Supporting Information for

Impact of interfacial disorder and band structure on the resonant conductance

oscillation in quantum-well based magnetic tunnel junctions

Tianyi Ma^{1,2,•}, Bingshan Tao^{1,2,•}, Xavier Devaux¹, Hongxin Yang³, Yalu Zuo¹, Sylvie Migot¹, Oleg Kurnosikov¹, Michel Vergnat¹, Xiufeng Han^{2,*}, Yuan Lu^{1,*}

¹Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, 54011 Nancy, France ²Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China ³Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310058, China

▲ *Authors having equal contributions*

* Corresponding authors: <u>yuan.lu@univ-lorraine.fr</u>; <u>xfhan@iphy.ac.cn</u>

Table of content

Note 1: RHEED patterns of Sample <i>E</i> at different growth steps
Note 2: STEM-EELS elements maps of Samples <i>B</i> , <i>D</i> and <i>E</i> with different Co insertion at Fe/MgAlO _x interface inside QW
Note 3: RHEED patterns and magneto-transport measurements of the control Sample K 6
Note 4: Symmetry-dependent band structure of bcc Fe, bcc Co and Fe ₄ N7
Note 5: STEM-HAADF images and RHEED pattern of Sample C with Fe ₄ N top electrode 8
Note 6: Repetition measurements to confirm sub-step features in dI^2/dV^2 curves
Note 7: RHEED patterns and intensity oscillation of Samples <i>F</i> and <i>G</i> with different Fe insertion at Fe/MgAlOx interface in the QW
Note 8: RHEED and magneto-transport measurements on single barrier MgAlO _x MTJ with Co insertion
References

Note 1: RHEED patterns of Sample *E* at different growth steps

Figure S1. RHEED patterns of Sample *E* at different growth steps along the [110] azimuth of MgO substrate. The growth temperature in "as grown" state is around 30 to 80° C.

Note 2: STEM-EELS elements maps of Samples B, D and E with different Co insertion at Fe/MgAlO_x interface inside QW

Figure S2. STEM-HAADF images and elements maps extracted from STEM-EELS measurements of Sample

В.

Sample D: Fe/Co(2 MLs)/MgAlO_x/Co(4 MLs)/Fe

Sample *E*: Fe/Co(4 MLs)/MgAlO_x/Co(4 MLs)/Fe

Figure S4. STEM-HAADF images and elements maps extracted from STEM-EELS measurements of Sample *E*.

Figure S5: Atomic composition profiles extracted from STEM-EELS for Sample *E*.

Note 3: RHEED patterns and magneto-transport measurements of the control Sample K

Figure S6. (a-c) RHEED patterns of the control Sample *K* at different growth steps along the [100] azimuth of MgO substrate. (a) 10 nm Fe QW after annealing at 400°C. (b) 12 MLs MgAlO_x grown at 80°C. (c) 10 nm top Fe layer after annealing at 250°C. (d,e) TMR curves measured at 16K and RT in DMTJs (d) without and (e) with Co insertion. (f) The corresponding bias dependence of normalized d^2I/dV^2 in the P state.

Figure S7. Symmetry and spin-resolved band structures of bulk (a) bcc Fe, (b) bcc Co and (c) Fe₄N along the transport direction (Γ -X). (a,c) are redrawn from Ma et al.¹ (b) are redrawn from Bagayako et al.²

Note 5: STEM-HAADF images and RHEED pattern of Sample C with Fe4N top electrode

Figure S8. STEM-HAADF images with (a) low-magnification and (b) high-resolution scale. Figures are redrawn from Ma et al.¹ (c) RHEED pattern shows that Fe_4N is epitaxially grown on MgAlO_x.

Note 6: Repetition measurements to confirm sub-step features in dI^2/dV^2 curves

To ensure that noise does not affect the measured signal and to confirm that the sub-steps are indeed due to the QW states, we conducted two independent measurements. The first measurement characterized the *I-V* curves over a range of ± 1.5 V with 20 repetitions. The second measurement covered a range of ± 0.65 V with 50 repetitions. As shown in **Fig. S9**, similar features with sub-steps are clearly observed in the averaged dI^2/dV^2 curves from both measurements. Our results confirm that the sub-steps indicated by the black arrows originate from the broadened QW states due to the chemical disorder. For verification, we have also uploaded all raw *I-V* curves to the website (https://zenodo.org/records/13291346).

Figure S9. Experimentally measured fine structure in d^2I/dV^2 of Sample *D*. The two independent measurements show similar sub-step features that are marked by black arrows.

Note 7: RHEED patterns and intensity oscillation of Samples F and G with different Fe insertion at Fe/MgAlOx interface in the QW

Figure S10. (a) RHEED intensity evolution of Sample *F* during the growth of 1 ML Fe (upper panel) and the growth of 12 MLs MgAlO_x (lower panel). (b) RHEED patterns of Sample *F* at different growth steps along the [100] azimuth of MgO substrate. The top 10 nm Fe was annealed at 400°C.

Figure S11. (a) RHEED intensity evolution of Sample *G* during the growth of 2 MLs Fe (upper panel) and the growth of 12 MLs MgAlO_x (lower panel). (b) RHEED patterns of Sample *G* at different growth steps along the [100] azimuth of MgO substrate. The top 10 nm Fe was annealed at 250°C.

Figure S12. Magneto-transport measurements for Sample *G*. (a) TMR curves measured at 17K and RT. (b,c) Bias dependent normalized (b) dI/dV and (c) d^2I/dV^2 curves in P and AP states.

Note 8: RHEED and magneto-transport measurements on single barrier MgAlO_x MTJ with Co insertion

Figure S13. RHEED intensity oscillation (a) and patterns (b) of sample Fe/Co(4MLs)/MgAlO_x/Co(4MLs)/Fe MTJ at different growth steps along the [100] azimuth of MgO substrate. The top 10 nm Fe was annealed at 400°C.

Figure S14. (a) TMR curves measured at 14K and RT in normal MTJ with Co insertion. (b,c) Bias dependent normalized (b) dI/dV and (c) d^2I/dV^2 curves in P and AP states.

References

- Ma, T.; Zhu, Y.; Dainone, P. A.; Chen, T.; Devaux, X.; Wan, C.; Migot, S.; Lengaigne, G.; Vergnat, M.; Yan, Y.; Han, X.; Lu, Y. Large Sign Reversal of Tunneling Magnetoresistance in an Epitaxial Fe/MgAlOx/Fe4N Magnetic Tunnel Junction. *ACS Appl. Electron. Mater.* 2023, 5 (11), 5954–5961. https://doi.org/10.1021/acsaelm.3c00937.
- (2) Bagayoko, D.; Ziegler, A.; Callaway, J. Band Structure of Bcc Cobalt. *Phys. Rev. B* **1983**, *27* (12), 7046–7049. https://doi.org/10.1103/PhysRevB.27.7046.