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FRACTAL RANDOM SETS ASSOCIATED WITH MULTITYPE

GALTON-WATSON TREES

PIERRE CALKA1 AND YANN DEMICHEL2

Abstract. In this paper, we consider a regular tessellation of the Euclidean plane and
the sequence of its geometric scalings by negative powers of a fixed integer. We generate
iteratively random sets as the union of adjacent tiles from these rescaled tessellations. We
encode this geometric construction into a combinatorial object, namely a multitype Galton-
Watson tree. Our main result concerns the geometric properties of the limiting planar set. In
particular, we show that both box and Hausdorff dimensions coincide and we calculate them
in function of the spectral radius of the reproduction matrix associated with this branching
process. We then make that spectral radius explicit in several concrete examples when the
regular tessellation is either hexagonal, square or triangular.
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1. A growth model of planar random sets: An introduction

Let us start with a historical wandering through three different sets which are designed
with an iterative construction and whose boundary is expected to be very irregular.

The most famous and popular example of fractal set is certainly the von Koch curve
named after the Swedish mathematician Helge von Koch. In his paper [19] published in
1904, he constructs with a simple geometric iterative process a closed curve of infinite length,
continuous but nowhere differentiable. The same procedure may be used to construct the
so-called von Koch snowflake which is a basic but representative example of the limit of an
increasing sequence of planar compact sets, which has finite area but infinite perimeter and,
actually, a fractal boundary, see e.g. [6] for new historical considerations. Basically, the
snowflake is obtained as follows: starting from an equilateral triangle, the von Koch iterative
procedure consists in dividing each side of the set in construction into three equal parts, and
adding at the middle third of each side a smaller equilateral triangle. Notice that the von
Koch procedure has been modified in a natural way to generate random fractal curves, see
e.g. [13, pp. 244–245], and remains one of the prominent examples in the fractal world, see
e.g. [3, 7, 18].

The Eden model was introduced in 1956 by the American physical chemist Murray Eden
in the biological context of the growth of colonies of bacteria, see [11, 12]. It consists in
considering the cubical tessellation of Rm, m ≥ 2, induced by the mesh Zm, starting with one
cube and at each time step adding a neighboring cube uniformly at random. The limiting
random interface is conjectured to belong, after rescaling, to the KPZ universality class
although it is notoriously very difficult to tackle, see e.g. [24].

In another direction, Konstantin Tchoumatchenko and Sergei Zuyev have introduced in
2001 a little-known model of random set which is based on a sequence of Poisson-Voronoi
tessellations with increasing intensity, see [25]. We recall that the Poisson-Voronoi tessellation
is the Voronoi partition generated by the set of nuclei provided by a Poisson point process.
Their construction starts with an initial Poisson-Voronoi tessellation, then at each step, the
current tessellation is overlayed with a new Poisson-Voronoi tessellation and each current cell
is replaced by the union of new Voronoi cells whose nuclei belong to the cell in question. The
considered random set is the union of the boundaries of all cells. Tchoumatchenko and Zuyev
derive several notable properties for this set when the number of iterations goes to infinity,
including an upper bound for its Hausdorff dimension and an estimate for its associated
spherical contact distribution but their investigation falls short of showing its fractal nature.

Inspired by all three examples above, we introduce a growth process based on one of three
regular two-dimensional tessellations, i.e. triangular, square and hexagonal. The construction
consists in starting with one tile from the tessellation, then adding randomly along each of
its edges rescaled versions of the same tile and iterating the procedure, see Figure 1 for
simulations in the three cases. We take our inspiration from the three previous historical
models. Indeed, we keep from the von Koch approach the ideas of an increasing sequence
of compact sets, of the underlying self-similarity through the addition of rescaled versions of
the same shape and of the example of the triangular tessellation as the starting object. We
keep from the Eden model the randomness of the addition and the example of the square
tessellation. Finally, we keep from the Tchoumatchenko-Zuyev model the idea of generating
consecutively overlaid tessellations with an exponentially increasing underlying intensity and
the example of the hexagonal tessellation. Indeed, the hexagonal tessellation may be seen
as the most natural deterministic idealization of the Poisson-Voronoi tessellation because the
expected number of edges of a typical tile of a homogeneous Poisson-Voronoi tessellation is
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equal to 6, see [22]. Actually, all three regular tessellations are Voronoi tessellations induced
by a set of nuclei along a regular dual grid.

(a) (b) (c)

Figure 1. Simulation of the random growth model for the triangular (resp. square, hexag-
onal) tessellation with the particular choice p∗ = 0, p = 0.5 and λ = 3 (resp. λ = 4,
λ = 3).

We make the construction more formal in the following lines. We assume that each tile
of the regular tessellation T has diameter one and that the origin is either at the center of
one tile or one of the vertices of a tile. Let λ ≥ 3 be an integer and let (λ−nT )n≥0 be the
associated sequence of tessellations generated by consecutive rescalings of T . We construct
an increasing and bounded sequence (Kn)n≥0 of compacts sets with an iterative geometric
procedure which guarantees that at each step, Kn is a union of tiles of λ−nT , see Figure 2.
Namely, we start by fixing the tile of the grid T which contains 0 and call it K0. Once Kn is
constructed for some n ≥ 0, we define

(1.1) Kn+1 = K•n ∪ K◦n ⊃ Kn
where:

− K•n is the deterministic set constituted with all of the tiles Tn+1,` ∈ λ−(n+1)T , ` ≥ 1,
which intersect the interior of Kn,

− K◦n is a random union of tiles of λ−(n+1)T .

Figure 2. Iterative construction of Kn+1 as the union of the deterministic set K•n and the
random set K◦n for the square tessellation with parameters λ = 4, p∗ = 0 and p = 0.5.

More precisely, each additional tile Tn+1,` from λ−(n+1)T is chosen independently from the
others and according to a Bernoulli variable whose parameter p` does not depend on n but
only on the geometry of ∂Tn+1,` ∩ ∂Kn according to the two following groups, see Figure 3:
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− Group 1: the tiles Tn+1,` which either share exactly one edge with ∂Kn but no end of an
edge of ∂Kn or share exactly two edges with ∂Kn;

− Group 2: the tiles Tn+1,` which share exactly one edge with ∂Kn and contain the end of
an edge of ∂Kn.

We fix p ∈ [0, 1] and p∗ ∈ {0, 1}. When Tn+1,` is in Group 1 (resp. Group 2), we take p` = p
(resp. p` = p∗), see Figure 3. Otherwise, we take p` = 0. The particular choice p∗ = 0 or 1
for the tiles at the end of an edge of Kn guarantees the spatial independence of the evolution
of the growth inside two neighboring tiles. This will allow a solvable probabilistic coding of
the model.
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Figure 3. Description of the random rule in the case of the square tessellation (a) p∗ = 0

and (b) p∗ = 1. Each square Tn+1,` from λ−(n+1)T along ∂Kn is added to Kn to obtain
Kn+1 according to its Bernoulli variable B(p`).

By (1.1) the sequence (Kn)n≥0 is increasing. Moreover, the distance from {0} to ∂Kn is
upper bounded by

∑
k≥0 λ

−k. Consequently, it converges almost surely for the Hausdorff
distance to the closure of the union of the sets Kn, namely to the compact set

(1.2) K∞ = cl

( ⋃
n≥0
Kn
)
.

We aim at investigating the geometric and fractal properties of the boundary ∂K∞ of
the limit set K∞. In particular, we are interested in the box and Hausdorff dimensions of
∂K∞. Our main result below is an explicit calculation of both the Hausdorff dimension
dimH(∂K∞) and box-dimension dimB(∂K∞) of the limiting set ∂K∞ (see (2.20) and (2.1) for
the definition of these two dimensions). The calculation depends on an explicit deterministic
matrix M which is defined at (2.9), is non-negative and will be proved to be primitive. As
we will see in Section 2.2, this matrix is the reproduction matrix associated with a multitype
Galton-Watson process encoding our model. The spectral radius ρM of M is the key parameter
of the whole machinery.

Theorem 1.1. The set ∂K∞ has Hausdorff dimension and box-dimension which coincide
almost surely and are equal to

(1.3) d =
log ρM
log λ

∈ [1, 2).

Moreover, the d-dimensional Hausdorff measure Hd(∂K∞) of ∂K∞ is positive in mean and
finite almost surely.

In addition to Theorem 1.1, our second result provides the asymptotics for the perimeter
L(∂Kn) of ∂Kn and the area A(Kn+1 \ Kn) of the difference set Kn+1 \ Kn.
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Theorem 1.2. There exist two positive random variables L∞ and A∞ such that P(L∞ >
0, A∞ > 0) = 1 and such that with probability 1,

(1.4) lim
n→∞

(
λ

ρM

)n
L(∂Kn) = L∞ and lim

n→∞

(
λ2

ρM

)n
A(Kn+1 \ Kn) = A∞.

As a consequence,

(1.5) lim
n→∞

(
λ2

ρM

)n
A(K∞ \ Kn) =

λ2

λ2 − ρM
A∞.

The key idea for proving Theorems 1.1 and 1.2 consists in coding the construction of
the set K∞ with a canonical multitype Galton-Watson process. This consists in particular in
enumerating the tiles which surround Kn and assigning to each of them a fixed type according
to its intersection with Kn. We show that the Hausdorff dimension of the geometric set
coincides with the dimension of the boundary of the tree as introduced by Furstenberg [14]
when the tree is endowed with the classical λ-adic ultrametric distance. Actually, we show
independently that the dimension of the tree coincides with (1.3), see Theorem 2.5. The
calculation of the dimension of a simple branching process dates back to [17] and [16]. Since
then, it has been extended in [26] to the determination of the exact gauge for the Hausdorff
measure and more recently proved in an elementary way in [8]. The multitype case was
investigated in [20]. More precisely, they obtain the dimension of a subset of the boundary of
the tree when the limiting frequency is fixed. The actual dimension of the whole boundary is
then expressed implicitly as the maximum of a certain function over a set of invariant ergodic
measure, see Remark (C) therein. To the best of our knowledge, although we think that
the classical methods used in the monotype case naturally extend, there is no known explicit
value for the dimension of the boundary of the tree and our Theorem 2.5 fills the gap.

In the study of deterministic fractal models, in particular those enjoying a self-similar
structure as the attractor of an Iterated Functions System (IFS), it is not unusual to con-
struct an associated offspring matrix and express the fractal dimension of the set in terms of
the spectral radius of such a matrix, see e.g. [9] for the dimension of the Lévy dragon, then
[10] and [21] for several extensions. In the case of random fractal sets, several works rely
on a representation by a tree and most notably a Galton-Watson tree, in particular when
considering sets defined as the intersection of unions of rescaled tiles, like for instance the
random Cantor set or the Mandelbrot percolation, see the appropriate survey [23]. Never-
theless, the model considered in this paper does not exhibit the same self-similarity feature
as a random IFS. As a matter of fact, in comparison with the literature, we consider that
our approach presents several specificities. Indeed, the coding is done on the covering of the
random set rather than on the set itself. As a consequence, this induces the appearance of
several types and the construction of a multitype Galton-Watson process, which, to the best
of our knowledge, has never been used before in the context of random fractals. Considering
(2.3), one could assume that we could adopt a dual point of view by forgetting about the
construction of K∞ and concentrating on the intersection of the covering sets Rn, n ≥ 0, as
defined at (2.2). Only, this approach would not fit into the general theory of fractals governed
by Galton-Watson trees as presented in [23] since the construction of Rn is inextricably tied
up with the one of Kn and could not be expressed as a classical percolation. The technique
that we develop here is based on the explicit calculation of the reduced reproduction matrix in
Sections 4 and 5 and makes the Hausdorff dimension of the set fully computable in practice,
which illustrates the efficiency of the method.
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The paper is structured as follows. We describe the coding in Section 2 and investigate
the Hausdorff dimension of the boundary of the associated multitype Galton-Watson tree
through martingale techniques and geometric measure theory. Section 3 is then devoted to
the proofs of Theorems 1.1 and 1.2. In Section 4, we put in motion the machinery to solve two
toy examples, namely a random version of the von Koch curve and a generalized von Koch
model based on a deterministic pattern. Incidentally, we also explain how to reduce the size
of the reproduction matrix M, which facilitates an exact computation of its spectral radius
ρM. In Section 5, we then identify explicitly that reproduction matrix and whenever possible,
its spectral radius associated with the model described at (1.2) for the three tessellations,
hexagonal, square and triangular, respectively. Our choice of starting with the hexagonal
tessellation is due to two reasons: first, this allows us to deal with matrices of size 2 × 2,
as opposed to the square case, and second, this induces an interesting artefact, i.e. the
calculation depends on the remainder of the Euclidean division of λ by 3. For all three
tessellations, we determine concretely each entry of the reproduction matrix by partitioning
the set of tiles of Tn which are at the border of Kn. This induces a heavy ensemble of tables
which deal with all the different cases and which is postponed to the Appendix in Section 7.
Finally, we discuss some related open problems in Section 6.

2. The multitype Galton-Watson tree

In this section, we focus on the geometric and probabilistic tools needed for proving The-
orems 1.1 and 1.2. We first introduce a good economic covering of the boundary ∂K∞ of the
limit set, which allows to express its box-dimension in function of the cardinality of a random
set of tiles. We then present the core idea of the paper, namely the construction of a coding of
the tiles into a multitype Galton-Watson tree. This branching process has several well-known
properties, notably in terms of martingales, that we describe for our purpose. We conclude
the section with our main result on multitype branching trees, i.e. the explicit calculation of
the Hausdorff dimension of the boundary of the tree as a function of the spectral radius of
its reproduction matrix.

2.1. A natural covering of ∂K∞.
We recall that the box-dimension dimB(∂K∞) of ∂K∞ is obtained by counting the number

of squares of the regular ε-mesh needed to cover the whole set. Precisely,

(2.1) dimB(∂K∞) = lim sup
ε→0

logNε

− log ε

where Nε is the number of tiles from εT , where T is the square tessellation, which intersect
∂K∞ (see e.g. [13, Chap. 3, p. 43]).

We aim at constructing an explicit covering of the limit set ∂K∞ which is tailored to
improve the calculation of the box-dimension and later on, of the Hausdorff dimension of
∂K∞. The trick consists in using a union of tiles of λ−nT to build an economic covering. We
consider the following set Rn pictured in Figure 4:

(2.2) Rn =


{
Tn,` ∈ λ−nT \ Kn : Tn,` ∩ ∂Kn contains at least one edge

}
if p∗ = 0{

Tn,` ∈ λ−nT \ Kn : Tn,` ∩ ∂Kn 6= ∅
}

if p∗ = 1,

where we recall that p∗ is the probability to add a tile of Group 2, i.e. at the end of an edge.
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(a) (b)

Figure 4. Example for the square tessellation of the construction (in grey) of R0 (a) and
R1 (b) for the sets K0 and K1 (in black) associated with the parameters λ = 4, p∗ = 0 and
p = 0.5.

We classically endow the space of non-empty compact sets of R2 with the Hausdorff metric
denoted by dH.

Lemma 2.1. The sequence (Rn)n≥0 is decreasing and converges to ∂K∞, i.e.

(2.3) ∂K∞ =
⋂
n≥0
Rn.

Moreover, the box-dimension of ∂K∞ is almost surely given by

(2.4) dimB(∂K∞) = lim sup
n→∞

logRn
log λn

where Rn = card(Rn) is the (random) number of tiles belonging to Rn.

Proof. Since λ ≥ 3, the set ∂Kn+1 is at most at distance 1
2λ
−n from ∂Kn. This means that

the tiles of Rn+1 are located in Rn. Moreover, the sequence (Rn)n≥0 has been designed so
that it satisfies the two following properties:

(P1) Each tile of Rn+1 is included in exactly one tile of Rn.

(P2) Each tile of Rn contains at least one tile of Rn+1.

Property (P1) is clear in the case of a nested tessellation, i.e. square or triangular. In
the case of the hexagonal tessellation, we fix a tile Tn,` of Rn and observe that any tile of

λ−(n+1)T whose interior intersects Tn,` but is not included in Tn,` is either in Kn+1 or does
not meet ∂Kn+1. This implies (P1). The definition of Rn in the two cases p∗ = 0 and p∗ = 1
implies Property (P2).

The two properties (P1) and (P2) imply that the sequence (Rn)n≥0 is decreasing and that
each tile of Rn contains at least one edge or vertex of ∂Km for any m > n. Consequently,
there exists a positive constant c > 0 such that dH(∂K∞, ∂Rn) ≤ cλ−n, which implies in turn
(2.3) and that each of the tiles contained in Rn intersects ∂K∞.

We now prove (2.4). The definition (2.1) can be modified for practical purpose in two
different directions: first, we can replace the square shape by another fixed shape and secondly,
we can discretize the size ε of the mesh as a sequence which decays geometrically, see e.g.
[13, Chap. 3, pp. 44-45, Chap. 4, Prop. 4.1]. The trick here is to use the subset Rn of tiles
of λ−nT since the diameter of each of these tiles decays as λ−n. This completes the proof of
Lemma 2.1. �
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The equality of sets given at (2.3) suggests that we could study the fractal dimension of the
intersection of all sets Rn, n ≥ 0, instead of that of ∂K∞. Indeed, the sequence (Rn)n≥0 is
non-increasing and the recursive construction is nested, i.e. the set Rn+1 consists of a random
choice of subtiles of each tile of Rn. For this kind of model, the classical method consists in
expressing the dimension as the solution of a self-similarity equation, as in the deterministic
setting, see [23]. Nevertheless, this machinery does not apply here. Indeed, the choice of
subtiles is not a traditional percolation process, which means that the fate of each subtile is
not independent of the others. In fact, it is impossible to flout the underlying construction
of ∂K∞. That is why we henceforth adopt the coding by a multitype Galton-Watson tree.

2.2. Coding with a multitype branching process.
Thanks to (2.4), the calculation of dimB(∂K∞) only requires to estimate the asymptotics of

Rn which is a combinatorial problem. Because of the symmetry of one tile and the definition
of the model, we observe that when T is the square (resp. hexagonal, triangular) tessellation,
the set Rn can be naturally partitioned into cT = 4 (resp. 6, 3) i.i.d. pieces corresponding to
the construction emanating from each edge of the initial tile of the considered tessellation1.
This implies that it is enough to study the model starting above one of the edges of the
initial tile. Our strategy described in detail below then consists in constructing a multitype
Galton-Watson process such that Rn is exactly, up to the multiplicative constant cT , the
number of children of the nth generation.

For each n, a tile Tn,` included in Rn is seen as a parent which gives birth to a collection of
children which are tiles included in Tn,` and belonging to Rn+1. The subtlety here is that the
number of such children depends on the local geometry of Tn,` ∩ Kn. This is why we attach
to each tile a precise type, which corresponds to the geometric nature of Tn,` ∩ Kn, namely
the edges and vertices of Tn,` which belong to Kn. In particular, the set of types is always
finite. In the rest of the paper, we label all the types with integers.

Figure 5. Example for the square tessellation of the 13 different possible types labelled
according to the intersection (in red) of the grey tile with Kn during the iterative construction
of K∞.

Let tmax be the number of types and Ztn, 1 ≤ t ≤ tmax, be the cardinality of c−1T Rtn where
Rtn is the set of tiles of Rn with type t. In particular,

(2.5) Rn = cT

tmax∑
t=1

Ztn = cT 〈Zn,1〉

where 1 is the vector with tmax entries all equal to 1 and 〈·, ·〉 stands for the usual Euclidean
scalar product with ‖ · ‖ its associated norm. Let us notice that when n = 0 and p∗ = 0, the
set R0 consists in cT tiles of same type, denoted by T1 in Section 5 and pictured as the first
type in Figure 5, which corresponds to sharing exactly one edge with K0, see Figure 4 (a).
This implies that Z0 is the vector with first entry equal to 1 and all the other entries equal
to 0. When p∗ = 1, the initialization actually depends on the nature of the tessellation, see
Section 5. For instance, when the underlying tessellation is square, the set Rn consists in 4
squares of type T1 and 4 squares of type T0, which means that they share with K0 exactly

1Actually, the situation is slighty more intricate when p∗ = 1 for the square tessellation, see the discussion
preceding Lemma 2.2.
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one vertex, see the sixth type in Figure 5. Consequently, Z0 is the vector with first and final
entries equal to 1 and all the other entries equal to 0. As we are exclusively interested in the
asymptotics of (Zn)n≥0, we observe that the initialization of the sequence does not influence
our study.

The structure of the sequence (Zn = (Z1
n, . . . , Z

tmax
n ))n≥0 is described in Lemma 2.2 below.

Lemma 2.2. The sequence (Zn)n≥0 is a tmax-dimensional multitype Galton-Watson process
and belongs to the super-critical case.

Proof. Looking back at the construction of the sequence (Kn)n≥0 described in Section 1, we
notice that the type of a tile Tn,` fixes the random rules for the construction of Tn,`∩Kn+1 and
subsequently, the set of tiles from Rn+1 included in Tn,` and their types. In particular, the
reproduction law associated with a particular tile is time-homogeneous, i.e. it only depends
on its type and does not depend on the number of its generation. Let (Ct,uk )t,u,k be a collection
of real random variables such that

− they are independent when t and k are fixed,

− they are identically distributed for fixed types t and u, distributed as the number of
children of type u of a parent of type t.

The previous remark then implies that Zun+1, 1 ≤ u ≤ tmax, can be rewritten in distribution
as

(2.6) Zun+1
(d)
=

tmax∑
t=1

Ztn∑
k=1

Ct,uk .

This shows that (Zn)n≥0 is a Galton-Watson process.
Now, let Gn be the σ-algebra generated by the Bernoulli variables necessary to construct the

nth generation. In particular, the σ-algebras (Gn)n≥1 are mutually independent. Denoting by
Fn the σ-algebra generated by ∪m≤nGm, we notice that each Zn is Fn-measurable. Finally,
since the set Rn is not empty at each step, it follows that the Galton-Watson process (Zn)n≥0
survives almost surely, i.e. it belongs to the super-critical case. �

We denote by T the random tree associated with (Zn)n≥0 and by ∂T the boundary set of T,
i.e. the set of infinite sequences of integers. We then endow ∂T with the following distance:
for any (in)n≥0 and (jn)n≥0, let

(2.7) d∂T
(
(in)n≥0, (jn)n≥0

)
= λ−m

where m is the largest integer such that in = jn for every 0 ≤ n ≤ m. In particular, ∂T is a
compact set. To each sequence (in)n≥0 of ∂T, we associate a sequence (tn)n≥0 with values in
{1, . . . , tmax}.

For almost every x ∈ ∂K∞, there exists a unique sequence of tiles (T (x)
n )n≥0 such that

T (x)
n ∈ λ−nT , x ∈ T (x)

n and T (x)
n+1 ⊂ T

(x)
n for every n ≥ 0. By the encoding described above,

a unique element ϕ(x) of ∂T corresponds to that sequence of tiles. The application

(2.8) ϕ : ∂K∞ −→ ∂T
is defined almost everywhere and its inverse is Lipschitz. Indeed, let x, y ∈ ∂K∞ and let
n ≥ 0 be the maximal integer such that there exists a common tile belonging to λ−nT and
containing both x and y. Then ‖x− y‖ ≤ λ−n = d∂T(ϕ(x), ϕ(y)).
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This allows us to use more practical notation for the balls of ∂T. Indeed, the inverse image
of the ball centered at some (in)n≥0 ∈ ∂T and of radius λ−m is the intersection of ∂K∞
with a fixed tile Tm,` from λ−mT . Consequently, for sake of simplicity, we use henceforth
ϕ(Tm,` ∩ ∂K∞) for a generic ball of ∂T of radius λ−m.

2.3. Properties of the process (Zn)n≥0.
Let M be the matrix constituted with the entries Mt,u, 1 ≤ t, u ≤ tmax such that Mt,u is

the expectation of the number Ct,u of children of type u given by a parent of type t, i.e.

(2.9) M =


E[C1,1] . . . E[C1,tmax ]

...
. . .

...

E[Ctmax,1] . . . E[Ctmax,tmax ]

 .
We assume that M is primitive, i.e. there exists a power of M with positive entries only.
In particular, by Perron-Frobenius theorem, its spectral radius denoted by ρM is a simple
eigenvalue associated with a unit eigenvector v = (v1, . . . , vtmax) with positive entries vi > 0.

Lemma 2.3. The spectral radius of M satisfies ρM ∈ [λ, λ2).

Proof. By Perron-Frobenius Theorem [5, Th. 2.35], we get that

(2.10) min
1≤t≤tmax

tmax∑
u=1

Ct,u ≤ ρM ≤ max
1≤t≤tmax

tmax∑
u=1

Ct,u.

For every 1 ≤ t ≤ tmax, the sum of all coefficients Ct,u of M over u is bounded almost surely
by λ2 − 1. Indeed, it represents the mean number of tiles in Rn+1 included in some tile Tn,`
of λ−nT . Since λ ≥ 3, it is strictly less than the total number of tiles of generation n + 1
included in Tn,`, i.e. less than λ2−1. Using the upper bound of ρM given at (2.10), we obtain
that ρM < λ2. We now concentrate on the lower bound for ρM. We denote by T the set of
types such that the corresponding tile Tn,` in Rn shares at least one edge with Kn. For such
tile Tn,`, the number of tiles of Rn+1 in Tn,` is at least λ. Indeed, in the case of the square

tessellation, there are exactly λ squares of λ−(n+1)T which share an edge with Kn and for
each such square Tn+1,`, either Tn+1,` or the square above belongs to Rn+1, see Table 9. A
similar argument works for the other two tessellations, see Figures 11 and 18. We assert that
ρM is lower bounded by the spectral radius of the submatrix MT×T = [Mt,u](t,u)∈T×T , see [5,
Cor. 1.6], which is larger than λ by the lower bound in (2.10) applied to MT×T . �

We recall that (Fn)n ≥ 0 is the σ-algebra generated by the first n generations, i.e. the type
of each tile of the first n generations. Thanks to the almost sure identity E[Z∗n+1 | Fn] = M∗Z∗n,
where ∗ stands for the transpose of a matrix, the sequence (Mn)n≥0 defined by

(2.11) Mn = ρ−nM 〈Zn, v〉
is a positive (Fn)n≥0-martingale, see [1, Th. 4 p. 193], which converges almost surely.
In particular, this implies that the random vector Zn satisfies an almost sure law of large
numbers.
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Proposition 2.4. There exists a positive random variable W such that

(2.12) P
(

lim
n→∞

ρ−nM Zn = Wv
)

= 1 and P(W > 0) = 1.

Proof. This is a direct consequence of [1, Th. 2 (ii) p. 192] whose assumptions are satisfied
in our case. Indeed, observe that the random variables Ct,u are bounded almost surely by
λ2 − 1. Consequently, we get

(2.13) E
[ ∑
1≤t,u≤tmax

Ct,u logCt,u
]
<∞

Moreover, since at any generation, the set Rn with cardinality Rn given by (2.5) is not
empty, the branching process (Zn)n≥0 does not vanish almost surely. �

We conclude this section by introducing a new set of martingales in the same spirit as
(Mn)n≥0. When Tm,` is a fixed tile of generation m, i.e. belonging to λ−mT , we can define
Zn(Tm,`) as the vector constituted with the cardinality of the tiles of each type at generation
n ≥ m which belong to Rn and are included in Tm,`. In particular, when Tm,` 6∈ Rm,
Zn(Tm,`) = 0 and when Tm,` ∈ Rm, only one entry of Zm(Tm,`) is different from 0 and equal
to 1 and this entry corresponds to the type of the tile Tm,` ∈ Rm. Moreover, by subtiles
additivity, we obtain for any n ≥ m

(2.14) Zn =
∑

Tm,`∈Rm

Zn(Tm,`).

We then consider the sequence (Mn(Tm,`))n≥m defined by

(2.15) Mn(Tm,`) = ρ−nM 〈Zn(Tm,`), v〉
which is again a positive and convergent martingale with respect to the σ-algebra (Fn)n≥m.
Moreover, (2.14) implies the decomposition

(2.16) Mn =
∑
`≥1

Mn(Tm,`).

2.4. Hausdorff dimension of the boundary set of a multitype Galton-Watson tree.
We can introduce now a random measure on ∂T or equivalently on the random set ∂K∞

through the pushforward by the application ϕ introduced at (2.8). Thanks to the convergence
of the martingale defined at (2.15), we can associate to each tile Tm,`, m ≥ 0, ` ≥ 1, the
random variable

(2.17) µ(Tm,`) = lim
n→∞

Mn(Tm,`)

which satisfies

(2.18) E[µ(Tm,`) | Fm] = Mm(Tm,`) = ρ−mM vtm,`

where tm,` is the type of the tile Tm,` when Tm,` belongs to Rm. Moreover, µ is additive with
respect to the tiles of generation m + 1. Indeed, denoting by Tm+1,`,`′ , `

′ ≥ 1, the subtiles
of generation m + 1 (in finite number) included in Tm,`, we see immediately that for each
n ≥ m+ 1, Mn(Tm,`) =

∑
`′≥1Mn(Tm+1,`,`′) which implies that

µ(Tm,`) =
∑
`′≥1

µ(Tm+1,`,`′).
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This classically extends to an outer measure

(2.19) µ(B) = inf

{∑
i

µ(Tmi,`i) : B ⊂
⋃
i

Tmi,`i
}
, B Borel set of R2.

This, in turn, induces the definition of a Borel measure µ which satisfies (2.18) and whose
support is included in ∩m≥0Rm = ∂K∞. Moreover, thanks to (2.16) and Proposition 2.4, the
total mass µ(∂K∞) of µ is equal to W‖v‖2 = W which is positive almost surely.

We intend now to deduce the calculation of the Hausdorff measure of ∂T from the use of
the pushforward µϕ by ϕ of the measure µ defined at (2.19). Indeed, µϕ is expected to play
the role of a Frostman measure for ∂T, see [4, Section 3.1]. In particular, this requires to
estimate the measure of a generic ball of ∂T that we rewrite as ϕ(Tm,` ∩ ∂K∞) according to
the discussion at the end of Section 2.2. This paves the way for Section 3 but we note here
that a wording purely in terms of tree would have been possible as well.

We recall the definition of the Hausdorff dimension dimH(E) of a metric space E, i.e.

(2.20) dimH(E) = inf{s ≥ 0 : Hs(E) = 0} = sup{s ≥ 0 : Hs(E) =∞}
where Hs(E), s > 0, denotes the s-dimensional Hausdorff measure of E, i.e.

(2.21) Hs(E) = lim
ε→0
Hsε(E) = inf

ε>0
Hsε(E)

where

(2.22) Hsε(E) = inf

{∑
i≥0

(diamUi)
s : E ⊂

⋃
i≥0

Ui and diamUi ≤ ε
}
.

In Theorem 2.5, we obtain the calculation of the Hausdorff dimension of ∂T through

the asymptotics of µ(T (x)
m ) for almost all x ∈ R2, where we recall that T (x)

m is the tile of
λ−mT which contains x (and which is unique for almost every x). Although our statement
and proof are specific to the tree as constructed in Section 2.2, we claim that the method
naturally extends to any multitype Galton-Watson which satisfies the assumption given at
(2.13).

Theorem 2.5. The boundary set ∂T has Hausdorff dimension almost surely equal to

(2.23) d =
log ρM
log λ

∈ [1, 2).

Proof. The reasoning is done in two steps. First, we provide a logarithmic equivalent for the
measure of a ball, i.e. we show that for µ-almost every x ∈ ∂K∞ and P-almost surely,

(2.24) lim
m→∞

logµ(T (x)
m )

m
= − log ρM.

Once (2.24) is derived, we deduce (2.23) by combining it with the definition (2.20)–(2.22)
applied to a particular covering of ∂T with balls.

Step 1: Proof of (2.24). We follow closely the method developed in [16, Theorem 1] and

adapt it to the multitype setting. We denote by t
(x)
m the type of the tile T (x)

m and calculate
the following energy-type integral

(2.25) E
[ ∫

∂K∞

vt
(x)
m

ρmMµ(T (x)
m )

dµ(x)

]
= ρ−mM E

[ ∑
Tm,`∈Rm

vtm,`
]

= ρ−mM

tmax∑
t=1

vtE[Ztm] = 1
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where we have used in the last equality the martingale property of (Mn)n≥0 defined at (2.11).
Using Fubini’s theorem, we deduce from (2.25) that

(2.26) E
[ ∫ ∞

0
µ
({
x ∈ ∂K∞ : ρmMµ(T (x)

m ) ≤ vt
(x)
m

s

})
ds

]
= 1

which, in turn, implies, thanks to Markov’s inequality, that for any n ≥ 1,

(2.27) P
(
µ
({
x ∈ ∂K∞ : ρmMµ(T (x)

m ) ≤ vt
(x)
m

n4
})
≥ 1

n2

)
≤ 1

n2
.

In the same way as in [16, p. 375], Borel-Cantelli’s lemma used twice then leads us to

(2.28) lim inf
m→∞

logµ(T (x)
m )

m
≥ − log ρM

almost surely and for µ-almost every x ∈ ∂K∞.
The reverse inequality relies on a self-similarity argument combined with the independence

property of the Galton-Watson construction. Indeed, let m ≥ 0 be fixed again. We recall
that for any Tm,` ∈ Rm and n ≥ m, Zn(Tm,`) is the vector constituted with the number of
descendants of generation n and of each type 1 ≤ t ≤ tmax. The sequences {Zn(Tm,`) : Tm,` ∈
Rtm, n ≥ m} for 1 ≤ t ≤ tmax are mutually independent and each of them is constituted with
i.i.d. variables which satisfy the equality in law

Zn(Tm,`)
(d)
= Zn−m(T t0 )

where t = tm,` is the type of the tile Tm,`, and T t0 is a generic tile of T with type t. Con-
sequently, recalling the definition of Mn(Tm,`) and µ(Tm,`) at (2.15) and (2.17) respectively,

we get that the sequences {ρ
m
Mµ(Tm,`)

vt : Tm,` ∈ Rtm}, 1 ≤ t ≤ tmax, are mutually independent,

independent of Zm, and constituted with i.i.d. random variables that we denote by W t
m,`.

This implies that, for any w > 0,

E
[
µ({x ∈ ∂K∞ : ρmMµ(T (x)

m ) ≥ vtm(x)w})
]

= ρ−nM

tmax∑
t=1

vtE
[ ∑
Tm,`∈Rtm

W t
m,`1{W t

m,`≥w}

]

= ρ−mM

tmax∑
t=1

vtE[Ztm]E
[
W t
m,`1{W t

m,`≥w}
]

≤ ρ−mM

tmax∑
t=1

vtE[Ztm]

tmax∑
t=1

E
[
W t
m,`1{W t

m,`≥w}
]

=

tmax∑
t=1

E
[
W t
m,`1{W t

m,`≥w}
]

(2.29)

where the last equality comes again from the martingale property of (Mn)n≥0. Since the
entries of M are bounded, it turns out that E[W t

m,` logW t
m,`] is finite for any 1 ≤ t ≤ tmax.

Thus, (2.29) implies that the series
∑

E
[
µ({x ∈ ∂K∞ : ρmMµ(T (x)

m ) ≥ vt(x)m (1+ε)k})
]

converges
for any ε > 0, and by Borel-Cantelli’s lemma, we get that

(2.30) lim sup
m→∞

logµ(T (x)
m )

m
≤ − log ρM
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almost surely and for µ-almost every x ∈ ∂K∞. We then deduce (2.24) from both (2.28) and
(2.30).

Step 2: Proof of (2.23) through the use of (2.24). The calculation of the Hausdorff
dimension of ∂T is derived from (2.24) by classical techniques from geometric measure theory,
see [13, 4]. To the best of our knowledge, the literature does not include a general result
designed for our purpose. That is why we opted to include below an exhaustive proof which
goes along lines very similar to the references cited above.

Let ε > 0 and nε ≥ 0 such that λ−nε < ε. Let η ∈ (0, d). It follows from (2.24) that, for
µ-almost every x ∈ ∂K∞ and P-almost surely, we can find a (minimal) integer mx ≥ nε such
that, for all m ≥ mx,

(2.31) λ−(d+η)m ≤ µ(T (x)
m ) ≤ λ−(d−η)m.

The family {ϕ(T (x)
mx ∩ ∂K∞) : x ∈ ∂K∞} is then a covering of ∂T by balls with radius

λ−mx < ε. Since ∂T is an ultrametric and compact space, we can assume that these balls are

disjoint and in finite number. We denote the associated tiles by T (x1)
mx1

, . . . , T (xq)
mxq where q ≥ 1.

Therefore,

2−(d+η)
q∑
i=1

(
diamϕ(T (xi)

mxi
∩ ∂K∞)

)d+η ≤ q∑
i=1

(λ−mxi )d+η ≤
q∑
i=1

µ(T (xi)
mxi

) ≤ µ(∂K∞) <∞.

Recalling (2.22), we obtain that Hd+ηε (∂T) <∞. Letting ε→ 0, we deduce that Hd+η(∂T) <
∞, which implies in turn that dimH(∂T) ≤ d + η. Since this holds for every η > 0, we get
dimH(∂T) ≤ d.

Let us now prove the reverse inequality. For every n ≥ 0, we consider the set

In = {x ∈ ∂K∞ : mx ≤ n} .
Observe that In ⊂ In+1 ↗ ∂K∞ and µ(In) ↗ µ(∂K∞) < ∞. For a fixed family (nx)x∈∂K∞
of integers such that nx ≥ n for any x ∈ ∂K∞, we consider a covering of ∂T by balls

ϕ(T (x)
nx ∩ ∂K∞) with radii λ−nx . Again, we may assume that the covering is finite and

constituted with disjoint balls ϕ(T (x1)
nx1
∩ ∂K∞), . . . , ϕ(T (xq)

nxq ∩ ∂K∞). We fix n ≥ nε so that

λ−nx < ε. Thanks to the inequality nx ≥ n, we also get that m = nx satisfies (2.31) as

soon as x ∈ In. Moreover, as soon as T (x)
nx intersects In at a point y, the ball ϕ(T (x)

nx ∩ ∂K∞)

coincides with ϕ(T (y)
nx ∩ ∂K∞) by property of the ultrametric topology, which implies that

T (x)
nx = T (y)

nx satisfies again (2.31) for m = nx. Consequently, recalling that the diameter of
one tile of T is 1, we obtain that

q∑
i=1

(
diam T (xi)

nxi

)d−η ≥ q∑
i=1

1I{T (xi)
nxi
∩In 6=∅}

λ−(d−η)nxi ≥
q∑
i=1

1I{T (xi)
nxi
∩In 6=∅}

µ(T (xi)
nxi

) ≥ µ(In).

Actually, in the same way as it is classically done for fractal sets, see e.g. the discussion (2)
in [4, Section 1.4], the series of inequalities above extends to all ε-coverings of ∂K∞ since the

family of balls of type ϕ(T (x)
nx ∩ ∂K∞), x ∈ ∂K∞ and nx ≥ n, is a Vitali covering with the

bounded subcover property. Hence, taking the infimum and using (2.22), we deduce from

the previous inequality that Hd−ηε (∂T) ≥ µ(In). Letting ε→ 0 we obtain Hd−η(∂T) ≥ µ(In).
Letting n→∞ we get Hd−η(∂T) ≥ µ(∂K∞) > 0. Hence dimH(∂T) ≥ d− η. Since this holds
for all η > 0, we get dimH(∂T) ≥ d and this completes the proof of Theorem 2.5 . �
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3. Proof of Theorems 1.1 and 1.2

The results from Theorems 1.1 and 1.2 are proved in the following order: we start with
the calculation of the box-dimension of ∂K∞ as a consequence of the martingale convergence
in Proposition 2.4, and we show that the Hausdorff dimension has the same value almost
surely thanks to the identification with ∂T and the application of Theorem 2.5. Next, we use
the mass distribution principle to show that the d-dimensional Hausdorff measure of ∂K∞
is positive in mean and we also prove that it is finite almost surely. Finally, we turn to the
almost sure limits for both the perimeter of ∂Kn and the area of Kn+1 \ Kn which are again
byproducts of the coding and the martingale argument.

3.1. Proof of Theorem 1.1: exact calculation of dimB(∂K∞) and dimH(∂K∞).
First, we calculate dimB(∂K∞) by combining Lemma 2.1 and (2.5) with Proposition 2.4.

Indeed, the result (2.12) implies that Rn = 〈Zn,1〉 is asymptotically proportional to ρnM.
Then, recalling (2.4), we deduce that almost surely,

(3.1) dimB(∂K∞) = lim sup
n→∞

logRn
log λn

= lim sup
n→∞

log ρnM
log λn

=
log ρM
log λ

.

In particular, this proves that the limsup in (2.4) is a real limit.
We now turn to the determination of dimH(∂K∞). Contrary to the box-dimension, the

calculation of the Hausdorff dimension requires to consider all the coverings of ∂K∞ and
not only the regular ε-mesh. Nevertheless, it is classically bounded from above by the box-
dimension. Thanks to (3.1), this implies that almost surely

(3.2) dimH(∂K∞) ≤ dimB(∂K∞) = d =
log ρM
log λ

.

In order to bound from below dimH(∂K∞), we use both the coding of ∂K∞ by the boundary
∂T of the Galton-Watson tree, such coding being provided by the function ϕ defined at (2.8),
and the expression of dimH(∂T) obtained in Theorem 2.5. The only obstacle here comes
from the fact that ϕ is not bi-Lipschitz and actually not even Lipschitz. But we make the
important observation that the image by ϕ of a Borel set U with diamU ≤ 1 is included in

a finite number k0 of balls of ∂T with radius λ−n where n = b− log diamU |
log λ c and where k0 only

depends on the tessellation T and λ. Indeed, if x, y ∈ ∂K∞ such that ‖x− y‖ ≤ λ−n, then y
belongs to a tile of λ−nT which is at graph distance from the tile containing x bounded by
some constant c depending on λ and on the diameter of one tile of T , assumed here to be
equal to 1. The required integer k0 is then the number of neighboring tiles at graph distance
at most c from a fixed tile of T .

We now implicitly fix the sample ω in the event of probability 1 on which dimH(∂T) = d.
Let us consider s ∈ (0, d), n ≥ 1 and a covering of ∂K∞ by Borel sets Ui, i ≥ 0, with diameter
bounded by λ−n. Then, for each i ≥ 0, ϕ(Ui) is included in the union of k0 balls Bi,1, . . . , Bi,k0
of radius λ−ni of ∂T where ni = b− log diamUi

log λ c. This implies that ∂T is covered by the union

of all of these balls Bi,j for i ≥ 0 and 1 ≤ j ≤ k0. Using now (2.21), (2.22) and Theorem 2.5,
we deduce that∑

i≥0
(diamUi)

s ≥ λ−s
∑
i≥0

λ−nis =
λ−s

2sk0

∑
i≥0

k0∑
j=1

(diamBi,j)
s ≥ λ−s

2sk0
Hs(∂T) > 0.

Taking now the minimum in the left-hand side over all such coverings (Ui)i≥0 and letting
then n→∞, we deduce that Hs(∂K∞) > 0 almost surely. This being true for any s < d, we
obtain thanks to (2.20) that dimH(∂K∞) ≥ d and subsequently the required equality.
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3.2. Proof of Theorem 1.1: the d-dimensional Hausdorff measure of ∂K∞.
First, we state a useful property of µ, namely that it is d-Hölderian in mean. In other

words, there exists a constant cµ > 0 such that, for every bounded Borel set U ⊂ R2 with
diamU < 1,

(3.3) E
[
µ(U)

]
≤ cµ(diamU)d.

Indeed, let n ≥ 1 such that λ−n−1 ≤ diamU < λ−n. Denoting by Un(U) the set of
tiles of generation n needed to cover U , it holds that the cardinality of Un(U) is at most
(diamU)/λ−n−1 < λ up to a multiplicative constant c > 0. Therefore, we obtain with the
help of (2.18) and the identity ρM = λd,

(3.4) E
[
µ(U) | Fn

]
≤

∑
Tn,`∈Un(U)

E
[
µ(Tn,`) | Fn

]
≤ cλ

(
max
1≤i≤m

vi
)
λ−nd ≤ cµ(diamU)d

where cµ = cλd+1 max1≤i≤m v
i. Taking the expectation in (3.4) gives (3.3).

We then use the classical mass distribution principle, see e.g. [13, Chap. 4, p. 60], to
deduce from (3.3) that

E
[
Hd(∂K∞)

]
≥ E[µ(∂K∞)]/cµ.

Indeed, we can follow line by line the technique developed in [13], only we slightly adapt it
by taking the expectation of the infimum required in (2.22).

We then notice that

(3.5) E[µ(∂K∞)] = E
[
E[µ(∂K∞) | Fn]

]
= E[Mn] = E[M0] = 〈Z0, v〉 > 0,

to deduce that E
[
Hd(∂K∞)

]
> 0.

The almost sure upper bound of Hd(∂K∞) is obtained by considering the particular cov-
ering of ∂K∞ with the tiles from Rn. Indeed, for every n ≥ 1, we get almost surely, thanks
to (2.22), (2.12) and again the identity ρM = λd,

Hd(∂K∞) ≤ cµλ−ndRn = cµρ
−n
M 〈Zn,1〉 −→ cµW 〈v,1〉.

This proves that Hd(∂K∞) <∞ almost surely.

3.3. Proof of Theorem 1.2: estimates of the perimeter and defect area.
We use (2.12) in order to get an asymptotic estimate for the perimeter of ∂Kn. Indeed,

the length L(∂Kn) of ∂Kn is λ−n times the number of edges which are commmon to Kn and
to any tile of Rn. In other words, L(∂Kn) is equal to λ−n〈Zn, v0〉 where v0 is a deterministic
vector such that for 1 ≤ t ≤ tmax, the tth entry of v0 is equal to the number of edges of a tile
of type t at generation n which belong to the boundary of Kn. We recall that the definition
of the type of a tile guarantees that the number of such edges only depends on the type. In
particular, it implies that we have the almost sure convergence

L(∂Kn)

(ρM/λ)n
−→W 〈v, v0〉.

where we recall that v is the unique unit eigenvector associated with ρM with positive entries.
This proves the first part of (1.4) with the choice L∞ = W 〈v, v0〉.

In the same way, we can obtain an asymptotic estimate for the area of Rn. Indeed, recalling
that the sequence of sets Rn, n ≥ 1, is decreasing, we obtain

A(Kn+1 \ Kn) = λ−2(n+1)
tmax∑
t=1

Ztn∑
`=1

N t
`
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where the sequence (N t
` )`≥1 is constituted with i.i.d. random variables distributed as the

number of tiles from Kn+1 \ Kn which belong to a fixed tile of Rtn. Moreover, for each
1 ≤ t ≤ tmax, ρ−nM Ztn converges almost surely to Wvt by (2.12). Thanks to the law of large
numbers, this implies that almost surely when n→∞,

(3.6)
1

ρnM

Ztn∑
`=1

N t
` = (ρ−nM Ztn)

1

Ztn

Ztn∑
`=1

N t
` −→ (Wvt)E[N t

` ].

Summing (3.6) over 1 ≤ t ≤ tmax, we obtain that

lim
n→∞

A(Kn+1 \ Kn)

(ρM/λ2)n
= λ−2

tmax∑
t=1

(Wvt)E[N t
` ].

This proves the second part of (1.4) with the choice A∞ = λ−2
∑tmax

t=1 (Wvt)E[N t
` ].

Finally, we deduce (1.5) by a summation over n ≥ m:

A(K∞ \ Km) =
∑
n≥m
A(Kn+1 \ Kn).

It then remains to fix ω ∈ Ω such that the convergence (1.4) occurs, fix ε > 0 and take m ≥ 0
large enough such that for every n ≥ m,

(1− ε)(ρM/λ2)nA∞(ω) ≤ A(Kn+1(ω) \ Kn(ω)) ≤ (1 + ε)(ρM/λ
2)nA∞(ω).

We sum both lower and upper bounds and obtain the required convergence (1.5).

4. Von Koch-type examples and reduction of M

In this section, we expose two short examples derivated from the classical von Koch con-
struction. This requires to make explicit the reproduction matrix M. It provides a new proof
of well-known box dimension calculations and it also paves the way for a general technique
of reduction of the reproduction matrix.

4.1. A classical random version of the original von Koch model.
The classical von Koch curve has given birth to several randomized generalizations. The

most well-known is the so-called flip-flop, see [13, Ex. 15.3, page 256], which consists in
tossing a coin at each step and deciding accordingly if the newly added triangle should point
up or down. In this section, we propose a different extension which is a small variant of our
growth model associated with the triangular tessellation T and the parameter λ ≥ 3. To
do so, we slightly modify the random rule described in Section 1 and pictured in Figure 3.
More precisely, we start with K0 as a unique triangle from T . Then, along each edge of that
triangle, we add with probability p one triangle from λ−1T which is the dλ/2e-th along the
edge and we leave the edge unchanged with probability (1−p), see Figure 6. This gives birth
to K1. Given Kn for n ≥ 1, we iterate the procedure along each edge of ∂Kn to construct
Kn+1. As in Section 1, the sequence (Kn)n≥0 is increasing and converges to a random compact
set K∞. We assert that Theorem 1.1 still holds for this variant and Proposition 4.1 below
provides the explicit calculation of the box and Hausdorff dimension of ∂K∞.
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Figure 6. A variant of the flip-flop von Koch random curve with λ = 3 and p = 0.5.

Proposition 4.1. For any λ ≥ 3 and p ∈ [0, 1], the limiting set K∞ satisfies

(4.1) dimH(∂K∞) = dimB(∂K∞) =
log(λ+ p)

log λ
.

Proof. We start by shortly explaining why the results from Sections 1 and 2 extend to the
model described above. Indeed, the coding of the tiles of the set Rn into a multitype Galton-
Watson tree is still relevant. Since the construction procedure does not interrupt almost
surely, that branching process does not die with probability one. Moreover, from one genera-
tion to the next, this new model clearly produces less children than the initial one described
in Section 1. Actually, the set Kn generated by the new model is included in the former
set Kn for each n ≥ 0. Consequently, the integrability conditions at (2.13) are again clearly
satisfied. Subsequently, the convergence of the underlying martingale occurs and the rest of
the proofs goes along the exact same lines.

Our task is then to identify the reproduction matrix M. In Figure 7, we have represented
the situation along the edge of one triangle which belongs to ∂Kn. We observe that there
are λ+ 2 potential triangles along that edge which could belong to the set Rn, namely the λ
upward triangles from the next generation and the 2 downward triangles which surround the
central upward triangle. Moreover, each of these potential children would be also triangles
with only one edge belonging to Kn+1, i.e. they are of type T1. Consequently, this means
that there is only one type T1 and that M is a matrix of size 1 × 1. We then only need
to calculate the expected value of the number of triangles in Rn along the edge, which is
obviously the spectral radius ρM of M.

We study the case of each potential child with respect to its color. All upward triangles
but the central one (in yellow in Figure 7) belong to Rn with probability 1 while the central
upward triangle (in green in Figure 7) is in Rn if and only if it has not been added in Kn+1,
which happens with probability 1− p. To the contrary, the two downward triangles (in blue
in Figure 7) are in Rn as soon as the central upward triangle is not, which happens with
probability p.
The expectation of the number of triangles in Rn along the edge is then

(λ− 1)× 1 + 1× (1− p) + 2× p = λ+ p.

Applying then Theorem 1.1, we deduce that the box and Hausdorff dimension of ∂K∞ is
log(λ+p)

log λ . �
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Figure 7. The potential children of a T1-parent in the random version of the von Koch
model for λ = 7.

4.2. A deterministic von Koch square model.
This specific model is based on the square tessellation with λ ≥ 3. We slightly modify

the random rule as described in Section 1. The Group 1 is now composed by the tiles Tn+1,`

which share exactly one edge with ∂Kn but no end of an edge of ∂Kn. In other words,
compared with the Group 1 from Section 1, we exclude the tiles which share two edges with
∂Kn. We keep the same Group 2 as in Section 1 and choose p∗ = 0. The novelty in the
current model is that the Bernoulli distributions associated with the tiles of the Group 1
are deterministic but allowed to be different, i.e. they are characterized by a probability
vector p = (p2, . . . , pλ−1) ∈ {0, 1}λ−2 where pi is the probability to add the pith square (the
polygonal line ∂Kn being oriented clockwise). This vector p being fixed, it is convenient to see
it as a deterministic geometric pattern applied at each edge of ∂Kn with a suitable rescaling,
see Figure 8.

(a) (b)

Figure 8. Example of a deterministic pattern for the square tessellation with λ = 7 and
with the probability vector p = (1, 0, 0, 1, 1). Here βp = 2. The figures (a) and (b) show the
boundary ∂K1 and ∂K2 respectively.

Not only does Theorem 1.1 apply in this particular context but also the self-similarity
properties of the set ∂K∞ provides a classical method for deriving the dimensions and the
two quantities L(∂Kn) and A(Kn+1 \ Kn).

Proposition 4.2. Under the assumptions above the limiting set ∂K∞ is the union of 4 self-
similar sets with equal box and Hausdorff dimension given by

(4.2) dimB(∂K∞) = dimH(∂K∞) =
log(λ+ 2βp)

log λ

where βp denotes the number of blocks of consecutive 1’s in p.
Moreover,

(4.3) L(Kn) = 4

(
λ+ 2βp

λ

)n
and A(Kn+1 \ Kn) =

4σp
λ2

(
λ+ 2βp
λ2

)n
where σp denotes the sum of coefficients of p.
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Proof of (4.2) with the self-similarity. The set ∂K∞ is the union of 4 isometric sets obtained
from each of the 4 sides of K0 by our iterating procedure. It is enough to prove the results for
one of these sets denoted by C∞. As for the classical von Koch set and its generalizations, the
strategy consists in showing that C∞ is self-similar as the attractor of an Iterated Functions
System (IFS) made up with several contracting similarity maps (see [13, Chap. 9] for a
general account on IFS theory). Precisely, we observe that the IFS in question consists in a
finite number k of contracting similarity maps, all with the same ratio λ−1 and that, because
of the choice p∗ = 0, it satisfies the so-called Open Set Condition. In these conditions it
follows from [13, Chap. 9, Th. 9.3] that

dimB(C∞) = dimH(C∞) = − log k

log λ−1
.

Finally, it remains to make the number k of similarity maps explicit. We notice that k is
equal to the number of edges along the external boundary of the pattern above one edge of
∂Kn, see Figure 8 (a). When going along the pattern, we do exactly λ steps to the right, βp
steps up and βp steps down, which leads to k = λ+ 2βp.

Proof of (4.2) with Theorem 1.1. In the same way as in the proof of Proposition 4.1, we
assert that the conclusion of Theorem 1.1 still occurs with our current model. The only task
that we need to fulfill consists in making explicit the reproduction matrix M.

We start by noticing that the squares belonging to Rn are decomposed into three families:
they are either the ones above the black squares of the pattern, or the ones which fill the
voids of the chosen pattern or the ones at the two ends of the pattern. The first family is
composed of squares mainly of type T1, i.e. squares which share with ∂Kn exactly one edge,
and possibly of type T2, i.e. with two edges in common with ∂Kn, when p2 = pλ−1 = 1. The
second family consists of squares either of type T1 when they are not at the ends of a void
of the pattern or of type T2, when they are at one of the two ends of the void (and those
ends are distinct) or else of type T3, i.e. with three edges in common with ∂Kn, when the
void consists of exactly one square. The third family is trickier to deal with. Indeed, such a
square can be of type T1, T2, T3 or even T4, i.e. with 4 edges in common with ∂Kn. The
possibility of being of type T3 (resp. of type T4) only exists if p2 or pλ−1 is equal to 1 but
not both at the same time (resp. if p2 = pλ−1 = 1). The different types for the squares of
Rn are visible in Figure 9 in the particular case λ = 7, βp = 2, γp = 0 and p2 = pλ−1 = 1
and when the parent is either of type T1 (a) or of type T2 (b).

Let us denote by γp the number of isolated 0’s in the vector p, i.e. the number of voids in
the pattern constituted of exactly one square. We deduce from the previous discussion that
the reproduction matrix M is of size 2 × 2 if p2 = pλ−1 = 0 and γp = 0. Otherwise, it is a
matrix of size 3× 3, unless p2 = pλ−1 = 1, in which case it is of size 4× 4. We derive below
a general formula for M as a function of λ, βp and γp which holds in all cases. We explain
for instance how to calculate the first line of M, i.e. the cardinality of children of each type
when the parent is of type T1. We first assert that the total number of children of a square
of type T1 is λ, i.e. the number of squares of λ−(n+1)T along an edge of a square of λ−nT ,
see Figure 9 (a). Referring to the description above, we notice that the squares of the first
family, i.e. above the squares of the chosen pattern, all belong to type T1. From the second
family, only the squares which are inside a void of the pattern but not at one of the two ends
of that void are of type T1. The rest of the squares of the second family belong to type T3
if they are in a one-square void or else of type T2. Regarding the third family, the square
at the left end (resp. right end) is of type T1 if p2 = 0 (resp. if pλ−1 = 0) or of type T2 if
p2 = 1 (resp if pλ−1 = 1). In other words, we first determine that the number of children of
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type T1 is C1,1 = λ − 2βp + γp, then that there are C1,3 = γp children of type T3, no child
of type T4, i.e. C1,4 = 0, and finally C1,2 = λ − C1,1 − C1,3 − C1,4 = 2βp − 2γp children of
type T2. We proceed in a similar way to fill the remaining three lines of M and obtain that
M = M1 +M2 where

M1 =


λ− 2βp + γp 2βp − 2γp γp 0

2(λ− 2βp + γp)− 2 2(2βp − 2γp) 2γp 0

3(λ− 2βp + γp)− 4 3(2βp − 2γp) 3γp 0

4(λ− 2βp + γp)− 8 4(2βp − 2γp) 4γp 0


and

M2 =


0 0 0 0

p2 + pλ−1 −p2 − pλ−1 + (1− p2)(1− pλ−1) p2(1− pλ−1) + (1− p2)pλ−1 p2pλ−1

2p2 + 2pλ−1 −2p2 − 2pλ−1 + 2(1− p2)(1− pλ−1) 2p2(1− pλ−1) + 2(1− p2)pλ−1 2p2pλ−1

4p2 + 4pλ−1 −4p2 − 4pλ−1 + 4(1− p2)(1− pλ−1) 4p2(1− pλ−1) + 4(1− p2)pλ−1 4p2pλ−1

 .
The eigenvalues of M are 0 < 1 ≤ 1 + p2pλ−1 < λ + 2βp = ρM. This fact combined with
Theorem 1.1 shows (4.2).

T1 T1 T1

T2 T2 T2 T2

T1 T1 T2

T2 T2 T2 T4

T2

T2

T2

T1

T1

(a) (b)

Figure 9. Continuation of the example of the deterministic pattern for the square tessella-
tion with λ = 7 and p = (1, 0, 0, 1, 1). The figures (a) and (b) show the children of a parent
square of type T1 and of type T2 respectively.

The perimeter L(Kn) and the area A(Kn+1 \ Kn) satisfy the asymptotic relations given in
Theorem 1.2 with ρM = λ + 2βp. In fact, by a direct calculation, we can make explicit the
constants involved. Indeed, noticing that λnL(Kn) is the number of edges along the boundary
of Kn, we observe that for any n ≥ 0,

L(Kn+1) = λnL(Kn)λ−(n+1)(λ+ 2βp) and A(Kn+1 \ Kn) = λnL(Kn)σpλ
−2(n+1).

Since K0 is a square with perimeter 4, this implies (4.3). �
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4.3. Reducing the matrix M.
In most cases as for instance the previous one, it turns out that some of the types appearing

in the construction of the matrix M are redundant and this explains why 0 appears in the
spectrum. As a consequence, as soon as a non-trivial linear relation between the rows is
unveiled, we propose to reduce the matrix by removing one type.

We recall that M is a square matrix of size tmax × tmax constituted with entries equal to
E[Ct,u] and for 1 ≤ t, u ≤ tmax, we denote by Rt = (E[Ct,1], . . . ,E[Ct,tmax ]) (resp. Cu =
(E[C1,u], . . . ,E[Ctmax,u])∗) the tth row (resp. uth column) of M. In particular, Rt is the mean
contribution of a parent of type t while Cu is the mean number of children of type u per
parent.

Lemma 4.3. Let us assume the existence of α1, . . . , αtmax−1 ∈ R such that the linear combina-

tion Rt =
∑tmax−1

t=1 αtRt is satisfied. Then M has same spectral radius as M′ which is a square
matrix of size (tmax− 1)× (tmax− 1) obtained by replacing each column Cu, 1 ≤ u ≤ tmax− 1,
by Cu + αuCtmax, then removing from M the line Rtmax and the column Ctmax.

Proof. We show that the matrix M′ defined above has the same eigenvalues as M minus
one 0. Proceeding with the operation in M which consists in substracting to Rtmax the

combination
∑tmax−1

t=1 αtRt, we obtain a new matrix with a zero row vector and equal to

M̃ =
∏tmax−1
i=t Ltmax,t(−αt)M where Lt,u(x) is the elementary matrix which differs from the

identity matrix by a coefficient x in the (t, u) position. Then, for each parent of type t,
1 ≤ u ≤ tmax− 1, we need to remove the mean number of children of type tmax and replace it
by the equivalent quantity of children of types 1 ≤ u ≤ tmax − 1, namely αu children of type
u instead of each child of type tmax. This means proceeding with the operation of adding

αuCtmax to Cu. This leads to a new matrix M̃ equal to

(4.4) M̃ =

( tmax−1∏
t=1

Ltmax,t(−αt)
)
M
( tmax−1∏

t=1

Ltmax,t(αt)

)
.

Since
∏tmax−1
i=t Ltmax,t(αt) =

(∏tmax−1
t=1 Ltmax,t(−αt)

)−1
, we deduce that M̃ has same spectrum

as M and this spectrum includes 0 because M̃ has a zero row vector in place of the row vector

Rtmax of M. Consequently, M̃ and its submatrix M′ obtained by removing its last row and
last column have same spectral radius. �

An important consequence of Lemma 4.3 is that we can drastically reduce the size of the
matrix M in all of the examples described in the next sections. Indeed, we can discriminate
the types t which are kept, called survivor types and the types which are removed, called
the phantom types. Typically, the survivor types are those from the tiles Tn,` such that the
intersection ∂Tn,` ∩ ∂Kn is smaller (one vertex, one edge, two edges) whereas each phantom
type satisfies that its corresponding row vector in M is a linear combination of the rows of
M corresponding to the survivor types. For example, let us denote by Rt, t = 1, 2, 3, the row
associated with the type Tt, t = 1, 2, 3, where we denote by Tt the type of a tile Tn,` such that
its intersection with ∂Kn consists in t consecutive edges. Similarly, when the intersection of
a tile Tn,` with ∂Kn is reduced to one vertex, we call T0 its type. We observe that

R3 = 2R2 − R1,

which means that when we choose T1 and T2 as survivor types, type T3 is then a phantom
type. Besides, we notice that a tile with type T2 cannot be replaced by two tiles with type
T1. The complete list of reductions rules will be described for each of the three tessellations
in Tables 1 and 8, and in the beginning of Section 7.3 respectively. In particular, these rules
preserve the number of edges common to the tile and ∂Kn.
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5. The method in action for the three tessellations

In this section, we apply Theorems 1.1 and 1.2 in several concrete examples, i.e. when the
underlying tessellation is either hexagonal, or square or triangular. This requires to identify
the useful types related to the underlying multitype Galton-Watson tree and then to make
explicit the reproduction matrix given at (2.9) after a suitable application of the reduction
rules described in Lemma 4.3. We obtain a matrix of size 2× 2 in all cases, save for the case
when the tessellation is square and the probability p∗ is equal to 1 which leads to a matrix of
size 3× 3. The square case is also the only one which gives birth to a disconnected set ∂K∞,
which justifies the asymptotics of the number of holes given in Proposition 5.4.

Most of the calculation procedure relies on the decomposition of the set of potential chil-
dren into smaller classes whoses cardinality and mean contribution to the offspring can be
made explicit. All the details are summarized in precise tables available in the Appendix.
Incidentally, we will place more emphasis on the hexagonal case as the other two go along
similar lines.

5.1. The case of the hexagonal tessellation.
In this section, T is the hexagonal tessellation with tiles of edge length 1 and such that the

origin is at the center of one hexagon from T . This particular rule is more natural since it
guarantees the invariance of the model with respect to a rotation with center at the origin and
angle π

3 and reflects in a more natural way the properties of a Poisson-Voronoi tessellation.

(a) (b) (c)

Figure 10. Example of the limit set K∞ obtained with the hexagonal tessellation with
p∗ = 0, p = 0.5 and, from left to right, λ = 3, λ = 4 and λ = 5.

In Propositions 5.1 and 5.2 below, we make explicit both the reduced reproduction matrix
and its spectral radius in both cases p∗ = 0 and p∗ = 1. Interestingly, the calculation depends
on the remainder of the Euclidean division of λ by 3. This arithmetical discrimination is due
to the embedding of the consecutive grids in the particular context of the hexagonal grid.
Surprisingly, in both Propositions, the spectral radius does not depend on p when λ = 3λ′+2.
We then use Theorem 1.1 to calculate the dimension of ∂K∞ as a function of p ∈ [0, 1] and
compare in two cases the graph of that function with the numerical estimate obtained by
simulation, see Figure 13.
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Proposition 5.1 (Case p∗ = 0). For the hexagonal model described above with parameters
(λ, p) where λ = 3λ′ + r with λ′ ≥ 1 and r ∈ {0, 1, 2}, p ∈ [0, 1] and with the choice p∗ = 0,
the reduced reproduction matrix is

M′0 =

1 2λ′

0 4λ′ − p2

 , M′1 =

1 2λ′

0 4λ′ + 1− p

 , M′2 =

1 2λ′ + 1

0 4λ′ + 2

 ,
where M′0 (resp. M′1, M′2) denotes the reduced reproduction matrix when r = 0 (resp. r = 1,
r = 2).

Moreover, the spectral radius of the matrix M is given by

ρM =


4λ′ − p2 if r = 0

4λ′ + 1− p if r = 1

4λ′ + 2 if r = 2

.

Proof. The strategy consists in reducing the number of types so that the reproduction matrix
M is a matrix of size 2 × 2 (Step 1). We then prepare the calculation of each entry by
considering the set all potential children of a parent with given type and split it into subsets of
hexagons with the same contribution in mean (Step 2). The outcome of Step 2 is summarized
in Tables 3, 4 and 5 in the cases r = 0, r = 1 and r = 2 respectively. We finally proceed with
the explicit calculation of M and subsequently of ρM (Step 3).

Step 1: Reduction of M. We first claim that the reduction of the number of types, see
Lemma 4.3, allows us to deal with only two survivor types: the type T1 of an hexagon with
exactly one edge belonging to Kn and the type T2 of an hexagon with exactly two consecutive
edges belonging to ∂Kn. As a consequence of Lemma 4.3, the reduction rules allow us to
remove the phantom types T3, T4, T5 and T6, see Table 1. Notice that the two rightmost
types in Figure 5 only appear in the particular case λ = 3.

Phantom types

T3 T4 T5 T6

S
u

rv
iv

or
ty

p
es

T1 −1 −2 −3 2

T2 2 3 4 0

Table 1. The explicit rules for the reduction of the four different types T3, T4, T5 and T6.
Each phantom type may be expressed as a linear combination of the two survivor types T1
and T2 only.

After application of the reduction rule, the new matrix which shares the same spectral radius
as M is a matrix of size 2× 2 called M′.
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Step 2: Decomposition of the set of potential children of each parent. Each parent
Tn,` of type T1 or T2 belongs to Rn and gives birth to children whose union is the intersection
of the set Rn+1 with Tn,`. We need to determine the cardinality of the children of both types
T1 and T2. To do so, we adopt an inverse procedure, i.e. we start with the whole set of
potential children and study the mean contribution of each potential child separately. By
mean contribution, we mean the expected number of children of type T1 and of type T2
which are induced by the potential child. The potential children lie in the first three lines
of Tn+1 inside Tn,` above the edges (one or two) of Tn,` which lie in Kn. The contribution of
a potential child only depends on the local geometry around it so that we can partition the
set of potential children into groups which are labelled with different colors, see Figure 11
below and Table 2. This partition depends on the remainder r of λ when divided by 3. This
leads us to consider the three different cases r = 0, r = 1 and r = 2. When r is fixed, the
cardinality of each group then is an affine function of λ.

(a) (b)

Figure 11. The potential children of a T1-parent (a) and a T2-parent (b) for the case of
the hexagonal tessellation when p∗ = 0 and r = 0 (here λ = 12).

Step 3: Calculation of the reduced matrix coefficients. As soon as the color of a
potential child, i.e. the group it belongs to, is fixed, the mean contribution of that potential
child is a deterministic function of one or two independent Bernoulli variables with parameter
p that we can make explicit. Tables 3, 6 and 5 summarize the groups, the cardinality of each
group and the contribution of each member of a fixed group. Let us notice that in order to
keep the set of children nested in one parent tile, we allow the occurrence of half-hexagons.
For instance, in the case r = 0, let us explain how to determine the line in Table 3 related to
a pink potential child.

Such a potential child lies above a half-hexagon which belongs to Kn+1 and it is surrounded
by two hexagons from Group 1, i.e. they belong to Kn+1 with probability p independently

from each other. The type of the pink potential child is decided as soon as the couple B
(2)
p

of these two independent Bernoulli variables is realized:

? ? ? ?

(a) (b) (c) (d)

Figure 12. Status of a pink potential child of a parent of type T1 in the case r = 0 for
the model with p∗ = 0. It only depends on the realization of the two Bernoulli variables
associated with the tiles under the pink tile.
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− when B
(2)
p = (0, 0), which happens with probability (1− p)2, only the edge at the bottom

of the pink hexagon belongs to Kn+1. Consequently, the pink hexagon is a child of type
T1 and its contribution is (1, 0), see Figure 12 (a).

− when B
(2)
p = (0, 1) (or (1, 0)), which happens with probability p(1 − p), exactly two

consecutive edges of the pink hexagon belong to Kn+1. Consequently, the pink hexagon
is a child of type T2 and its contribution is (0, 1), see Figure 12 (b) and (c).

− when B
(2)
p = (1, 1), which happens with probability p2, exactly three consecutive edges of

the pink hexagon belong to Kn+1. Consequently, the pink hexagon is a child of type T3
and its contribution is (−1, 2) thanks to the reduction rule listed in Table 1, see Figure
12 (d).

Once the type of the parent is fixed, either T1 or T2, we then have to sum up over the
groups the product of the cardinality of the group by its individual mean contribution. This
provides the first then the second line of the matrix M′. For instance, in the case r = 0,

denoting by N (0)
c = N (0)

c (T1) the cardinality of potential children of a parent T1 of color c

belonging to {green, pink, purple, blue, brown, orange}, we obtain that the first row R1 of
M′ is obtained by the formula

R1 =
∑

c∈{green,
purple,blue}

N (0)
c

∑
ε∈{0,1}

P(B(1)
p = ε)F (0)

c (ε) +
∑

c∈{pink,
brown,orange}

N (0)
c

∑
ε∈{0,1}2

P(B(2)
p = ε)F (0)

c (ε)

=
(
1− p, 2λ′

)
.

The proof is then complete. �

In Figure 13, we represent the dimension as a function of p for fixed λ. We call it theo-
retical and compare it with the numerical dimension set obtained by counting the number of
hexagons in the economic covering set Rn.

(a) (b)

Figure 13. Comparison between the graphs of the theoretical (in blue) and numerical (in
red) dimension of ∂K∞ as a function of p ∈ [0, 1] in the hexagonal case, when p∗ = 0, for
(a) λ = 3 and (b) λ = 4.
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We now focus on the case p∗ = 1. Because of the geometry of the hexagonal tessellation,
the initialization of (Zn)n≥0 stays the same, i.e. Z0 consists only of one hexagon of type T1.
Actually, we can show that as in the case p∗ = 0, only the two types T1 and T2 are needed to
construct the reduced reproduction matrix. The calculation of ρM is provided in Proposition
5.2 below.

Proposition 5.2 (Case p∗ = 1). For the hexagonal model described above with parameters
(λ, p) where λ = 3λ′ + r with λ′ ≥ 1 and r ∈ {0, 1, 2}, p ∈ [0, 1] and with the choice p∗ = 1,
the reduced reproduction matrix is

M′0 =

1 2λ′

0 4λ′ − p2

 , M′1 =

1 2λ′ + 1

0 4λ′ + 2− p

 , M′2 =

1 2λ′ + 2

0 4λ′ + 3

 ,
where M′0 (resp. M′1, M′2) denotes the reduced reproduction matrix when r = 0 (resp. r = 1,
r = 2).

Moreover, the spectral radius of the matrix M is given by

ρM =


4λ′ − p2 if r = 0

4λ′ + 2− p if r = 1

4λ′ + 3 if r = 2

.

Proof. We claim that only the cases in yellow and in purple need to be updated. When
r = 1, a yellow parent contributes by (1, 12) instead of (0, 1) and a purple parent contributes
by ((1 − p)(0, 1) + p(−1, 2)) instead of ((1 − p)(1, 0) + p(0, 1)). This modifies the matrix by
adding 1 to each entry in the second column. In the same way, when r = 2, the matrix is
also modified by adding 1 to each entry of the second column. We refer the reader to the
Tables 6 and 7. �

Remark. We conclude the section with a few statements in several deterministic cases.

− λ = 2. Our assumption on Group 2 in the description of the model in Section 1 naturally
excludes the case λ = 2 from our investigation in the cases of the square and triangular
tessellations. But in the hexagonal model, Propositions 5.1 and 5.2 extend to the case
λ = 2 where at each step, a half-hexagon is simply added to each side. The fractal
dimensions are then both equal to 1 so ∂K∞ is not a fractal set. Indeed, we can easily
check that ∂K∞ is the dual hexagon with size 2 rotated with respect to the initial hexagon
K0.

− λ ≥ 3. Assuming now that no hexagons are added at each step, i.e. p = p∗ = 0, then the
limiting set ∂K∞ has fractal dimensions given by

dimH(∂K∞) = dimB(∂K∞) =
log(4λ′ + r)

log(3λ′ + r)
.

It may be proved that when λ 6= 3λ′+ 2, the set ∂K∞ is self-similar. It is the attractor of an
affine ISF made up with exactly λ+bλ3 c maps each contracting with ratio λ. In addition with
the usual Open Set Condition, it provides an alternative proof for the value of the fractal
dimension.
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5.2. The case of the square tessellation.
In this section, we consider the case when T is a square tessellation with the particular

choice pi = p ∈ [0, 1] and p∗ ∈ {0, 1}. We fix the origin at one of the vertices of a square.
The alternative choice would have been to put the origin at the center of a square but in that
case, when n is even, we would get at every step Kn+1 = K•n which is a deterministic square
and when n is odd, the model is the same as choosing the homothety center at one of the
vertices of a square.

Let us fix a scaling factor λ ≥ 3 and a parameter p ∈ [0, 1]. A square from λ−nT is added
to Kn accordingly to its position along an edge of ∂Kn as shown in Figure 3 below. As in the
previous section on the hexagonal tessellation, we solve separately the two cases p∗ = 0 and
p∗ = 1.

A notable difference with the hexagonal tessellation concerns the squares of λ−nT which
intersect Kn by only a vertex. Indeed, they do not belong to Kn+1 but when p∗ = 1, they
have a non-empty intersection with ∂Kn+2 and ∂Km for any m ≥ n + 2, including m = ∞.
Consequently, they belong to the set Rn+1 defined at (2.2) and will be included as a special
extra type in the set of children of our Galton-Watson coding. This means that the size of
the reproduction matrix M will be 2× 2 when p∗ = 0 and 3× 3 when p∗ = 1. Alternatively,
we could have modified the model so that these particular squares would be included to Kn+1

with probability p∗ ∈ {0, 1}. We only deal with the case p∗ = 0 below and assert that the
case p∗ = 1 could be treated in a similar way.

Due to the geometrical differences between the hexagonal and square tessellations, we
could show that the limiting set is simply connected in the hexagonal model but is not in the
square model with probability 1.

(a) (b)

Figure 14. Example of the limit set K∞ obtained with the square tessellation.
(a) p∗ = 0, λ = 4, p = 0.5. The fractal dimension of the boundary is dimH(∂K∞) = 1.1822.
(b) p∗ = 1, λ = 4, p = 0.5. The fractal dimension of the boundary is dimH(∂K∞) = 1.2412.

Proposition 5.3 below provides the reduced reproduction matrix in both cases p∗ = 0 and
p∗ = 1. In particular, when p∗ = 0, the matrix has size 2×2 with corresponding types T1 and
T2, which makes it possible to calculate easily its spectral radius. When p∗ = 1, as discussed
in Section 2.2, the matrix has size 3×3 with the 3 types T1, T2 and T0, and the initialization
consists in taking Z0 = (1, 0, 1). In theory, there is a closed formula for its spectral radius as
a function of λ and p. Only in practice, it turns out to be very heavy, which is the reason
why we have opted to omit it.
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Proposition 5.3. For the square model with parameters λ ≥ 3, p ∈ [0, 1] and p∗ = 0, the
reduced matrix M′ is

M′ = (λ− 3)M ′1(p) +M ′2(p)

where

M ′1(p) =

 1− 2p(1− p) 2p(1− p)
2− 4p(1− p)) 4p(1− p)

 and M ′2(p) =

 3− 2p 2p

2(p+ 2)(1− p)2 1 + p(5− 2p− p2)

 .
Moreover, the spectral radius of the matrix M is given by

ρM =
1

2

(
λQ1(p) +Q2(p) +

√
λ2Q3(p) + λQ4(p) +Q5(p)

)
,

where Q1(p) = −2p2 + 2p + 1, Q2(p) = −p3 + 4p2 − 3p + 1, Q3(p) = 4p4 − 8p3 + 4p + 1,
Q4(p) = −4p5 + 4p4 + 22p3 − 14p− 2 and Q5(p) = p6 + 16p5 − 42p4 − 18p3 + 9p2 + 10p+ 1.

For the square model with parameters λ ≥ 3, p ∈ [0, 1] and p∗ = 1, the reduced matrix M′ is

M′ = (λ− 3)M ′1(p) +M ′2(p)

where

M ′1(p) =

[
1−2p(1−p) 2p(1−p) 2p(1−p)
2−4p(1−p) 4p(1−p) 4p(1−p)

0 0 0

]
and M ′2(p) =

[
1+2p 2(1−p) 2(1−p)

2−2p(1−p2) 3+p(1−2p−p2) (1−p)(2+3p−3p2)
0 1 2

]
.

Proof. We adapt the strategy which has already been put into practice in the case of the
hexagonal tessellation, i.e.:

− we list all possible types which are bound to appear in the reproduction matrix as well
as the reduction rules which allow us to consider a matrix of size 2×2 (resp. of size 3×3
in the case p∗ = 1) instead (Step 1),

− we identify the set of potential children of a square parent and decompose it into a suitable
colored partition such that each color corresponds to a particular contribution in mean
(Step 2),

− we calculate explicitly the reduced reduction matrix and its spectral radius (Step 3).

Step 1: Reduction of M. When p∗ = 0, there are 5 possible types denoted by T1, T2, T3,
T4 and T1′, out of which type T1′ only occurs when λ = 3. The reduction rules combined
with Lemma 4.3 make it possible to keep only two survivor types: the type T1 of a square with
exactly one edge belonging to Kn and the type T2 of a square with exactly two consecutive
edges belonging to Kn, see the first 3 columns of Table 8. When p∗ = 1, the main difference is
that the set Kn+1 can possibly grow inside the squares which intersect Kn by only one vertex
or several vertices. This induces a new set of possible types, bringing the total to 13. Again,
thanks to the reduction rules, we obtain a matrix of size 3 × 3 with only 3 types: T1, T2
and T0 which corresponds to a square which intersects Kn by only one vertex, see Table 8.
In particular, the set of children of a square parent of type T0 is deterministic and consists
in one square of type T2 and two squares of type T0.

Step 2: Decomposition of the set of potential children of each parent. In the same
way as in the proof of Proposition 5.1, we identify the whole set of potential children of a
parent Tn,` of type T1 or T2. In the case of the square tessellation, these potential children
lie in the first two lines of Tn+1 inside Tn,` above the edges (one or two) of Tn,` which lie
in Kn. We then put together the squares from those two lines which have the same mean
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contribution, i.e. we partition the set of potential children into groups which are labelled
with different colors, see Table 9.

Step 3: Calculation of the reduced matrix coefficients. The method is identical to
the hexagonal case and for sake of brevity, we refer the reader to Tables 10, 11 and 12 which
summarize all the calculations. �

Remarks. Notice that for the two deterministic cases when (p, p∗) = (0, 0) or (1, 1), we
expect the set ∂K∞ to be of dimension 1. This is clearly confirmed by our calculation of the

reduced matrix which is M′ =
[

λ 0
2(λ−1) 1

]
or M′ =

[
λ 0 0

2(λ−2) 1 0
0 1 0

]
respectively, with ρM = λ in

both cases.
As in the hexagonal case, we represent in Figure 15 both the theoretical and numerical

dimension as a function of p. This requires to approximate the value of ρM with numerical
methods.

(a) (b)

Figure 15. Comparison between the graphs of the theoretical (in blue) and numerical (in
red) dimension of ∂K∞ as a function of p ∈ [0, 1] in the square case, when p∗ = 0, for λ = 4
when p∗ = 0 (a) and p∗ = 1 (b).

Let us end this section with a result about the “holes” that can occur in the case of the
square tessellation (see Figure 14).

Proposition 5.4. Let Hn be the number of holes included in the set Kn. There exist a
positive random variables H∞ such that P(H∞ > 0) = 1 and such that almost surely

(5.1) lim
n→∞

ρ−nM Hn = H∞.

Proof. The key observation is that each hole at step k is exactly associated with a child of type
T4, and given a hole, it will never be totally recovered by black squares of future generations.
For instance, in Figure 16, a first hole appears at the generation n as the product of a T4 tile
in Rn. Then at the generation n+ 1, a smaller hole appears inside that T4 tile and two new
holes appear at generation n + 2, one of them being inside the previous one. Consequently,
we obtain

Hn =

n∑
k=0

Z4
k =

n∑
k=0

〈Zk, e4〉 =

n∑
k=0

ρkM〈ρ−kM Zk, e4〉.
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Figure 16. Appearance of holes in the square model over 3 generations for λ = 4

Because of the argument given above (1.2) related to the rest of the geometric sum, any hole

which appears is never fully filled. Since ρnM −→ ∞ and 〈ρ−kM Zk, e4〉 −→ 〈W, e4〉, we obtain

that when n→∞, Hn is equivalent almost surely to
ρM

ρM − 1
〈W, e4〉ρnM, hence the result. �

5.3. The case of the triangular tessellation.
In this section, we consider the case when T is the triangular tessellation and when the

origin is fixed at one of the vertices of a triangle. We consider the particular choice p∗ = 0.
Curiously, because of the geometry of the triangular tessellation, the case p∗ = 1 involves
a lot more new types appearing along the iteration of the process and therefore, we have
decided to omit it.

Proposition 5.5. For the triangular model with parameters λ ≥ 3, p ∈ [0, 1] and p∗ = 0, the
reduced matrix M′ is

M′ = (λ− 3)M ′1(p) +M ′2(p)

where

M ′1(p) =

 1 + p− 2p2 p2

2(1 + p− 2p2) 2p2

 and M ′2(p) =

 3 + p 0

4 + 3p− 6p2 1− p+ 3p2

 .
Moreover, the spectral radius of the matrix M is given by

ρM =
1

2

(
λQ1(p) +Q2(p) +

√
λ2Q3(p) + λQ4(p) +5 (p)

)
,

where Q1(p) = p + 1, Q2(p) = 3p2 − 3p + 1, Q3(p) = −16p4 + 8p3 + 9p2 + 2p + 1, Q4(p) =
72p4 − 46p3 − 40p2 − 4p− 2 and Q5(p) = −63p4 + 54p3 + 31p2 + 2p+ 1.

Proof. The method follows the exact same pattern as in Propositions 5.1 and 5.3, i.e. we
start by identifying the types, we then reduce the matrix, decompose the set of potential
children of one triangle with a fixed type, calculate the contribution of each potential child,
see Table 13, and finally calculate the entries of the reduced matrix. �

Again, the theoretical and numerical versions of the dimension are represented as functions
of p in Figure 17.
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(a) (b)

Figure 17. Comparison between the graphs of the theoretical (in blue) and numerical (in
red) dimension of ∂K∞ as a function of p ∈ [0, 1] in the triangular case, when p∗ = 0, for
λ = 3 (a) and λ = 4 (b).

6. Final discussion

This section collects a few possible extensions and open problems related to our model.
Obviously, the construction may generate many possible variants, like for instance rescaling
at each step from a vertex of the tessellation T in the hexagonal case, making the Bernoulli
parameters p and p∗ depend on the relative position of a tile of λ−(n+1)T with respect to ∂Kn
or considering other tessellations like the rhombille tiling. We expect most of them to satisfy
the same properties, at the expense of inducing higher dimensional reproduction matrices and
non-explicit spectral radii. We develop below what we consider to be the more stimulating
questions.

Considering higher dimension. A natural extension of the model consists in considering
regular tessellations in higher dimension. For instance, we can investigate the most natural
case of the cubic tessellation of Rm, m ≥ 3, keeping in mind the parallel with the Eden model
described at the beginning of Section 1. A similar coding by a Galton-Watson tree naturally
occurs and the conclusion of Theorem 1.1 still holds. The difficulty lies in the calculation of
the reproduction matrix. This requires to identify the different types which correspond to
the possible intersection of a cube of Rn with the set Kn. This might be one or several facets
of the cube or even a combination of several lower-dimensional faces.

Choosing a real scaling factor λ. We can consider a more general real scaling parameter
λ ≥ 2 and ask again for the convergence of the sequence (Kn)n≥0 and the dimension of the
limit set ∂K∞. Actually, because of our condition for the tiles which intersect int(Kn), we
observe that in the case of the triangular (resp. square) tessellation we obtain an empty
set K◦n and a set K•n equal to a square (resp. a triangle) in the case of the square (resp.
triangular) tessellation. This implies that the sequence of random compact sets is trivial.
The situation is more interesting in the case of the hexagonal tessellation because the sets Kn
are not trivial. This difference is due to the fact that a triangle (resp. a square) is a strongly
self-similar set, that is it is equal to a finite union of smaller triangles (resp. squares) with
disjoints interiors. This is not possible for an hexagon so that the exterior ring is never a
trivial set. The sequence (Kn)n≥0 is clearly convergent as soon as λ ≥ 2, thus we can ask again
for the dimension of the limit set ∂K∞. This proves to be a quite more difficult question.
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We will need to distinguish the case when λ is rational or not. In the first case, our model
is still random although most of the time, tiles are added to Kn deterministically, i.e. they
belong to K•n, while random tiles appear at certain stages only. We expect to find bounds
for the number of tiles in Rn, and subsequently for the box-dimension of ∂K∞, through a
comparison to another model associated with an integer parameter λ. In the second case, the
model is not random: at each step of the construction, every tile from λ−(n+1)T along ∂Kn
belongs to K•n and consequently is kept in Kn+1. The general issue related to this model is
that the curves ∂Kn are not modified in a self-similar way, making it difficult to estimate the
cardinality of the sets Rn. Let us finally remark that solving that question would certainly
constitute an intermediary step towards the study of iterated Poisson-Voronoi models, as
described below.

Randomizing the end tiles. The most unnatural condition in the current model lies in the
assumption that the tiles from λ−(n+1)T which are located at the two ends of an edge along
∂Kn are governed by a deterministic Bernoulli variable with parameter p∗ ∈ {0, 1}, see the
treatment of Group 2 in the description in Section 1. That choice guarantees the complete
independence of the lineage of all the tiles involved in Rn and therefore, leads us to obtain
an exact Galton-Watson process. Obviously, it would be more relevant to associate to all
the tiles of λ−(n+1)T along ∂Kn, including Group 2, an i.i.d. sequence of Bernoulli variables
with common parameter p as in a regular percolation model. Such a model would induce
a local dependency of the lineage of neighboring tiles. Even though the underlying coding
process would no longer be a perfect Galton-Watson tree, we would still expect a similar set
of results to hold. This would involve a lot more technical work on the random tree and its
associated martingale. Such extension certainly constitutes the material of a possible future
work. In fact, the present paper is intended as a first contribution on iterated tessellations and
brings to the table the key approach of coding by a tree which may hopefully be developed
thereafter.

Reaching iterated Poisson-Voronoi models. We already discussed in Section 1 the
connection between our contribution and the original work [25] on iterated Poisson-Voronoi
tessellations. Actually, let us describe a slight modification of the initial construction done
in [25] which could play the role of an intermediate model along the way from our model
towards the limiting boundary set described in [25]. Let λ > 1 and (Pn)n≥0 be a family of
independent homogeneous Poisson point processes of Rd such that Pn has intensity λn. Set
Vn for the Voronoi tessellation associated with Pn. Then we can define a sequence (Kn)n≥0 of
random sets as follows: K0 is the cell from V0 containing the origin ; then Kn+1 is obtained by
replacing Kn with the set made up with all the cells C from Vn+1 such that C ∩ int(Kn) 6= ∅.
By construction Kn+1 ⊃ Kn and we expect the sequence (Kn)n≥0 to be almost surely bounded
and converge to a random set K∞ almost surely. Thus, we can ask again for the dimension
of the limit set ∂K∞. To answer that question, we would certainly try to use the tiles of
each tessellation as a basis for covering ∂K∞, exactly in the same way as the set Rn was
considered in Section 2.2. Nevertheless, one of the main difficulties in doing so lies in the
non-uniformity of the shapes of the different Voronoi cells, which means in particular that
some of them may have an elongated shape with an unusually large diameter. Moreover, the
problem of counting the tiles from the set Rn would then reduce in estimating the number
of cells of a Poisson-Voronoi tessellation crossed by a craggy polygonal line. In particular,
the section of a Poisson-Voronoi tessellation with one line already represents an issue and
constitutes the substance of a recent paper [15], see also the construction of the Markov path
along the Voronoi nuclei in [2]. In conclusion, the different models derived from iterated
Poisson-Voronoi tessellation certainly prove to generate stimulating but tough questions.
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7. Appendix: Tables and Figures

This last section is devoted to the collection of figures and tables needed to calculate each
entry of the reproduction matrix whose expression is used for each of the three tessellations,
see Propositions 5.1 and 5.2, Proposition 5.3 and Proposition 5.5 respectively.

7.1. The hexagonal tessellation.

p∗ = 0 p∗ = 1

r = 0

Parent of type T1

Parent of type T2

r = 1

Parent of type T1

Parent of type T2

r = 2

Parent of type T1

Parent of type T2

Table 2. The potential children of an hexagonal parent for the case of the centered hexag-
onal tessellation.
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T1: λ′

T2: 2(λ′ − 1)
? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(0)
green(ε) (−1, 2) (0, 0)

T1: λ′ − 1

T2: 2(λ′ − 1)

? ? ? ?

ε (0, 0) (0, 1) (1, 0) (1, 1)

P(B
(2)
p = ε) (1− p)2 (1− p)p p(1− p) p2

F
(0)
pink(ε) (1, 0) (0, 1) (0, 1) (−1, 2)

T1: 2

T2: 2
? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(0)
purple(ε) (1, 0) (0, 1)

T1: λ′

T2: 2(λ′ − 1)

? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(0)
blue(ε) (0, 0) (1, 0)

T1: 0

T2: 2
? ? ? ?

ε (0, 0) (0, 1) (1, 0) (1, 1)

P(B
(2)
p = ε) (1− p)2 (1− p)p p(1− p) p2

F
(0)
brown(ε) (−1, 2) (−2, 3) (0, 0) (0, 0)

T1: 0

T2: 1

? ? ? ?

ε (0, 0) (0, 1) (1, 0) (1, 1)

P(B
(2)
p = ε) (1− p)2 (1− p)p p(1− p) p2

F
(0)
orange(ε) (0, 0) (1, 0) (1, 0) (0, 1)

Table 3. Description of the children of an hexagonal parent when p∗ = 0 and r = 0.
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T1: 2

T2: 2
?

ε 0

P(B
(1)
p = ε) 1

F
(1)
yellow(ε) (0, 1)

T1: λ′ − 1

T2: 2(λ′ − 1)
? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(1)
green(ε) (−1, 2) (0, 0)

T1: λ′ − 2

T2: 2(λ′ − 2)

? ? ? ?

ε (0, 0) (0, 1) (1, 0) (1, 1)

P(B
(2)
p = ε) (1− p)2 (1− p)p p(1− p) p2

F
(1)
pink(ε) (1, 0) (0, 1) (0, 1) (−1, 2)

T1: 2

T2: 2
? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(1)
purple(ε) (1, 0) (0, 1)

T1: λ′ − 1

T2: 2(λ′ − 1)

? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(1)
blue(ε) (0, 0) (1, 0)

T1: 0

T2: 1 ? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(1)
brown(ε) (−2, 3) (0, 0)

T1: 0

T2: 2
? ? ? ?

ε (0, 0) (0, 1) (1, 0) (1, 1)

P(B
(2)
p = ε) (1− p)2 (1− p)p p(1− p) p2

F
(1)
orange(ε) (1, 0) (0, 1) (0, 1) (−1, 2)

Table 4. Description of the children of an hexagonal parent when p∗ = 0 and r = 1. In the
case λ′ = 1, i.e. λ = 4, the formulas are also consistent because the pink and purple groups
are replaced by a new one with only one hexagon.
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T1: 2

T2: 2
?

ε 0

P(B
(1)
p = ε) 1

F
(2)
yellow(ε) (0, 12)

T1: λ′

T2: 2λ′
? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(2)
green(ε) (−1, 2) (0, 0)

T1: λ′ − 1

T2: 2(λ′ − 1)

? ? ? ?

ε (0, 0) (0, 1) (1, 0) (1, 1)

P(B
(2)
p = ε) (1− p)2 (1− p)p p(1− p) p2

F
(2)
pink(ε) (1, 0) (0, 1) (0, 1) (−1, 2)

T1: 2

T2: 2
? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(2)
purple(ε) (1, 0) (0, 1)

T1: λ′

T2: 2(λ′ − 1)

? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(2)
blue(ε) (0, 0) (1, 0)

T1: 0

T2: 1
? ? ? ?

ε (0, 0) (0, 1) (1, 0) (1, 1)

P(B
(2)
p = ε) (1− p)2 (1− p)p p(1− p) p2

F
(2)
brown(ε) (0, 1) (−1, 2) (−1, 2) (−2, 3)

T1: 0

T2: 2

? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(2)
orange(ε) (0, 0) (1, 0)

Table 5. Description of the children of an hexagonal parent when p∗ = 0 and r = 2.
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T1: 2

T2: 2

?

ε 1

P(B
(1)
p = ε) 1

F
(1)
yellow(ε) (1, 0)

T1: 2

T2: 2
?

ε 1

P(B
(1)
p = ε) 1

F
(1)
red(ε) (0, 12)

T1: 2

T2: 2
? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(1)
purple(ε) (0, 1) (−1, 2)

Table 6. Description of the children of an hexagonal parent when p∗ = 1 and r = 1.

T1: 2

T2: 2

?

ε 1

P(B
(1)
p = ε) 1

F
(2)
yellow(ε) (1, 0)

T1: 2

T2: 2
? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

F
(2)
purple(ε) (0, 1) (−1, 2)

Table 7. Description of the children of an hexagonal parent when p∗ = 1 and r = 2.
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7.2. The square tessellation.

Phantom types

S
u

rv
iv

o
r

ty
p

es T1 2 −1 −4 0 0 0 0 1 1 0

T2 0 2 4 0 0 0 0 0 0 1

T0 0 0 0 2 2 3 4 1 2 1

Table 8. The explicit rules in the case p∗ = 1 for the reduction of the different types Ti.
Each phantom type Ti may be expressed as a linear combination of the 3 survivor types T1,
T2 and T0 only. The rules in the case p∗ = 0 are exactly the same, save for the fact that
T0 is not a survivor type, which removes the last line of the table.

p∗ = 0 p∗ = 1

Parent of type T1

Parent of type T2

Parent of type T0

Table 9. The potential children of a square parent for the case of the square tessellation.
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T1: λ− 4

T2: 2(λ− 3)
? ? ? ?

ε (0, 0, 0) (1, 0, 0) or (0, 0, 1) (1, 0, 1) (ε′, 1, ε′′)

P(B
(3)
p = ε) (1− p)3 2p(1− p)2 p2(1− p) p

Fgreen(ε) (1, 0) (0, 1) (−1, 2) (0, 0)

T1: 2

T2: 2
? ? ?

ε (0, 0) (1, 0) (ε′, 1)

P(B
(2)
p = ε) (1− p)2 p(1− p) p

Fpurple(ε) (1, 0) (0, 1) (0, 0)

T1: 2

T2: 2
? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

Fyellow(ε) (1, 0) (0, 1)

T1: λ− 2

T2: 2(λ− 3)

? ?

ε 0 1

P(B
(1)
p = ε) 1− p p

Fblue(ε) (0, 0) (1, 0)

T1: 0

T2: 1
? ? ? ?

ε (0, 0, 0) (1, 0, 0) or (0, 0, 1) (1, 0, 1) (ε′, 1, ε′′)

P(B
(3)
p = ε) (1− p)3 2p(1− p)2 p2(1− p) p

Fbrown(ε) (0, 1) (−1, 2) (−4, 4) (0, 0)

T1: 0

T2: 1

? ? ?

ε (0, 0) (0, 1) or (1, 0) (1, 1)

P(B
(2)
p = ε) (1− p)2 2p(1− p) p2

Fred(ε) (0, 0) (1, 0) (0, 1)

Table 10. Description of the potential children of a square parent of type T1 or type T2
for the model with p∗ = 0 for the case λ ≥ 4.



FRACTAL RANDOM SETS ASSOCIATED WITH MULTITYPE GALTON-WATSON TREES 41

T1: λ− 4

T2: 2(λ− 4)
? ? ? ?

ε (0, 0, 0) (1, 0, 0) or (0, 0, 1) (1, 0, 1) (ε′, 1, ε′′)

P(B
(3)
p = ε) (1− p)3 2p(1− p)2 p2(1− p) p

Fgreen(ε) (1, 0, 0) (0, 1, 0) (−1, 2, 0) (0, 0, 0)

T1: 2

T2: 2
? ? ?

ε (0, 0) (1, 0) (ε′, 1)

P(B
(2)
p = ε) (1− p)2 p(1− p) p

Fpurple(ε) (0, 1, 0) (−1, 2, 0) (0, 0, 0)

T1: λ− 4

T2: 2(λ− 4)

? ? ? ?

ε (0, 0, 0) (1, 0, 0) or (0, 0, 1) (1, 0, 1) (ε′, 1, ε′′)

P(B
(3)
p = ε) (1− p)3 2p(1− p)2 p2(1− p) p

Fblue(ε) (0, 0, 0) (0, 0, 1) (0, 0, 2) (1, 0, 0)

T1: 2

T2: 2

? ? ?

ε (0, 0) (1, 0) (ε′, 1)

P(B
(2)
p = ε) (1− p)2 p(1− p) p

Fpink(ε) (0, 0, 1) (0, 0, 2) (1, 0, 0)

T1: 2

T2: 2

?

ε 1

P(B
(1)
p = ε) 1

Fyellow(ε) (1, 0, 0)

Table 11. Description of the potential children of a square parent of type T1 for the model
with p∗ = 1 for the case λ ≥ 4.
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T1: 0

T2: 1 ? ? ? ?

ε (0, 0, 0) (1, 0, 0) or (0, 0, 1) (1, 0, 1) (ε′, 1, ε′′)

P(B
(3)
p = ε) (1− p)3 2p(1− p)2 p2(1− p) p

Fbrown(ε) (0, 1, 0) (−1, 2, 0) (−4, 4, 0) (0, 0, 0)

T1: 0

T2: 2 ? ? ? ? ? ? ?

ε (0, 0, 0, 0) (ε′, 1, 0, 0) (ε′, 1, 0, 1) (ε′, ε′′, 1, ε′′′) (1, 0, 0, 0) (1, 0, 0, 1) (0, 0, 0, 1)

P(B
(4)
p = ε) (1− p)4 p(1− p)2 p2(1− p) p p(1− p)3 p2(1− p)2 p(1− p)3

Forange(ε) (1, 0, 0) (0, 1, 0) (−1, 2, 0) (0, 0, 0) (1, 0, 1) (0, 1, 1) (0, 1, 0)

T1: 0

T2: 1

? ? ? ? ? ? ?

ε (0, 0, 0, 0, 0)
(ε′, 1, ε′′, 0, 0)

or (0, 0, ε′, 1, ε′′)
(ε′, 1, ε′′, 1, ε′′′)

(1, 0, 0, 0, 0)

or (0, 0, 1, 0, 0)

or (0, 0, 0, 0, 1)

(1, 0, 1, 0, 0)

or (0, 0, 1, 0, 1)

or (1, 0, 0, 0, 1)

(1, 0, 1, 0, 1)
(ε′, 1, ε′′, 0, 1)

or (1, 0, ε′, 1, ε′′)

P(B
(5)
p = ε) (1− p)5 2p(1− p)2 p2 3p(1− p)4 3p2(1− p)3 p3(1− p)2 2p2(1− p)

Fred(ε) (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (0, 0, 2) (0, 0, 3) (1, 0, 1)

Table 12. Description of the specific potential children of a square parent of type T2 for
the model with p∗ = 1 for the case λ ≥ 4.

7.3. The triangular tessellation.
In the case of the triangular tessellation, only the types T1, T2 and T3 are relevant. Type

T3 is a phantom type which may be reduced using the rule T3=3T2−3T1.

(a) (b)

Figure 18. The potential children of a parent of type T1 (a) and a parent of type T2 (b)
for the case of the triangular tessellation (here λ = 8). A potential children only should be
a colored triangle belonging to the first lines neighboring ∂Kn.
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T1: λ− 2

T2: 2(λ− 2)

? ?

ε 0 1

P(B(1) = ε) 1− p p

Fgreen(ε) (1, 0) (0, 0)

T1: λ− 3

T2: 2(λ− 3)

? ? ?

ε (0, 0) (1, 0) or (0, 1) (1, 1)

P(B(2) = ε) (1− p)2 2p(1− p) p2

Fblue(ε) (0, 0) (1, 0) (0, 1)

T1: 2

T2: 2

? ?

ε 0 1

P(B(1) = ε) 1− p p

Fpurple(ε) (0, 0) (1, 0)

T1: 2

T2: 2

?

ε 0

P(B(1) = ε) 1

Fyellow(ε) (0, 0)

T1: 0

T2: 1 ? ?

ε 0 1

P(B(1) = ε) 1− p p

Fbrown(ε) (0, 1) (0, 0)

T1: 0

T2: 1
? ? ? ?

ε (0, 0, 0)

(1, 0, 0)

or (0, 1, 0)

or (0, 0, 1)

(1, 1, 0)

or (1, 0, 1)

or (0, 1, 1)

(1, 1, 1)

P(B(3) = ε) (1− p)3 3p(1− p)2 3(1− p)p2 p3

Forange(ε) (0, 0) (1, 0) (0, 1) (−3, 3)

Table 13. Description of the potential children of a triangle parent of type T1 or type T2
for the model with p∗ = 0 for the case λ ≥ 4.
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