. In other words, we consider
an inexact FETI-DP method inside each subdomain, in which only the local operators associated to a few cells are
constructed and stored, the other being treated with a matrix-free procedure. In the same way, the grid-transfer operators
of our two-grid method are never assembled explicitly: only their action on a distributed vector is provided to the
algebraic backend. All these choices have also been made in relation to the capabilities offered by the PETSc library [4],
on which our implementation is based. Ultimately, the entire approach can be interpreted as a two-grid overlapping
Schwarz DD method with a matrix-free formulation on the fine grid and a low-order coarse problem, which may
be solved efficiently with off-the-shelf solvers such as algebraic MG (AMG). At this stage, the method is developed
to perform linear elastic simulations in the context of small displacements and rotations. With all the aforementioned
components, the memory and computational cost are significantly reduced, enabling the simulation of lattice structures
that were previously intractable.

The remainder of this paper is organized as follows. First, Section 2 provides the necessary background on lattice
structure modeling and simulation using spline composition, and in particular, how this fits in a matrix-free framework.
In Section 3, we present our proposed multilevel preconditioning approach involving a two-grid preconditioner with a
DD smoother and an embedded AMG coarse solver, thoroughly detailing all its components such as the grid-transfer
operators. Section 4 offers extensive numerical experiments to demonstrate the performance of our strategy. Finally,
we draw conclusions in Section 5.

2. Lattice structure modeling and discretization

This section establishes the context of the study and introduces the corresponding notations. First, we provide
necessary elements regarding B-spline and NURBS geometrical modeling techniques. Then, we outline the lattice
structure modeling by spline composition. Finally, we present the corresponding linear elastic problem, along with its
IGA discretization and the associated fast assembly procedure for the stiffness matrix needed to solve it.

2.1. B-spline and NURBS technologies

The technology behind IGA is now mature and relatively well-known in the scientific computing community, so
only the fundamentals are provided here. For further details, the reader may consult, e.g., the books [10, 18, 64] and
the references therein. From a practical point of view, IGA simply consists of using the spline-based parametrizations
of CAD environments to build the approximation spaces when applying a Galerkin method. The B-spline and NURBS
families are the spline technologies that have become the standard over the years for geometric modeling in CAD and
computer graphics. NURBS functions allow for an exact representation of many shapes used in engineering, such as
conical sections (circles, cylinders, spheres, ellipsoids, etc.). NURBS are a generalization of B-splines: they can be
viewed as rational projections of B-splines. Therefore, they possess many of the properties of B-splines, with the most
interesting being their potential for increased smoothness.

The n univariate B-spline basis functions are piecewise polynomials defined by their polynomial degree p and
a set of non-decreasing parametric coordinates & € R, i being the knot index, collected into a knot-vector & =
{£1.&5. .- . & py1 }- From this knot-vector E, the B-spline basis functions are constructed recursively using the Cox—
de Boor formula. The coordinates &;, referred to as knots, divide the parametric space into (knot-span) elements, and
the interval (&, &, ,.1), which is usually equal to (0, 1), constitutes the isogeometric patch in the parametric space.
Multiple knots can coincide at the same coordinate in the parametric space, known as repeated knots. Across each
knot, the basis functions have p — m; continuous derivatives, where m; is the multiplicity of the knot &;. Additionally,
a knot-vector is termed open if its first and last knots appear p + 1 times. This results in the basis being interpolatory
at the endpoints of the interval. In this work, we consider open knot-vectors as is standard practice, and are interested
in splines with maximal continuity, i.e., C?~!-regularity, so the knot-vectors will have multiplicity one, except for the
first and last knots.
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The extension to multi-dimensional problem, i.e., involving surfaces and volumes, is done using a tensor-product

construction of univariate B-spline functions. Let d € N* be the dimension of the problem, i = (ij,...,i;) be the
d-dimensional knot indexes, p = (py,...,p,) be the B-spline degrees, P; € R4 l_)e a control net composed of n
control points, and 2 = {&, ... ,§n+p+1} be a d-dimensional knot-vector, i.e., §j eQ:=1[0,1)9, forj=1,...,d. A

tensor-product d-dimensional B-spline entity is defined by:

n

d
Sps@) = Y, AP, £€Q. with 4@ =[] -4 &), 6}

i=1 Jj=1

and where ///ﬁj denote the n J univariate pj-degree B-spline basis functions, for j = 1,...,d. Then, to be able to
J
represent exactly conical sections, multivariate NURBS entities can be generated from multivariate B-spline entities
as follows:
“ i} ;M7 (&)
SE =Y MPEP, E€Q, with /P& = o ——,
,Z‘ T ' PREIRAG

and where w; denotes the NURBS weight associated to the ith control point. Since NURBS are an extension of
B-splines and the remainder of the paper applies to both B-splines and NURBS, we will only refer to Eq. (2) in
the following to indicate a general spline mapping, i.e., either a B-spline or a NURBS mapping. At this stage, let
us underline that only elementary geometries can be modeled with a single patch. Indeed, given the tensor-product
structure of the parametric space, see Eq. (1), a one-patch spline geometry will not differ topologically from a square
(d = 2) or a cube (d = 3). Therefore, we will use multi-patch models, i.e., spline models built from the combination
of several spline patches, to construct lattice structures, see Section 2.2. With this in mind, the positions of the control
points (and the values of the associated weights in case of NURBS) can be adjusted in order to create the complex
shapes encountered in engineering.

@

One of the primary advantages of IGA lies in its refinement strategies for B-splines, which thus extend to NURBS.
Not only does IGA alleviate the need for further communication with the CAD system, but its refinement process is
also robust and efficient, and it offers an additional strategy compared to classical FEM. Alongside the direct use of
knot-insertion and degree-elevation, which allows to recover h-refinement and p-refinement in FEM, respectively, a
novel approach known as k-refinement is possible in IGA. This strategy boasts efficiency and robustness advantages
over traditional p-refinement, enabling the increase of both the polynomial degree and regularity while maintaining
the initial exact geometry.

The knot-insertion technique consists of adding new knots to knot-vectors. To perfectly replicate h-refinement,
each new knot value needs to be inserted p times so that functions will be C° across the new element boundary. The
degree-elevation technique involves increasing the polynomial degree of basis functions. It is important to note that
during degree-elevation, all values in the knot-vector are repeated to preserve the initial discontinuities of function
derivatives. Therefore, if one starts with a spline mesh involving C° basis functions at the knots, degree-elevation
exactly coincides with p-refinement in FEM.

The method of k-refinement capitalizes on the non-commutative nature of knot-insertion and degree-elevation
processes. By initially elevating the polynomial degree of splines and then inserting knots, k-refinement ensures the
maximum available regularity of basis functions at inserted knots, namely C?~!. k-refinement has emerged as a superior
approach for achieving high-precision analysis compared to p-refinement. Indeed, for a given polynomial degree and
a similar number of elements, a C?~! spline mesh comes with fewer degrees of freedom than the corresponding C° FE
mesh, which is totally understandable since the space of C?~! functions is included into the space of C° functions. An
example illustrating the differences between p-refinement and k-refinement is given in Fig. 1. It can be observed that
providing CO-regularity during the refinement process leads to a proliferation of nodes. In contrast, with k-refinement,
only one basis function is added each time the degree is elevated, and only one more is added each time a knot is inserted.
Furthermore, the smoother derivatives obtained through k-refinement have the potential to enhance the accuracy of
mechanical quantities such as strains and stresses.

A final attractive feature is that matrix representations of the spline refinement procedures are possible. In other
words, denoting by NPo-# and NP the matrices collecting, respectively, the nj; coarse (low-degree p,) and n, fine
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(potentially high-degree p) spline functions, we can build the refinement operators Py, P,, and P, associated to each
of the parametric directions, respectively, and write:

NeoHl = p.p P.NPH  (ny < np). 3)

Obviously, the refinement operators Ps, P,, and P, result in the product of several univariate refinement matrices
associated to the different knot-insertions and degree-elevations performed in the whole refinement. Eq. (3) offers a
simple way to build the refined spline mesh from the coarse one.

| traditional p-refinement |

E= = 5 12 1122
£=10,01,1] p=1 ;—[oo--u] -1 s_fooll22
33 P 0,0,3,3,33 ,p=2
1 0 continuity
7 N, 0
knot order
insertion elevatign

0 1
3

Wil
-

IGA k-refinement |

12
Z- - 5= - £=100025111|,p=2
E=[0,0,1,1, p=1 £=00,0,0,1,1,1], p=2 [ 33 ] p

org\inuit
/2 \ 4

order
elevatign knot
> insertion |

Il

1
3

Figure 1: Difference between p-refinement and k-refinement strategies for a uniform open knot-vector =Z. The more elements
and higher polynomial degree, the more degrees of freedom are saved using k-refinement compared to traditional p-
refinement.

2.2. Geometrical modeling by spline composition

In this work, lattice structures are accurately modeled at the architecture (micro) level using a functional
composition approach with splines (either B-splines or NURBS), as first introduced in [24]. This approach involves
two main components, see Fig. 2 for illustration: a macro-representation of the lattice structure where heterogeneities
are not represented, and a reference microstructure that defines the pattern to be tiled into the macro-geometry (to
generate the cells). The final heterogeneous structure is obtained by embedding the reference microstructure into the
macro-model through composition.

First, we consider a reference tile, or reference microstructure denoted by €,

Definition 2.1 (reference microstructure). Let Q(lf) be N, reference paiches, assumed to be fully matching, i.e.,
intersections Q(k) N QU) for k # 1 are either empty, common vertices, common edges, or common faces (in 3D), and

the dtscretlzatlons on common boundaries of the patches perfectly match, and let P( ) be associated control points.
Then, the reference tile is constructed from these reference patches by a multi patch splme model following general
spline mappings Eq. (2):

N

14 n,

(k) (k) . k) (A k _ (k).pm-h (k) A

Q1= Ugf Q) =59Q,), sP@O) =) O)P)), 0€Q,, )
k=1 i=1
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where Q,, = [0, 11 is the parametric space of the patches composing the micro-model, and n,, and p,, are the number
of basis functions and polynomial degrees of the corresponding splines in each direction.

Note that the basis functions of this reference micro-model are indicated with a superscript (-)", signifying that
they pertain to the microstructure mapping.

We then consider a macroscopic model representing the global shape of the lattice structure, prescribed in our
case by a second multi-patch spline model. This macro-mapping naturally introduces a partitioning of the domain
into N, macro-elements (each of which will include one cell or tile in the final geometry). Following the procedure
in [33], we rewrite this macroscopic model using Bézier extraction so that the parameter spaces associated with each
macro-element become identical, the difference between one macro-element and another being thus only the underlying
geometric mapping. The Bézier macro-mappings associated with macro-elements are given by:

ny -
h 5
BY&) =) B (f)Pf},,-’ EeQ,, Vs=1,...,N,, 5)
i=1
where Q m = 10, 1] is the parametric space of each macro-element, ,@f Mh denotes the Bézier basis functions,

Pg\s}i stands for the associated control points, and n,,; and p,, are the corresponding number of basis functions
and polynomial degrees of the splines in each direction. The superscript (-)h refers to the macroscopic discretization
parameter.

Definition 2.2 (full lattice structure). The full lattice structure domain Q is defined by a union of N fully-matching
tiles, denoted by Q)| each of which being decomposed into N  patches:

Ns Nl’
Q= U QWK k) = {x eR? | x=79®@),vo e Qm} .
s=1 k=1
Forall s = 1,..., Ny, the cells Q¥ in the physical space are generated with the composition of the reference micro-

model and the Bézier macro-mappings:
FOW QL QoMK
(s) k
60— (B;)oSY)(0).

For the compositions to be admissible, the reference tile must lie in the parameter space of the macro-model, i.e.,
S,(,,k)(Qm) C Q,,. Once again, see Fig. 2 for an illustrative representation of this spline composition model.

Qy

(macro parameter

(micro) parameter
space, k
85'12)

0

Q(kz) Qyef
)

(paae: (reference cell)

Figure 2: Brake pedal lattice structure, inspired from [60]: it is defined in this work by spline composition of a reference
microstructure (unit-cell or tile) and a macro-geometry mapping.
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2.3. Model problem and IGA discretization
2.3.1. Linear elasticity problem

We consider here the equations of linear elasticity modeling small displacements of a linear material under the
action of internal and external forces. The structure is defined by a domain Q C R?. The boundary of the domain
is denoted by dQ. For the presentation below, we assume that a part of the boundary, denoted 0€2,, is clamped with
homogeneous Dirichlet conditions. The rest of the boundary, denoted by 0Q, = dQ2\0Q ), is subject to a surface force
g, which may vanish on a part of Q. We also introduce a body force f, e.g., the gravity. The appropriate space for
a variational formulation of this linear elasticity problem is the Sobolev space H (1)(9, 0Qp) :={veH Q@ |v=

00ndQp}, where H'(Q) = [H I(Q)]d is the d-dimensional H' Sobolev space.
The linear elasticity problem then consists of finding the displacement u € H (l)(Q, 0Qp) such that Vv €
H{(Q,0Qp):

a(u,v) = b(v), (6)

where:

a(u,v) .= 2;4/ e(m) : e(v)dx + i/(V -u)(V - v)dx,
Q Q

b(v) :=/f-vdx+/ g-vds.
Q aQy

We use above the symmetric gradient notation e(v) := (Vv + (Vo)h) /2 and the material Lamé coefficients 4 and u.

2.3.2. IGA discretization

IGA is based on the isoparametric element concept, in which the same basis functions are used for both the
computational domain definition and the discretization spaces of the problem. The idea is to construct an approximation
space for the variational formulation Eq. (6) using a Galerkin discretization with the same spline functions that we used
for modeling lattice structures in Section 2.2. In accordance with [33, 55], we choose the splines from the micro-model
as basis functions (see Eq. (4) from Definition 2.1) for both test and trial functions, rather than using the splines resulting
from the composition. By making this selection, we deviate from strict adherence to the isoparametric concept. The
rationale behind reusing the functions involved in the mapping of the reference microstructure is twofold [33]. First, it
helps limit the degree of the approximation subspace, which may otherwise be excessively high due to the composition.
Second, besides maintaining control over the degree of the solution, this approach ensures uniform discretization of
the displacement field across all cells, which is a prerequisite for achieving efficient solution by taking advantage of
the similarity of the cells [33, 34].

Here and in the following, we assume for the sake of clarity that the degree and number of basis functions are
identical for all patches of the micro-model. We denote by p the degree and by n,, the number of basis functions per
patch. Additionally, for the analysis, it is necessary to consider a functional space that is at least C° over the entire
computational domain. Consequently, we derive the following continuous basis functions from those used in Eq. (4).

Definition 2.3 (C° basis functions over the reference cell). To begin, we introduce the n"/ C°-continuous basis
functions associated with the reference cell as follows:

N QR i=1,.0,
defined such that:

span {.N’irefl i=1, ...,n’ef} ={ve CO(Q,ef) | Vk, Ulg(_kf) e span{¢/1§(k)’p’ho\S'r(nk)'1 lj=1....n,}},

Clearly, this implies n*f < N,n,,.

Definition 2.4 (C° basis functions over the computational domain). Next, we introduce the n C°-continuous basis
functions associated with the entire computational domain as follows:

./V}ZQ—HR, i=1,...,n,
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defined such that:

span {N; |i=1,...,n} = {v e Q)| Vs, vjge € span{%refoB(;}_l lj=1,...n"}},
= {v e Q) | Vs, Vk, vjge0 € Span{t/%(k)’p’hoﬂ(s)’(k)_l 1j=1imy) )

This implies that n < N,n™ < NNy,

A standard choice for these C° basis functions consists in strongly gluing matching inter-patch or inter-cell basis
functions. Making use of these new notations, the test and trial displacement fields can be expressed as:

n
u, = Z N, in Q,
i=1

where u, ; is a vector of size d that contains the coefficients (one per spatial direction) corresponding to the ith
element of the spline basis. We finally introduce the d-dimensional vector of basis functions, where each component
corresponds to one degree of freedom (DOF) of the spline model:

Ni
N, = S li=1,.n )

The approximation space for our Galerkin discretization is then:
Vph:_{veH(szaQD)wespan{M li=1,....n}}, (8)
and the discrete problem, resulting from the Galerkin formulation, is given by: findu, € V', , such that Vv, € V
a(uy,v,) = b(vy),
which can be written as a linear system by decomposing the test and trial functions in the basis of V'), ,
K,u, =1, ©)

The size of the stiffness matrix is equal to dn, which is also the sum of DOFs of our mechanical model.

Two main challenges arise from Eq. (9) from a computational cost and memory storage point of view: (i) the
assembly of the stiffness matrix K, and (ii) solving the associated linear system. In this paper, we start by making use
of the fast assembly procedure proposed in [33], and then develop an application-specific preconditioner to efficiently
solve iteratively Eq. (9) on distributed-memory architectures.

2.3.3. Fast assembly procedure

For intricate high-order reference microstructures and large numbers of macro-elements, i.e., large numbers of
cells, the assembly of the stiffness matrix K, can be very demanding. This issue is well-known in the context of IGA,
and successful procedures have been developed to reduce the assembly time compared to the standard FEM procedure
based on element loops and Gauss quadrature. As stated above, we consider here the multiscale assembly strategy
introduced in [33] specifically for IGA of lattice structures defined by spline composition. Instead of performing a
naive assembly strategy, the key is to rely on the similarities between cells to avoid computing the same quantities
multiple times. We briefly recall the main elements of this approach here, but the reader is encouraged to refer to [33]
for further details.

The starting point is to pull back the macro-geometry mapping from the local stiffness matrices so that the integral
is defined on the reference tile:

Nref !
K(hsz / J h(s) f (10)
J l r=1 ref dél dgr
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where T;’(rs) : Q) — R4 are the macro-fields and involve geometrical and material quantities associated only with
the macro-scale model, such as, e.g., the Jacobian of the macro-geometry mapping. The full expression of these fields
in the context of linear elasticity can be found in [33, Eq. (37)]. Usually, these macro-fields are smooth (rational)
polynomial functions defined over the macro-geometry. The idea is to build and use a unique lookup table with
precomputed integrals gathering all the reference microstructure information common to every cells. Therefore, the
macro-fields are projected onto a spline space identical for each tile and defined by multivariate Bernstein polynomials
of degree p,:

ny . N
mwrO@) = Y 2" EY, £y,

1=1
where n, is the number of basis functions for the projection spline space, and Tfl(s) are the coefficients of the macro-
fields in this basis. These coefficients are determined during an initialization phase by solving multiple linear systems.
Because they depend solely on the macro-model basis functions and mapping, these linear systems are small (macro-
element-wise) and are independent, making them computationally inexpensive to solve. By approximating the macro-
fields with their projections onto the spline space and substituting them into Eq. (10), we get:

d d n, ref

K, =3 XY [ NTT N gy
hit.j e, dg dg T '

I=1 r=1 t=1
/

g

independent of B(];[)

The remaining integrals depend only on the geometric model of the reference microstructure and the macro-
projection space, so they can be precomputed via Gauss quadrature during the initialization phase and stored in lookup
tables. Obviously, the same treatment can be performed with the right-hand side £, in Eq. (9).

3. Proposed multilevel preconditioning approach

Building on the context introduced in previous sections, we now thoroughly describe our proposed multilevel
preconditioner, specifically designed for solving large-scale lattice structure problems. To facilitate understanding,
we first provide a brief overview of the developed approach. We then delve into each component of the method in
more detail. Specific care is given to presenting the approach using a top-down approach: from the fine level, where
the reference problem is posed, to the coarser levels that correct approximations made throughout the grid hierarchy.
Finally, a discussion is conducted at the end to justify the choices made in our approach compared to other possible
options.

3.1. Global overview of the method

Multilevel methods serve as efficient preconditioners for linear systems by employing a hierarchy of discretizations
to decrease the contraction factor of iterative methods. These methods comprise two main components: relaxation
operations (also called smoothers) that allow for partial solving (focusing on the high-frequency part) at the fine levels
of the hierarchy, and coarse corrections that globally correct the error.

In this context, we focus on a geometric two-grid method which hierarchy is generated through spline k-refinement.
The proposed strategy can be summarized by its main components, as follows:

(i) two geometrical levels are considered: a fine- and a coarse- level, each with corresponding nested discretization
spaces;

(i) a matrix-free approach is employed at the fine level to compute matrix-vector products, as needed by iterative
methods;

(iii) a dedicated non-standard DD-based fine-level preconditioner (smoother) is used;

(iv) transfer (restriction and prolongation) operators, based on the k-refinement procedure, are used between the two
levels in a matrix-free fashion as well;
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(v) on the coarse (second) level, an AMG correction is applied.

These components are briefly introduced here but shall be presented in more detail in the subsequent sections.

A fine mesh is constructed by applying the k-refinement strategy to a “reference” coarse mesh until the desired
order p and sufficient mesh refinement are achieved for accurate numerical simulation. In practice, the reference coarse
mesh is the coarsest spline mesh (large elements and low-degree) that exactly represents the desired lattice structure
geometry in an analysis-suitable manner. Note that this implies that the Bézier macro-mappings from Eq. (5) are the
same for both the coarse and fine meshes, so the refinement of the latter differs only at the microstructure level (see
Eq. (4) from Definition 2.1). Based on the fine mesh, a fine discretization space is introduced at the fine level, similarly
as in Eq. (8).

Definition 3.1 (fine discretization). Let {N° f oh |i=1,....n,} be the CY basis functions over the entire computational
domain associated with the fine mesh (refer to Definition 2.4 with parameters h and p for the general form), then the
fine approximation space is defined by an IGA discretization such that:

Vo i={ve Hy@.00p) v espan (NP [i=1,..om, } }.

This fine discretization space is constructed from ny, vectors of basis functions, see Eq. (7), of high-order (p) and
high-regularity (generally CP~') within each patch. The number of DOFs of the associated fine model is dn,,.

The fine stiffness matrix of dimension dn, associated to this fine discretization is denoted by K. Our approach
does not require the explicit assembly of this matrix. Specifically, matrix-vector products are performed on-the-fly in
a matrix-free fashion using the fast assembly procedure described in Section 2.3.3.

At this level, a DD preconditioner, which involves an overlapping decomposition of the computational domain into
subdomains, is defined to act as a (post-)smoother in our two-grid method.

Definition 3.2 (subdomains). The computational domain Q is decomposed into Ny subdomains. A subdomain consists
of a union of several adjacent cells. There are actually two notions of subdomains, distinguished here through the
terminologies non-overlapping subdomains and overlapping subdomains (see Fig. 3 for illustration). As their names
suggest, the non-overlapping subdomains result from a non-overlapping decomposition of the computational domain,
while the overlapping subdomains include an overlapping layer with a minimum symmetric width of one cell. In the
following, the overlapping subdomains are denoted by S'°!, where ¢ = 1, ..., Ny.

An illustration of a four-way decomposition is provided in Fig. 3, reusing the lattice structure example depicted in
Fig. 2. The smoother consists of a single application of the restricted additive Schwarz (RAS) method. The action of
the local-to-each-overlapping-subdomain inverse of the stiffness matrix is iteratively computed using the ROM-based
inexact FETI-DP solver introduced in [34]. The ROM strategy leverages the repetitive nature of cells to build reduced
bases, efficiently approximating the numerous local systems (pertaining to each cell) from a few principal cells (see
again Fig. 3 for illustration). The inexact FETI-DP framework does not require the representation of the assembled
matrix on the fine discretization, making it well-suited to our matrix-free approach.

A second level, which is typically needed to improve the numerical efficiency of single-level precondition-
ers/smoothers, is introduced in the grid hierarchy by utilizing the previously mentioned reference coarse mesh.

Definition 3.3 (coarse discretization). Let {N f " li=1,...,ng} be the CY basis functions over the computational
domain associated with the coarse mesh of the reference microstructure. The coarse approximation space is then
defined using these low-degree functions such that:

V, = {veH})(g,agDnvespan{NfO’H i = 1,...,nH}}.

Po»

This coarse discretization space is constructed from ny vectors basis functions of low-order (py) and low-regularity
(generally C°) within each patch. The number of DOFs of the associated coarse model is dn .

Remark 3.1. Note that since the fine mesh is constructed by applying k-refinement to the coarse mesh, the
approximation spaces are nested, i.e., Vpo, HCVyn
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Figure 3: lllustration of the domain decomposition into subdomains and cells.

The coarse stiffness matrix of dimension dny associated to this coarse discretization is denoted by K. Since this
matrix is constructed from (a limited number of) low-order basis functions, it is assumed to be inexpensive to compute
and to store and is therefore assembled explicitly.

The grid-transfer operators, used whenever the two-grid method is applied on a vector for restricting residuals from
V,n oV, y and prolongating corrections from V', 1 to V', ., are constructed using the matrix representation of the
spline k-refinement procedure , see Eq. (3). For the coarse (second) level, corrections involving the action of the inverse
of Ky are computed using AMG, thus making the resulting complete preconditioner multilevel (two geometric and
several algebraic levels) with a priori no computational bottleneck, since AMG is known to be efficient for low-order
elliptic discretizations.

A schematic representation of the complete multilevel preconditioner is provided in Fig. 4.

3.2. Detailed components of the method
Now that the overall approach is outlined, let us discuss each aspect of the method in finer detail.

3.2.1. Matrix-free formulation

At the fine level, a matrix-free approach is employed to avoid explicitly assembling the fine stiffness matrix Kj,.
The motivation behind this is to significantly reduce memory costs associated with storing a matrix resulting from
high-order discretization. Matrix-free methods necessitate defining an efficient procedure for performing matrix-vector
products without explicit matrix assembly.

Here, the matrix-vector product of the fine stiffness matrix is efficiently computed using the fast multiscale assembly
technique outlined in Section 2.3. During the initialization phase, the macro-field projection coefficients and the
lookup tables are precomputed. Consequently, performing the matrix-vector product involves only the multiplication
of these macro-field projection coefficients, the lookup tables, and an assembly operator (from tile to full structure).
Once again, we advise the interested reader to consult [33] for further details on the fast assembly procedure. In
this work, the strategy is efficiently implemented to compute the matrix-vector product in parallel within each non-
overlapping subdomain. Technically speaking, the implementation uses a PETSc MatlS, with local (to each MPI
process corresponding to each non-overlapping subdomain) matrices represented as MatShell.

3.2.2. Fine-level preconditioner/smoother
Given the state-of-the-art introduced in Section 1, the choice of the smoother at all levels of the hierarchy is crucial
for multigrid methods applied to IGA discretizations. In standard FEM discretizations of elliptic problems, smoothers
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Figure 4: Schematic representation of the proposed multilevel preconditioner.

like Jacobi or Gauss—Seidel iterations are typically used. However, for IGA, these smoothers cause significant
convergence deterioration as the spline degree p increases.

3.2.2.a. Non-standard DD-based preconditioner/smoother

To address this issue, we employ a non-standard smoother based on the RAS method [14]. Schwarz methods with
overlap are known for efficiently damping high-frequency error components due to the overlap [21], making them
suitable candidates for effective smoothing. RAS relies on the decomposition of the domain into Ny overlapping
subdomains, as defined in Definition 3.2. These subdomains include an extra layer of one tile of overlap, and are

illustrated in Fig. 3. Let M, i{ A De the fine-level smoother defined by:

i ¥ (g (o) glel
— D0 o (o)
M) kas = Z (Rh ) (Kh ) R,

where R;"] are restriction matrices from the global domain to overlapping subdomains. The matrices RZ’] are the same
as the matrices REL"] except that they are weighted to take into account duplicated DOFs on the overlap. The matrix

KL"] represents the restriction of the globally assembled stiffness matrix to the subdomain labelled as [¢]. Technically
speaking, this is implemented using the PETSc PCASM machinery, with a custom geometric overlap defined via
PCASMSetLocalSubdomains. Next, we will explain how the action of the subdomain solvers, i.e., (Kf])‘1 ,on alocal
vector are computed.

3.2.2.b. Inexact FETI-DP with ROM

To approximate the action of subdomain-local inverses (K;:’])_l on a given vector, we utilize, within each overlapping
subdomain, a non-overlapping substructuring method at the level of the cells: the ROM-based inexact FETI-DP method
introduced in [34] (see again Fig. 4 to locate where this method fits within the overall proposed approach). This inexact
FETI-DP has been specifically developed to take advantage of the similarities of the cells in a lattice structure from a
computational cost and memory storage point of view. In brief, it involves three main components.
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(1) In FETI-DP, the continuity constraints on the displacement at the cell corners are maintained throughout the
iterative process, naturally leading to a coarse problem at each iteration, while other constraints are enforced
using Lagrange multipliers.

(i) We utilize the framework of inexact FETI-DP algorithms [45], developing an inexact version that avoids solving
numerous local systems. This is achieved by iterating on the initial complete saddle-point problem and designing
a block preconditioner consistent with the mathematical foundation established in [72].

(iii) We apply a ROM approach [66], particularly a greedy technique, to exploit the repetitiveness of the cells. This
technique extracts the “principal” cells in terms of stiffness. The corresponding few principal local stiffness
operators are then used in the preconditioner of the inexact FETI-DP to build reduced bases for efficiently
approximating the numerous other local systems.

It has been demonstrated that the resulting algorithm significantly reduces computational costs compared to the
standard FETI-DP solver, particularly when the macro-mapping deformation is minimal, as the number of reduced
basis elements is very small in this situation [34]. Here, since we apply the ROM technique only inside each overlapping
subdomain, and not over the entire computational domain at once as done in [34], we find ourselves in an ideal situation
for the method. Indeed, the cells within a subdomain are closer to each other than they are across the entire structure.
Furthermore, performing ROM subdomain-by-subdomain is necessary to be compatible with distributed-memory
architectures, allowing different local-to-each-subdomain ROM to be carried out concurrently on each MPI process.
Technically speaking, this is implemented using a PETSc PCShell for which we write a callback which implements
the local solution of a linear system with a given local input vector using the inexact FETI-DP preconditioner. This
PCShell is then passed to the outer PCASM, cf. previous paragraph, using PCASMGetSubKSP.

In the rest of this section, we summarize the key concepts of the ROM-based inexact FETI-DP method. For
illustration purposes, the main components of the strategy are also depicted in Fig. 5. As the method has already
been thoroughly presented in [34], we attempt to be brief in the following. Obviously, readers are encouraged to refer
to [34] for a comprehensive description. We place ourselves inside an overlapping subdomain and omit all subscripts
and superscripts related to subdomain decompositions, discretizations, etc. Let K denote the local stiffness matrix
of the cell labeled (s), s = 1, ..., N, where N is here the number of cells in the considered subdomain. The core idea
of the ROM technique is to exploit the similarities between cells within the subdomain. To this end, we introduce an
interpolatory reduced basis space for the stiffness matrices:

o (5)

Ve > 0, EI%/:{K(S'),...,K(SNB)} st Vs=1,...,N,, IK" € ¥ st. ”K“) KV <e. (1)

where || - || denotes an appropriate norm. N represents the number of local matrices selected for the reduced basis,
corresponding to the number of principal cells used to approximate all remaining cells (see again Fig. 3). The ROM-

approximated stiffness matrix IO((S) is defined by:
Npg
K = Z ay)K(SV),
v=1

(s)

where the coefficients a,

is detailed in [34].
Then, the starting point of the inexact FETI-DP method is the following saddle-point problem:

K B"\ (u\ _[f . _ (Kgr Kgp _ (ug _ (fx
<B 0><l>_<d>’ with K_<K1Tap Kpp) u= up and f= £ )"

The displacement DOFs have been partitioned into primal DOFs (at cell corners, denoted by subscript P), which are
assembled globally, and remaining DOFs (denoted by subscript R, which include (i) interior DOFs, and (ii) dual DOFs
at cell interfaces, the latter being enforced through Lagrange multipliers). 2 € R’ are these Lagrange multipliers,
where L is the total number of discrete continuity equations imposed weakly (encapsulated in d). B is the coupling
matrix, associated to the cell-to-cell interface continuity conditions (B vanishes for the primal DOFs). The idea behind
inexact FETI-DP methods is to iterate on this saddle-point problem using a suitable block preconditioner. These

€ R depend on the cell (s). The construction of this reduced basis using a greedy approach
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iterations will be referred to as “global” iterations for the ROM-based inexact FETI-DP algorithm, as they pertain
to the external loop of this method (see again Fig. 5). This offers the opportunity to approximate the solutions to the
local (cell-wise) stiffness matrices, which is done here using the ROM strategy, unlike in the standard FETT-DP method
where local problems must be solved exactly. Additionally, by adopting a matrix-free approach, we avoid assembling
all the preconditioner sub-blocks, and instead compute their application to a vector on-the-fly. In practice, only the
principal local stiffness matrices are assembled explicitly. To apply this block preconditioner to a vector, it is also
necessary to solve an interface problem, which is done iteratively (see “local” iterations in Fig. 5), using a finely-tuned
preconditioner that involves, once again, the ROM strategy (see [34] for details). Based on the substructuring technique
of the FETI-DP method, this interface problem is defined by condensing displacement DOFs and constructing the
global dual Schur complement. This dual Schur complement is determined by solving a coarse problem posed over
primal DOFs (involving the global primal Schur complement), which is constructed by eliminating the remaining
DOFs. All operators involved in solving this interface problem are constructed from the operators of the principal cells
using the ROM strategy. Fig. 5 provides additional details on the overall view of the method.

For three-dimensional elasticity problems, constructing the coarse problem by selecting only DOFs at cell corners
may not be sufficient to ensure a small condition number and achieve convergence within a reasonable number of
iterations for the interface problem. To address this issue, methods based on adding primal constraints, such as averages
over selected edges [26] and first-order moments [46], have been proposed. An adaptive coarse space approach,
enriched by a small number of additional local edge eigenvalue problems, has also been suggested for problems with
large coefficient jumps within and across cell boundaries [47].

In this work, we adopt the method introduced in [26], which augments the coarse problem by adding only edge
averages (and not first-order moments), as we are focusing on homogeneous problems without coefficient jumps across
cell boundaries. All cells share the same properties, being constructed from a reference cell. Specifically, we introduce
a set of additional Lagrange multipliers for all the edges at the interfaces between cells, denoted as u € RE, where
E is the number of such edges. We also introduce a matrix Q € RE*E corresponding to the three translation rigid
body modes of each edge in the x-, y-, and z-directions, see [26] for details. The resulting saddle-point problem for the
augmented coarse problem is then formulated as follows:

K B” B7Q)\(u f
B 0 o0 |[r]l=| a |
Q"B 0 0 Nu Q’d

By eliminating the remaining primal DOFs, uy and up, along with the additional Lagrange multipliers u, an interface
problem including the augmented coarse problem is constructed.

3.2.3. Grid-transfer operators

Now that the fine level of the hierarchy is treated in its integrity (matrix-vector products and smoother applications),
to achieve proper numerical robustness, special treatments such as coarse space correction are required to handle low-
frequency error components. In our two-grid preconditioner, it is handled by the grid-transfer operators and the coarse
grid correction introduced here and in next paragraph, respectively.

The prolongation and restriction operators, which transfer quantities between the fine-level and the coarse-level,
are based on the spline k-refinement strategy. Given that the approximation spaces are nested, see Remark 3.1, we opt
for canonical operators.

A prolongation matrix is defined on the N, reference patches involved in the reference microstructure, see Eq. (4),
using the transformation matrices obtained through degree-elevation and knot-refinement algorithms, see Eq. (3). For
each reference patch k = 1,..., N, let ng)’ref and n;k)’ref be the number of DOFs of the patch 9527 for the coarse and
fine discretizations, respectively. Similarly, let n"% and n;lef be the number of DOFs of the reference coarse and fine tile,
respectively. Let

ref
H

1 (0 5 (K 1) ()
(AH,i,j) 1Si5nr13f s (Ah,i,j) lﬁiﬁnff P (AH’i’j)lSiSnH’ (Ah,i,j) 1<i<ny

; < pref i < pref
lsjsn(}l;),ref lsjﬁn;lk),ref 1<j<nly 1<j<ny

be the assembly operators from the patch QE{;) to the reference tile and from the reference tile to the full structure. These
are Boolean matrices constructed with a single one and zeros for each row. Incorporating renormalization, a tentative
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Figure 5: Summary of the inexact FETI-DP method with ROM for an overlapping subdomain.

prolongation operator is then defined by:

=z
Z

s T np

~p.h ~(s) 5 (k ~(s) 5 (k = p.h

B D i<in, =K AVAY PP, P (RGAY) | L where kst DB = 1.
1<j<ny s=1 k=1 y i=1

Additionally, boundary conditions are imposed to define the final prolongation operator:
h (f’p’h ); i, if j is not a DOF associated to 9€2
(PP Disisn, = L v

1<j<ng 07 js if j is a DOF associated to 0Q ),

12)

where 7 is the closest DOF to j in the fine discretization and 6; ; represents the Kronecker delta symbol, which equals
one if i = j and zero otherwise. The restriction operator is defined as the transpose of the prolongation, i.e.:
1L,H _ pP:h \T
Rp’h = (PLH) .
a0 Note that the boundary conditions prescribed by Eq. (12) ensure that the imposed displacements on the boundary 0Q2p,
a1 are preserved by the restriction operator, a property naturally verified by the prolongation operator. These grid-transfer
a2 operators could be represented by sparse matrices, containing only a few non-zero entries.

However, similarly to the fine stiffness matrix, a matrix-free approach is employed. A reference prolongation
operator from patches to the reference tile, defined by:

NP
T
5p.h x 6 x K
(P’IJ,H,i,j)ISiS”h = zAh PeP, Py (AH> J
I<j<nyg k=1

i.j
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is computed during the initialization phase. This operator can be assembled and stored inexpensively in memory
because it has the size of the reference tile which is supposed to be small in comparison to the full heterogeneous
structure. Eventually, the matrix-vector product is performed by applying assembly operators from a tile to the
full structure. Renormalization and boundary conditions are also applied at this stage. Technically speaking, this is
implemented using a PETSc MatShell for the prolongation operator, and then calling PCMGSetInterpolation. Since
we do not provide an additional restriction operator, PETSc will simply use the transpose of the prolongation. Therefore,
we must provide two callbacks for the MatShell, one for its action on a vector, and one for its transposed action on a
vector.

3.2.4. Coarse grid correction

Traditionally, multigrid methods involve recursively applying lower-dimensional corrections until reaching a
sufficiently coarse level that allows for an inexpensive solution using a direct solver. In our approach, we combine
our two-grid method with an algebraic multigrid (AMG) method at the second (coarse) level. Combining geometric
multigrid with algebraic multigrid is not a new paradigm in itself, see similar techniques in [12, 73], but to the best
of our knowledge, it is the first time we show the applicability of such a methodology applied to IGA. The aim is
to leverage the efficiency of AMG methods on our coarse level, as these methods have proven to be particularly
effective for solving low-order finite element problems, which aligns with our coarse discretization. The algebraic
approach offers several advantages, including adaptability and memory requirements, while maintaining satisfactory
convergence performance. By combining this method with our two-grid preconditioner with k-refinement, we aim for
a hybrid solution strategy that capitalizes on the strengths of both approaches.

Accurately describing the near-null space of the coarse level operator is crucial for AMG. In linear elasticity, the
null-space contains the rigid body motions of the structure. The structure does not undergo strain, but is rather subjected
to simple translations and/or rotations. More specifically, in linear elasticity (and with standard notations), an arbitrary
kernel element reads as:

uwt: Q - RA
X » R®Xa’

with a € R3“~D being the amplitudes of the translations and rotations, and:

1 0 —x 1 O 0 0 X3 _XZ
R(x) = [0 1 x 2] ,ifd=2, Rx)=|0 1 0 -—x3 0 x; |, else.
! 001 x, —-x 0

Therefore, building a discrete basis that defines the kernel of the stiffness matrix can be formulated as finding
U;b € R¥3@-D i =1 .. n,such that:

Vx, € Q1 Y N(@ T (x))U = R(x), (13)

where the N; are some basis functions and ¢ is a geometric mapping (for instance, a multipatch spline model) that
discretizes the domain. In a standard isoparametric formulation, the solution and the geometric mapping share the
discretization, which makes the identification of the Ufb rather straightforward:

Vi, UP = R(x,),

where x; € R are the nodes (or control points) of the mesh. However, in the case of a non-isoparametric approach
(as it is the case in this study), the solution of Eq. (13) is not straightforward. There might be even no solution if the
solution space is not able to reproduce the geometric map as it is likely our case. Indeed, here the geometric maps are
made of composed splines (thus involved high-order polynomials) whereas the solution spaces are built upon standard
spline spaces (see Section 2.3). However, as we are looking for a near-null space of the operator (and not the exact null
space), we can allow ourselves to compute an approximate solution of Eq. (13). The approach followed in this work
consists in selecting as many physical points as basis functions, denoted x*, which then enable to set:

vi, U = R(x). (14)
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An appropriate choice for spline-based discretizations relies on Greville abscissae [64], i.e. we define the x* as:
Vi, XI = (BoS)(©)).

where the 9;" are the Greville abscissae associated to the reference cell (see Definition 2.1). Therefore, the procedure
for building the basis of the (near) null space operator is done by firstly mapping the Greville abscissae through the
geometric maps (as they are initially defined however the micro parameter spaces Q,,), and then using Eq. (14) for
each physical point.

3.3. Discussions

In this work, we propose a preconditioner for linear systems arising from IGA discretizations based on multilevel
matrix-free methods. From a multigrid perspective, on the fine level, our method is designed with a one-level DD
preconditioner/smoother. On the second (coarse) level, we make full use of an efficient AMG preconditioner, which is
particularly well-suited for explicitly assembled low-order discretizations such as our coarse discretization.

We now elucidate the rationale behind our solver design choices over alternative options. First, we note that for
multigrid methods applied to IGA discretizations, standard smoothers such as Jacobi and Gauss—Seidel iterations
are computationally inexpensive but lack robustness with respect to spline degree, necessitating the use of non-
standard smoothers. Furthermore, to address large-scale problems with moderate-to-high spline degrees, we employ a
matrix-free formulation for the fine discretization stiffness matrix, requiring our smoother to be compatible with this
formulation.

Focusing on DD approaches and the current state-of-the-art, the first most natural choice might be to employ the
ROM-based FETI-DP method across the entire domain, as in [34]. However, for cases involving macro-mappings
with significant deformation, applying the ROM strategy to the entire domain proves inefficient, leading to memory
limitations. Therefore, we chose to restrict this strategy to each overlapping subdomain, where the macro-mapping
deformation is expected to be limited. In other words, the cells are anticipated to be closer in terms of stiffness within
each subdomain compared to across the entire domain. Moreover, this effect becomes more pronounced as the number
of tiles and subdomains increases. The second, and perhaps most important reason for this choice is that this workload
is also embarrassingly parallel and can thus be computed concurrently by each MPI process, which was not the case
with the previous contribution [34].

Another alternative could have been to design a two-level FETI-DP preconditioner, making use of a global
(standard) FETI-DP instead of RAS, and applying the proposed ROM-based inexact FETI-DP to solve the Neumann
problems within each subdomain. A coarse problem would then be constructed to ensure continuity between
subdomains. However, with this approach, selecting the primal DOFs for the coarse problem is not straightforward,
making it difficult to achieve both good scalability and efficiency. Another reason for favoring overlapping Schwarz
methods over FETI-DP on the fine level is the flexibility of PCASM over PCBDDC when using PCShell as subdomain
solvers.

4. Numerical results

In this section we explore the performance of our solver on four numerical examples. All of them share the same
material parameters, specifically an isotropic elastic material with a Young’s modulus of £ = 5000 MPa and Poisson’s
ratio v . = 0.40. For each application, the computational domain is built from a reference microscopic (reference
unit-cell) and a macroscopic geometry, according to the spline composition technique presented in Section 2.2. The
macroscopic geometry is refined to obtain the desired number of cells, and the reference tile is also refined for accurate
mechanical analysis. The various test cases considered in this paper, along with their corresponding reference unit-cell
and macroscopic geometries, are as follows.

(1) 2D auxetic rectangular domain. This test involves a two-dimensional planar domain under bending. The macro-
geometry is initially described with a single linear B-spline patch. The micro-geometry is an auxetic lattice
pattern, modeled with a total of 20 matching patches, consisting of 16 quadratic NURBS patches and 4 linear
patches (see Fig. 6). For more information on the cell geometry, refer to [34].

(i) 2D brake pedal. This case simulates a two-dimensional brake pedal under operating conditions. The macro-
geometry is described with a curved quadratic NURBS patch. The micro-geometry is a hollow square linked by
a cross, constructed with 24 linear Bézier patches to create an analysis-suitable model, i.e., matching interfaces
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Figure 6: 2D auxetic rectangular domain test case: reference unit-cell and example of refined macro-geometry to
multiply the number of cells. The lattice structure is clamped on the left side and subjected to a constant vertical
load distributed on the top side.

between the patches and non-trimmed patches (see Fig. 7). For more information on the macro-geometry, the
interested reader is advised to consult [34].

reference cell

24 linear ‘ b '

patches
(1 element
by patch)

macro geometry

32x8 cells
24 elements

Figure 7: 2D brake pedal test case: reference unit-cell and example of refined macro-geometry to multiply the number
of cells. The lattice structure is clamped on the left side and subjected to a constant normal load distributed on the
right side.

3D straight beam. This test involves a three-dimensional straight beam under bending. The macro-geometry
is initially modeled with a linear B-spline patch containing one single element. A reference lattice unit-cell,
modeled as a body-centered cubic (BCC) cell using 32 linear B-spline patches, is associated with this macro-
geometry (see Fig. 8).

reference cell

macro geometry

. F,=-1
32 linear Y =0 u=0
patches z
(1 element
by patch)

4x4x16 cells

32 elements

Figure 8: 3D straight beam test case: reference cell and example of refined macro-geometry to multiply the number
of cells. The lattice structure is clamped on the right side and subjected to a constant vertical load distributed on
the left side. The left surface is also prescribed to remain in the same plane during deformation.

3D thrust chamber. Inspired by [50, 59, 67], this test simulates a three-dimensional industrially representative
spiral channel regenerative cooling thrust chamber subjected to a uniform pressure. The macro-geometry is
modeled with two matching NURBS patches, each comprising 1230 elements. The associated reference unit-cell
is modeled as a straight channel cell using 40 linear B-spline patches (see Fig. 9).
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Figure 9: 3D thrust chamber test case: reference unit-cell and example of macro-geometry to multiply the number
of cells.

All numerical examples are computed on the Skylake partition of the Joliot-Curie supercomputer, consisting of
1656 nodes with two Intel Skylake 8168 processors clocked at 2.7 GHz, each with 24 cores, and 192 GB of DDR4
memory per node. The code is implemented in Python using petsc4py as the linear algebra backend [4], and the
libraries YETT [23] and IGAlattice' for geometry and IGA discretization tools.

Our approach involves four different interleaved iterative solvers, which are summarized in Table 2. The default
parameters for the different solvers, unless otherwise specified, are chosen as follows.

(i) Global linear system [outer]. The flexible generalized minimal residual method (FGMRES [68]) is used with
a restart parameter of 50 and a tolerance of 10~>. Right preconditioning is applied using our multilevel method,
embedded within the PCMG machinery of PETSc.

(ii) Fine-level preconditioner/smoother. The Jacobi-preconditioned Chebyshev method is used as the pre-
smoother. As the post-smoother, a single application of RAS (PCASM preconditioner from PETSc) is
considered. For both cases, only one smoothing step is considered. Subdomain-local solves needed by RAS are
computed using the ROM-based inexact FETI-DP method, for which two linear systems are solved recursively
with iterative methods.

HGAlattice is a Python code dedicated to the isogeometric analysis of lattice structures. This code has been developed by the Chair of Numerical
Modelling and Simulation of EPFL through the ADAM?2 project co-funded by the H2020 Horizon programme of the European Union.

C. Guillet et al.: Preprint submitted to Elsevier Page 20 of 30



539

540

542

543

Multilevel method for isogeometric analysis

Table 2
Name of the different iterative solvers used in the method.
.. iterative
name description tolerance
method
outer global problem FGMRES 107

saddle-point problem

-4

saddle | & hexact FETI.DP | CMRES |10

. interface problem 9

interface | i exact FETI.DP | FCC 10

coarse AMG co.arse GMRES 1072
correction

Table 3
Number of outer iterations for different configurations of k-refinement and fine-level preconditioner. 2D brake pedal with
400 tiles and 32 MPI processes. The term “Jacobi” refers to using the Jacobi method as both a pre- and a post-smoother,
while “RAS" denotes our approach, which involves a single application of RAS as a post-smoother.
p=1 p=2 p=4 p=6
Jacobi RAS | Jacobi RAS | Jacobi RAS | Jacobi RAS
h, 84 9 184 10 828 11 1224 12
h, | 260 10 591 11 | 1303 12 | 1744 12
hy | 969 10 | 1561 11 | 2009 12 i 13

(a) Saddle-point problem [saddle]. The saddle-point problem is solved using a (user-defined) GMRES
method preconditioned with our ROM-based block preconditioner. The tolerance for the saddle-point
problem is 10~* and the ROM construction tolerance, from Eq. (11), is 1073, as prescribed in [34] for
optimal efficiency.

(b) Interface problem [interface]. For constructing this block preconditioner, the interface problem is solved
with a preconditioned conjugate gradient (PCG) method (from scipy.sparse.linalg). The tolerance for the
interface problem is 107°.

(iii) Coarse grid correction [coarse]. The coarse grid correction is referred to as the coarse iterative problem. The
GMRES method [69] preconditioned with an algebraic multigrid method (PCGAMG [1] preconditioner from
PETSc) is used. The tolerance is set at 10~2. The smoother at all levels for GAMG is SOR, and for building the
grid hierarchy, we use a coarsening threshold of 0.1, threshold scale set at 0.75, and aggressive coarsening set at
2.

4.1. Numerical investigation of the developed preconditioner

In this first section, we investigate the numerical properties of our solver, such as its robustness with respect to
discretization parameters and the efficiency of the ROM-based strategy, using the two-dimensional test cases: the 2D
brake pedal (see Fig. 7) and the 2D auxetic rectangular domain (see Fig. 6).

4.1.1. Robustness with respect to spline degree, mesh refinement, and number of tiles

The robustness of the solver concerning different parameters: the spline degree p, the mesh refinement 4, and the
number of tiles N is investigated. The number of outer iterations is shown in Table 3, with respect to the spline degree
p and mesh refinement 4, for the brake pedal test case in a configuration with 40 tiles in the x-direction and 10 tiles in
the y-direction, totaling 400 tiles, using 32 MPI processes. The configurations of p and A; correspond to k-refinement
through degree elevation until degree p is reached, combined with mesh refinement via i successive knot insertions (in
other words, the element size is divided by 2/ in each direction). For comparison purpose, the Jacobi method has also
been used as a post-smoother in contrast to a single application of RAS. A § in Table 3 means that the outer FGMRES
solver is not able to reach the prescribed tolerance in less than 3000 iterations. This notation will be used consistently
in the tables presented in this paper. Results from the structural analyses (magnitude of the displacement field and von
Mises stress field) are provided in Fig. 10 for this test case.
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Figure 10: Structural analysis results for the 2D brake pedal with 400 tiles, p =3, h = h,.

Table 4
Number of (outer, saddle, interface, coarse) iterations for the developed multilevel preconditioner with p =2, h = h|, and
different number of tiles. 2D brake pedal test case with 32 MPI processes.

4 tiles # DOFs # iterations
fine coarse | outer saddle interface coarse
32x8 (256) 0.1M 0.01M 10 2 23 8
128x32 (4,096) 1.8M 0.2M 10 2 24 10
512x128 (65,536) 30M 3.4M 11 2 24 11

Table 5
Number of (outer, saddle, interface, coarse) iterations for the developed multilevel preconditioner with p =3, h = h,, and
different number of tiles. 2D auxetic rectangular domain test case with 32 MPI processes.

4 tiles # DOFs # iterations
fine coarse | outer saddle interface coarse
16x8 (128) | 0.55M 0.049M | 9 1 22 9
64x32 (2,048) 8.8M  0.79M 9 1 22 9
128x64 (65,536) | 35.3M 3.1M | 10 1 23 10

As expected, the standard Jacobi smoother at the fine level lacks robustness with increasing spline degree p, as the
number of iterations rises significantly with higher degrees. It is also not robust with mesh refinement 4 (knot-insertion
for splines). Conversely, the RAS smoother demonstrates robustness with both spline degree p and mesh refinement h
as the number of outer iterations remains approximately constant across all scenarios.

Furthermore, the number of iterations for the outer, saddle, interface, and coarse iterative problems is provided in
Table 4 and Table 5 for the brake pedal and auxetic rectangular test cases, respectively, as the number of tiles increases.
The number of MPI processes is set to 32 and the discretization parameters are (p, h) = (2, hy) for the brake pedal
case and (p, h) = (3, h,) for the auxetic case. For both test cases, the number of iterations of the four iterative solvers
remains constant as the problem size increases, which demonstrates that the multilevel preconditioner with the RAS
smoother is robust to the size of the problem.

4.1.2. Impact of the coarse grid correction on the global solver

The multilevel preconditioner introduced in this paper consists of a fine-level smoother/preconditioner and a
coarse correction, specifically an AMG solver. In this section, we examine the impact of the coarse correction on
the convergence of the global solver. For this purpose, we compare our multilevel preconditioner with a strategy that
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Table 6

Number of outer iterations for different solvers: one-level RAS, i.e., using only the proposed smoother, and our multilevel
preconditioner with an AMG coarse correction, with respect to the number of MPI processes. 2D brake pedal with 400
tiles.

#MPI processes (p,h) =2, h))
one-level RAS multilevel
2 19 8
4 400 9
8 i 9
32 T 10
64 i 11

consists of only performing the fine-level preconditioner, i.e., only performing the smoother (using similarly RAS and
ROM-based inexact FETI-DP local solves, so that only the coarse correction is removed). For this study, we consider
the 2D brake pedal test case with 400 tiles and (p, h) = (2, h;). Table 6 presents the number of outer iterations for both
solvers.

The corresponding results reveal that the iteration count increases significantly for the one-level DD preconditioner,
leading to solver failure beyond four subdomains (one subdomain per MPI process). In contrast, the iteration count
remains constant for the proposed multilevel preconditioner, highlighting the crucial role of the coarse grid correction
in transmitting low-frequency solution components between subdomains.

4.1.3. Investigation of the ROM-based strategy

In this section, we examine the robustness of the ROM-based strategy with an increasing number of tiles and MPI
processes. We consider the auxetic rectangular domain test case with (p, h) = (3, h,) and the brake pedal test case with
(p, h) = (2, hy). The ROM-based strategy is expected to be more efficient when tiles are more similar to each other,
making it particularly effective for the rectangular test case where macro-mapping deformation is minimal, compared
to the brake pedal test case. Tables 7 and 8 show, for each test case, the ratio of the number of principal tiles (used to
build the local operators) to the number of tiles in the subdomain, across various configurations of different number of
tiles and MPI processes, with a ROM tolerance of 107>,

As expected, for the rectangular test case, a single cell per subdomain is sufficient to accurately represent the local
operators because all tiles are the same. For the brake pedal test case, we observe that multiplying the number of tiles
in the subdomains requires storing almost no additional local operators. Thus, the ROM strategy becomes all the more
efficient as the problem size grows. We also see that keeping the ratio of number of tiles to MPI processes constant while
increasing the problem size slightly enhances ROM efficiency. For example, the maximum ratio decreases from 80%
to 66% between 256 tiles for 32 MPI processes and 4096 tiles for 128 MPI processes. This feature can be explained by
the fact that increasing the problem size while maintaining this ratio reduces the subdomain size in the macro-model,
and thus their macro-mapping deformation. Therefore, the proposed algorithm constitutes an efficient HPC extension
of the ROM-based strategy initially introduced in [34] without parallel implementation.

In conclusion, to maximize the benefits of the ROM strategy, it is advantageous to consider a large number of
subdomains with a large number of tiles, in order to make the tiles similar.

4.2. Performance of the solver on more industrial realistic examples
In a next step, we investigate the performance of the solver on the two three-dimensional test cases: the 3D straight
beam (see Fig. 8) and 3D thrust chamber (see Fig. 9) test cases.

4.2.1. Straight beam

First, a weak scaling study of the developed multilevel preconditioner is conducted using the straight beam test case.
To this end, a series of configurations with an increasing number of cells (thus a similar increasing number of DOFs)
and processes (i.e., subdomains), while maintaining approximately a constant ratio between them, is considered. The
results of structural analysis for this test case are provided on figure Fig. 11. Table 9 presents the number of iterations
and the computational time for both the initialization phase and solver across configurations with increasing numbers
of tiles and MPI processes, and where (p, h) = (2, hy). The ratio of the number of tiles per MPI process ranges from
between 52 to 64 across all configurations. For all the scenarios considered, we observe that the number of iterations
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Table 7

Minimum and maximum ratio of the number of principal tiles per subdomain obtained with a ROM tolerance of 1073, 2D

auxetic rectangular domain test case, p = 3, h = h,. As expected, a single tile per subdomain is sufficient since all the tiles
are the same.

# tiles 256 4,096
# processes min max | min max
3 1/36 1/25 1/100 1/81
(2.7%) (4%) (1%) (1.2%)

Table 8

Minimum and maximum ratio of the number of principal tiles per subdomain obtained with a ROM tolerance of 1073. 2D
brake pedal test case, p=2, h = h,.

# tiles 256 4,096 16,384 65,536
# processes min max min max min max min max
32 6/24 12/15 8/180 12/162 8/612 13/578 )
(37.5%) (80%) (4.4%) (7.4%) (1.3%) (2.2%)
128 ) ) 8/24 12/18 7/180 11/180 7/612 10/612
(33%) (66%) (3.8%) (6.1%) (1.1%) (1.6%)

(for the outer, saddle, interface, and coarse iterative solvers) does not depend on the size of the problem. In addition,
the computational time for solving the linear system is of the same order of magnitude for all configurations, ensuring
near-ideal weak-scaling. Furthermore, from a broader HPC perspective, it seems that these runs go far beyond the
state-of-the-art. To the best of our knowledge, (i) such large lattice structures have never been simulated using a

fine-scale high-fidelity approach, and (ii) the simulations represent some of the largest IGA runs ever conducted in
a distributed-memory context.
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Figure 11: Results of the structural analyses for the 3D straight beam with 2,048 tiles, p =2, h = h,.
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Table 9
Weak scaling study on the 3D straight beam test case for the proposed multilevel preconditioner with p =2, h = h;.
# DOFs # iterations time (s)
# tiles # processes . . solve setup
fine coarse outer saddle interface coarse - -
apply fine matrix
o total | total
smoother multiplication
5x5x20 8 37M  07M | 15 1 45 23 92 84 224 | 114
(500)
8x8x32
(2,048) 32 15.2M 2.7TM 16 1 45 19 181 66 316 | 117
10x10x40
(4,000) 64 29.7M 5.3M 16 1 43 17 246 125 441 | 146
12x12x48
(6,912) 128 51.2M 9.1M 16 1 44 19 188 95 337 | 97
15x15x60
(13,500) 256 100M 17.8M 16 1 44 19 219 104 390 | 116
19x19x76
(27v436) 512 203M 36M 16 1 43 23 260 137 494 | 159
24x24x96
(55,296) 1,024 409.4M 72.8M 16 1 42 21 214 64 345 | 131
30x30x120
(108,000) 2,048 800M 142.1M | 17 1 43 25 261 114 496 | 145
37x37x148
(202,612) 4,096 1.5B 266.5M | 16 1 42 26 285 141 565 | 207
Table 10

Results for three configurations of the 3D thrust chamber with the proposed multilevel preconditioner, p =2, h = h,. The
tolerance of the interface solver is 1074,

# DOFs # iterations time (s)
# tiles # processes fine coarse | outer saddle interface coarse _SO|Ve - setup
apply fine matrix
. total | total
smoother multiplication
41x60x1
(2,460) 64 45M 05M | 11 2 17 20 376 12 394 | 464
82x120x2
(19,680) 512 33.6M 3.7M | 14 2 31 23 925 15 961 | 498
123x180x3
(66,420) 4,096 111M 119M | 16 2 33 25 664 9 684 | 512

4.2.2. Thrust chamber

As an additional step towards the transfer of the method to an industrial environment, the complex spiral channel
regenerative cooling thrust chamber of Fig. 9 is computed here. More precisely, we consider three configurations: (i)
a configuration with 41x60x1 cells, resulting in 2,460 total cells, (ii) a configuration with 82x120x2 cells, resulting in
19,680 total cells, and (iii) a configuration with 123x180x3 cells, resulting in 66,420 total cells. A representation of the
decomposition of the computational domain into subdomains is provided in Fig. 12 (a) for the second configuration,
as well as the structural analysis results in Fig. 12 (b). The number of iterations and the computational time for
the setup and solution phases are provided in Table 10 for the three configurations. The tolerance for the interface
problem is set here to 1074, as it has been found to be sufficient to make the saddle-point problem converge on
this test case. We observe that across all configurations, the number of iterations remains within the same order of
magnitude. The computational time is primarily dominated by the initialization and the solution of the subdomain-
local FETI-DP problems. Although the first and second configurations have the same number of tiles per subdomain,
an increase in computational time is observed, which can be attributed to the higher number of iterations in the outer
and interface problems. Overall, these last results suggest the effectiveness of the developed approach in addressing
complex industrial problems, such as those in the aerospace domain.
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(b) Structural analysis results for the 3D thrust chamber.

Figure 12: Result for the 3D thrust chamber: test case of 82x120x2 = 19,680 cells, 512 subdomains, and p =2, h = h,.
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5. Conclusion

In this work, we introduced a high-performance solver dedicated to the isogeometric analysis of lattice structures.
The solver is designed to fully leverage the computational power of distributed-memory architectures, enabling full
fine-scale simulations of lattice structures for problems that were previously computationally intractable. It utilizes a
two-level preconditioner, consisting of a fine-level preconditioner (or smoother) and a coarse-level correction. The fine-
level preconditioner is based on an overlapping domain decomposition method, where the restricted additive Schwarz
method is used. The computational domain is divided into overlapping subdomains, each containing several cells.
This fine-level correction ensures robustness with respect to mesh refinement (%), spline degree (p), and problem size,
while remaining compatible with an implementation using a distributed-memory paradigm. The coarse-level correction
utilizes an algebraic multigrid method.

A key feature of the solver is its use of a ROM-based approach, as introduced in [34], to solve subdomain-local
problems efficiently. This is made possible by the similarity between the cells within each subdomain. Additionally, by
employing a matrix-free formulation, the fine-level operators are never assembled explicitly. Instead, only their action
on local portions of distributed vectors is computed. This is efficiently handled using the fast assembly procedure from
[33], now embedded in the Portable, Extensible Toolkit for Scientific Computation (PETSc).

The performance and properties of the solver were evaluated through a series of numerical experiments across
various two- and three-dimensional micro- and macro-geometries. When compared to standard smoothers (e.g., Jacobi,
SOR), our dedicated fine-level smoother significantly reduced the number of iterations, especially for high spline-
degrees (p). The solver demonstrated robustness with respect to mesh refinement, spline degree, and problem size.
Furthermore, the matrix-free formulation and ROM-based strategy within the fine-level preconditioner drastically
reduced the memory footprint, allowing us to perform a 3D simulation with over one billion DOFs in minutes using
thousands of processes.

As future works, we intend to extend the solver to non-linear regimes and introduce manufacturing-induced defects
into the simulation.
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