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Abstract

Land use intensification favours particular trophic groups which can induce architectural 

changes in food-webs. These changes can impact ecosystem functioning and stability. 

However, the imprint of land management intensity on food-web architecture has rarely been 

characterised across large spatial extent and various land uses. We investigated the influence 

of land management intensity on six facets of food-web architecture for 67,051 European 

terrestrial vertebrate communities and its dependency on land use and climate. We found that, 

in general, intensification tended to lower proportions of both apex and basal species, favoured 

mesopredators and decreased food-webs compartmentalisation. These general trends were 

particularly strong in forests and settlements, but some contexts, like Mediterranean forest or 

Atlantic croplands, showed strong and discrepant responses. By favouring mesopredators in 

most contexts, intensification could undermine basal tetrapods, the cascading effects of which 

need to be assessed. Our results support apex predator diversity protection where possible.
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Introduction

Land  use  intensification  and  change  have  been  identified  as  the  most  impactful  factors  of

biodiversity loss in terrestrial and freshwater ecosystems (Diaz et al., 2019), generating habitat

fragmentation  or  loss  (Fahrig  et  al.,  2003),  introduction  of  invasive  species  (Doherty  et  al.,

2016), direct interactions between humans and wildlife (e.g. exploitation, hunting) and pollution.

Increasingly,  studies  have  shown that  land  use  intensification  leads  to  changes  in  species

composition across trophic groups (Gossner et al., 2016, Etard et al., 2022). However, species

are not independent of each other. Instead they interact in complex food-webs that reflect the

flow of energy and biomass in the system, and the interdependency among species (Link et al.,

2005). The architecture of food-webs, namely the configuration of trophic interactions between

species in a community, can be summarised into key properties that have an impact on food-

web  dynamics  (e.g.  degree  of  omnivory,  generalism,  compartmentalization,  trophic  chain

lengths,  see  Botella  et  al.,  2022).  Changes  in  food-web  architecture  following  land  use

intensification might be indicative of the potential for ecosystem collapse (Evans et al., 2013,

Keyes  et  al.,  2021,  Saint-Béat  et  al.,  2015).  Food-webs  sustain  a  number  of  ecosystem

functions and services, such as pest control (Montoya et al.,  2003), seed dispersal (Corlett,

2017),  or  nutriment  cycling  in  soils  (De  Vries  et  al.,  2013),  and  their  architecture  partly

determines community stability (Tylianakis et al., 2010, Saint-Béat et al., 2015, Mestre et al.,

2022).  We  thus  urgently  need  to  understand  how  changes  in  land  use  will  modify  the

architecture of food-webs (Li et al., 2018, Rigal et al., 2021). While local studies focusing on

specific  land  uses  or  taxonomic  groups  can  help  formulate  hypotheses  on  how  land

management  intensity  affects  food-web architecture (Agostini  et  al.,  2020,  De Visser  et  al.,

2011, Gossner et al., 2016, Hallmann et al., 2014, Heger et al., 2018, Herbst et al., 2013), we

lack a macroecological assessment of these hypotheses and their context-dependence.
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Local-scale  studies  have  shown  that  land  use  intensification  favours  a  limited  set  of

synanthropic  and  generalist  species,  in  terms  of  habitat  (Clavel  et  al.,  2011)  and  trophic

interactions (McKinney & Lockwood, 1999), at the expense of more specialist ones, leading to

biotic  homogenization  (Gossner  et  al.,  2016,  McKinney  &  Lockwood,  1999).  On one  hand,

intensive grassland management reduces plant diversity and induces local extinction cascades

in higher trophic levels (Herbst et al.,  2013). Likewise,  increased use of pesticides indirectly

affect species feeding on plants or invertebrates and is a well-known cause of the loss of basal

vertebrate species, such as in birds (Geiger et al., 2010, Hallmann et al., 2014) and amphibians

(Agostini et al., 2020, Sparling et al., 2001). On the other hand, human activities and habitat loss

often negatively affect top predators even more drastically than lower trophic levels (Dobson et

al., 2006, Visser et al., 2011, Estes et al., 2011). This might lead to a loss of top-down control of

mesopredators in trophic communities, called mesopredator release (Prugh et al., 2009), and

offer opportunities for new mesopredators to establish (Heger et al., 2018). The mesopredator

release could indirectly generate negative pressure on basal species (Estes et al., 2011). The

decrease in  richness of  both  basal  species  and top predators  could  induce  shorter  trophic

chains and denser networks through replacement of specialists by generalists or omnivores.

These  more  frequent  generalists  and  omnivores  should  also  make  networks  less

compartmentalised  (i.e.  groups  of  species  interacting  more  together  than  with  others  are

expected to be more rare). These ecological processes related to intensification should thus

translate into the following changes on six different facets of food-web architecture (Figure 1)

that we test here: decreased proportions of (1) apex and (2) basal species, higher proportions of

(3)  trophic  generalists  and  (4)  omnivores,  (5)  shorter  trophic  chains  and  (6)  decreased

compartmentalization.

We  build  on  a  recent  macro-scale  study  on  European  terrestrial  vertebrate  food-web

architectures  (Braga  et  al.,  2019)  that  found  a  decreased  connectance  and  increased
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compartmentalization  in  landscapes  more  strongly  influenced  by  humans.  These  trends

contradict  our  general  expectations,  motivating further  investigations  accounting  for  context-

dependency. We used a recent high resolution classification of land management intensity for

different land uses (Dou et al., 2021), along with massive presence-only observations collected

across Europe (GBIF, iNaturalist) and knowledge of trophic interactions between all European

terrestrial  vertebrates,  hereafter  called  the  metaweb  (Maiorano  et  al.,  2020).  Through  a

thorough spatial sampling analysis, we reconstructed 67,051 local meta food-webs containing

all potential interactions among the species present in a 1km² resolution. These local meta food-

webs  had  a  total  of  756  vertebrate  species  and  spanned  five  bioclimatic  regions  (Atlantic,

Continental, Mediterranean, Alpine or Boreal) and six land uses (forest, grasslands, arable and

permanent croplands, agricultural mosaics or human settlements) across Europe. We quantified

the  six  above-mentioned  architectural  facets  (Figure  1)  in  each  local  meta  food-web,  and

evaluated how they were influenced by land management intensity. To investigate the context-

dependence  of  the  response  to  intensification,  we  tested  this  response  per  land  use  and

bioclimatic region.

Material and methods

Data

Species presence/absence/uncertainty rasters. To quantify the effects of land management

intensity on European tetrapods trophic networks, we gridded species occurrences from GBIF

and iNaturalist. We chose to use these occurrences to complement  the extent of occurrence

from IUCN or BirdLife, commonly used previously (e.g. Braga et al.,  2019, O’Connor et al.,

2020),  which  can not  be  interpreted as  an area  of  certain  presence  at  our  resolution.  We

considered 756 terrestrial vertebrate (hereafter vertebrate) species with at least one geolocated

occurrence after data cleaning (see  Appendix S1) across continental Europe (35 countries).
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Since  most  data  in  GBIF  and  iNaturalist  are  presence-only  data,  we  sub-selected  cells  to

minimise the impact of false absences. More specifically, for each species, we built  a raster

indicating the presence, absence or uncertain status of that species in each 1km by 1km cell of

the land use raster described below (as shown in box 2 of  Figure S1.1). As a conservative

strategy, we first considered a species as absent in a cell if it was out of the species’ distribution

range provided by the IUCN Red List, including both native and invasive ranges (IUCN, 2021).

Within  the  IUCN  range,  cells  having  at  least  one  occurrence  of  the  focal  species  were

considered as  presences.  The remaining  cells  for  that  species  (inside  the IUCN range but

without occurrence) were considered as absences if the sampling effort in the cell exceeded a

defined species-specific threshold, or uncertain otherwise. The sampling effort in a cell for a

given species was approximated by the total number of occurrences across all species of the

same taxonomic class (Aves, Mammalia, Amphibia or Reptilia). The sampling effort threshold to

consider this species as absent when undetected was defined as the first decile of sampling

effort values across all presence cells of that species. The sensitivity of our main results to the

stringency of the sampling effort threshold and taxonomic sampling bias (e.g. favouring Aves

compared to Reptilia/Amphibia) were investigated in  Appendix S11.  We excluded from the

study all cells where more than 30% of all 756 species (i.e. 227 species) had uncertain status or

the observed richness was lower than 20 (box 3 of Figure S1.1), because a lower richness is

rare in tetrapod communities studied at comparable scale (Braga et al., 2019, Gaüzere et al.,

2022) and would likely be due to imperfect detection.

After this filtering process, cells were grouped per combination of bioclimatic region and land

use (explained further below) only retaining combinations containing enough cells to compare

land management intensity levels (see box 4 of Figure S1.1 for more detail). After cell filtering,

we  retained   67,051  cells  which  are  summarised  by  bioclimatic  region,  land  use  and

management intensity in Figure S3.4.
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Metaweb  of  tetrapod  trophic  interactions. We  used  the  metaweb  of  potential  trophic

interactions between European tetrapod species (Maiorano et al., 2020), which we restricted to

756  selected  species  with  enough  observations.  The  metaweb  of  these  species  is  fully

represented  in  Figure  S2.2 of  the  Appendix,  highlighting  its  decomposition  into  46  trophic

groups (the same as in O’Connor et al.,  2020); we also provide a simplified visualisation in

Figure 2 where species were aggregated per trophic group. 

Local meta food-webs. The metaweb was used to reconstruct what we call here the local meta

food-web associated with the set of species present in each retained cell. Two species were

assumed to interact locally if they are both observed in the cell and if they are known to interact

in the metaweb. This representation of food-webs can be also seen as a local realisation of the

metaweb  interactions  based  on  trusted  species  presences  and  absences,  consistently  with

many related studies (e.g., Poisot et al., 2012, Kortsch et al., 2019, Braga et al., 2019, O’Connor

et al., 2020). Species having locally no prey and predator were kept, as they can feed on non-

tetrapod  species  (aquatic  vertebrates,  invertebrates,  fungi,  plants),  without  affecting  most

network metrics (see architecture facets’ section below). 

Land use  and  management  intensity.  We used  a  new land  system map that  integrates

various land use and land cover data with intensity of use for Europe at 1km2 resolution (Dou et

al., 2021), which  covers EU28+ (including the EU, the United Kingdom, Norway, Switzerland,

and the Western Balkans, but excluding Iceland, Turkey and Macaronesia). We considered six

land  uses:  forest,  grassland  (except  grass  wetlands),  permanent  cropland  (vineyards,  olive

graves, fruit gardens), arable cropland, agricultural mosaic (cropland and grassland) and human

settlement (cities and peri-urban landscapes). Dou et al. (2021) decomposed each land use into

different  levels  of  land  management  intensity  (low/high  for  permanent  croplands,

low/medium/high for others) based on criteria that (i) depend on the land use (see Table S3.2)
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and (ii) have documented impacts on biodiversity, which make these land use classifications

suitable to our purpose. 

Bioclimatic  regions.  As  climate  influences  tetrapod  food-webs  (Braga  et  al.,  2019),  we

integrated it to control for the influence of its spatial variations in our analysis. We considered

the  biogeographical  regions  defined  by  the  European  Environment  Agency  (European

Environmental Agency, EEA 2021). These bioclimatic regions represent large scale biodiversity

units  reflecting  climatic  contrasts  and  are  based  on  an interpretation  of  geobotanical  data.

Among  the  11  original  regions,  5  were  used  in  our  study,  the  Alpine,  Atlantic,  Boreal,

Continental and Mediterranean regions, for which we had enough sampled cells (Figure S3.4).

Analysis methods

To evaluate the effect of land management intensity on six facets of food-web architecture (see 

Figure 1), we selected one or several network metrics summarising each facet. We measured 

the mean deviation per metric related to an increase of land management intensity (Figure 4) 

and tested, for each facet, the statistical significance of the multivariate deviation between 

intensity levels per combination of bioclimatic region and land use (which we refer to as context 

below, for instance mediterranean forests).

Network architecture facets

The network metrics composing each architecture facet are summarised in Table 1. They were 

computed for each local meta food-web. Detailed explanations are presented in the Appendix 

S4. For apex proportion, we computed the proportion of observed species that are apex 

predators (pApexMeta), which is determined from species trophic levels (MacKay et al., 2020) 

in the metaweb completed by species diets as additional nodes (as recommended in Maiorano 

et al., 2020). Diets were represented along with tetrapod trophic groups in the full metaweb 
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visualisation of Figure 2. For basal proportions, we computed two metrics: pBasalMeta and 

pBasal are the proportion of observed species having no tetrapod prey in the metaweb or local 

meta food-web, respectively. Both versions of the metric were considered because some of a 

species’ potential prey (metaweb) might have not been detected in local meta food-webs. For 

connectance, we computed the density of directed trophic interactions among tetrapod species 

in a local meta food-web (dirCon). For omnivory levels, we computed two metrics based on a 

continuous or categorical view of trophic levels: omniLvl is the average, over non-basal and 

non-apex species in the metaweb, of the standard deviation of their prey's trophic levels, while 

omniProp is the proportion of non-basal and non-apex species in the metaweb predating 

several levels (basal / intermediary / apex, see Appendix S4). For chain indices, we computed 

the longest (maxPath), mean (meanPath) and standard deviation (sdPath) of the shortest-

paths from locally basal species to top species. Finally, for compartmentalization, we computed 

the local modularity (modul, Newman et al., 2006), and the mean distance (meanShortDist) 

between species on the (undirected) local meta food-web. Several metrics were chosen for one 

facet when one dimension alone could not capture the ecological meaning well. As a logical 

consequence, metrics inside each facet were positively correlated but weakly correlated 

between facets (see Figure S5.6). We later interpret land management intensity as influencing 

a given facet only if all its metrics were influenced in the same way.

Mean metric deviations related to land management intensity

To assess the influence of land management intensity on architecture facets and its context-

dependence, we measured the mean deviation of each metric related to an increase in land

management  intensity  per  context.  We  fitted  a  multivariate  linear  regression  (Johnson  &

Wichern, 1992) over local meta food-webs where the metrics were set as dependent variables,

and  the  combination  of  context  and  land  management  intensity  as  categorical  explanatory

variable with nested contrasts, so that the deviation related to a higher intensity level (high or
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medium  compared  to  low)  is  nested  per  context  (i.e.  estimated  for  each  context).  More

precisely,  these nested contrasts  are  implemented  with  the R formula:  metric  ~  bioclimatic

region / land use / intensity). We obtained one mean deviation related to an increase of intensity

(high versus low, or mid versus low) for each network metric and for each context (bioclimate

and land use). Some combinations were not considered due to a lack of well sampled cells (see

Figure S3.4).  We obtained 38 mean deviations per metric,  including deviations from low to

medium intensity cells for 20 contexts, and from low to high intensity for 18 contexts, spanning a

total of 21 contexts (see Tables  S6.7 to S6.12, where each table shows one facet). We also

tested the robustness of these general results to several potential biases, namely the choice of

our sampling effort threshold for species detection, taxonomic detection bias and outlier food-

webs, in Appendix S10.

Tests of multivariate deviation significance 

We tested whether the mean deviations related to an increase of intensity were significant for

each facet and context. We tested the equality between the two multivariate distributions of

food-web metrics (high versus low intensity, or medium versus low intensity) included in the

facet, and detected significant deviations when the null hypothesis  was rejected (i.e. no effect

of higher land management intensity). This was done using a non-parametric multivariate test

based on Wilk's Lambda statistics, which accounts for the unbalanced number of cells between

intensity levels (Liu et al., 2011, implemented in the npmv R package, Burchett et al., 2017). We

defined the risk of detecting at least one false non-equality across our six facets to 5% per

context,  as explained in  Appendix S6.  The significance of  the deviation in  each context  is

indicated by a blue background of cells in Tables S6.7 to S6.11. 

Results
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The influence of land management intensity was overall weaker than those of climate and land 

use but accounting for land management intensity yielded a greater explanatory power of  food-

web variability based on the model partial R²s (Table S7.3). The general influence of land 

management intensity was quite strongly negative for apex proportions, with a mean relative 

deviation below -10% (Figure 4-top), and substantial on all other facets (around +-/5%), except 

omnivory, as explained below per facet.

Apex predator proportion decreased strongly under higher land management intensity. In

agreement with our hypothesis, apex predator proportion (pApexMeta) decreased with 

increasing land management intensity and had the strongest mean deviation of all food-web 

metrics (greater than 10% of the interquartile range, Figure 4-top). In other words, the decrease

of apex proportion in high land use intensity compared to low intensity represents >10% of the 

inter-quartile range of the overall metric variation among the 70 thousand local meta food-webs 

when correcting for the effect of climate and land use. This trend was robust with a nearly 

constant magnitude across sensitivity analyses (Appendix S10). This decrease concerned 8 of 

the 9 highest trophic groups which included only apex predators (Figure 5). Negative deviations

spanned 15 of the 21 contexts, represented 68% of all deviations, while positive deviations were

mostly small (Figure 4-bottom and Figure S6.7).

Basal species proportions decreased under higher land management intensity. In 

agreement with our hypothesis, the two metrics of basal species proportions were lower, with a 

relative deviation -5% in the most intensively managed landscapes averaging over both metrics 

(Figure 4-top) while controlling for context. This trend was also robust in all sensitivity analyses 

(Appendix S10). These decreases included 12 of the 16 trophic groups containing basal species

(Figure 5). Fifty percent of the 34 significant mean deviations showed a decrease of both 

pBasal and pBasalMeta metrics, spanning half of the 21 contexts (Figure 4-bottom, Table 3). 

This decrease was particularly strong in continental and boreal contexts (Figure S6.13). 
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Contrary to our expectation, pBasal and pBasalMeta increased with land management intensity 

in 26.5% of the significant contexts (Figure S6.13 and Figure S6.8). 

Connectance substantially increased under higher land management intensity. 

Connectance substantially increased in general with land management intensity with a relative 

deviation greater than +5% (Figure 4-top). Positive mean deviations spanned 17 of the 21 

contexts, represented 74% of all deviations, and were notably strong in all forests except the 

Mediterranean ones (Figure S6.9). Mediterranean contexts hosted most significant negative 

mean deviations. However, when considering only the most sampled cells for all taxonomic 

classes, the influence of a higher land management intensity on connectance was negative 

(Appendix S10, Figure S11.17), due to the selection of Spanish Mediterranean cells.

Omnivory showed contrasted responses to land management intensity. OmniLev and 

omniProp had context-dependent responses to land management intensity (Figure 4-top) 

across bioclimates and land uses. While most mean deviations were significant (34/38), only 

23.5% of them showed an increase of both omnivory levels (Figure 4-bottom), challenging our 

expectations. These spanned 6 contexts, including three forest contexts where strong 

deviations of both metrics were observed under the highest intensity level (Figure S6.10). In 

contrast, omnivory levels both decreased in 47.1% of the significant mean deviations, including 

all settlement contexts where deviations were particularly strong. These unexpected negative 

responses might be partly due to the taxonomic sampling bias because both metric mean 

deviations became positive and increased in magnitude when minimizing this bias in a 

complementary analysis (Appendix S10, Figure S11.17). 

Trophic chain lengths increased under high land management intensity in human 

settlements. Contrary to our expectations, the three metrics describing trophic chain length 

increased on average with land management intensity but with a moderate magnitude, i.e. the 
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relative deviations were inferior to +10% for the three metrics (Figure 4-top). Local meta food-

webs under low land management intensity had relatively more shortest-paths of length 1 (direct

predation on a basal species), while local meta food-webs under high land management 

intensity had more shortest-paths of length 2 to 5 (see Figure S8.13). This general trend 

concealed a strong context dependence. Indeed, four out of the nine contexts where we 

measured significant positive deviations were in human settlements and the relative deviations 

were strong for the Boreal, Continental and Atlantic settlements (Figure S6.11). Outside cities, 

significant positive deviations covered fewer contexts than significant negative deviations (5 

versus 6). Besides, the general increase of the three metrics was softer with a more stringent 

sampling effort quantile for cell selection (Figure S11.16) or when removing outlier food-webs 

(Figure S11.20). 

Compartmentalization overall decreased under high land management intensity. Both 

compartmentalization metrics decreased in general with increasing land management intensity 

with a moderate magnitude as relative deviations were superior to -10% for both metrics 

(Figure 4-top). This general trend is confirmed by a higher proportion of disconnected pairs of 

basal and apex species in low intensity food-webs compared to the high intensity ones (Figure 

S7.12), i.e. more frequent disconnected trophic chains or species. The decrease was robust in 

all sensitivity analyses and larger in magnitude for both metrics when correcting for taxonomic 

bias or removing outlier food-webs (Appendix S10). Of the 34 significant mean deviations, 56% 

showed a decrease and 27% an increase in both metrics, half of which were located in the 

Mediterranean region (see Figure S6.12).

The influence of land management intensity was strongly context-dependent. The general

influence of land management intensity concealed larger, contrasting effects across different 

climatic and land-use contexts, as shown by the very spread out relative deviations per 

contexts, often greater than 20% in absolute value, for all facets (Figure 4-top). The sign of 
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mean deviations varied across land uses and bioclimatic regions for all facets, except for apex 

proportions whose relative deviation was rarely positive and weak in these contexts (lower than 

+10%). Forests, croplands and settlements showed particularly strong responses in comparison

to agricultural mosaic and grasslands: The labels are often further from the centre in Figure 

S6.13 for forest and settlements contexts. The response of Mediterranean food-webs diverged 

from the general trends described above and was quite consistent among forest, settlements 

and croplands of this region: Connectance strongly and significantly decreased while 

compartmentalization strongly and significantly increased when land management was more 

intense (illustrated in Figure S6.13, detailed deviations in Figures S6.9, and S6.12). 

Mediterranean forests and settlements also showed strongly and significantly increased basal 

proportions, contrary to most other contexts including Mediterranean croplands (Figure S6.8). 

Even though other settlement contexts followed the general trends, Alpine and Mediterranean 

settlements strongly differed from it regarding connectance, with a strongly negative deviation 

(Figures 6 and S6.9). The influence of intensification was most opposed to the general trends 

in Mediterranean forests and Atlantic croplands (Figure S6.13), as both contexts showed a 

sharp increase of basal proportions (Figure S6.8), compartmentalization (Figure S6.11), and a 

strong decrease of connectance (Figure S6.9) and chain indices (Figure S6.10).

Discussion

We demonstrated that, in addition to more commonly considered climatic factors (Braga et al., 

2019, Kortsch et al., 2019), the architecture of local meta food-webs is significantly influenced 

by land use and management intensity. Although the overall impact of land management 

intensity was less pronounced compared to climate and land use, it still exerted a notable 

influence on specific trophic groups. Land management intensity generally strongly reduced the 

proportion of top predators. Furthermore, we observed a substantial negative general influence 

of intensification on basal tetrapods and compartmentalization, along with a positive influence 

14

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356



on connectance and the trophic chain lengths. However, for these latter architecture facets, the 

influence of intensification was highly contingent on the context. Notably, intensification sharply 

decreased connectance in Mediterranean and Alpine settlements, and it increased basal 

proportions and compartmentalisation in Mediterranean forests and Atlantic croplands. Besides,

we observed a sharp decrease of omnivory in all settlement contexts. 

Less intensively used landscapes tend to host local meta food-webs made of a higher 

proportion of apex and basal tetrapod species and with a greater compartmentalization. This 

combination of properties strongly suggests that food-webs became topologically more 

hierarchical (Clauset et al., 2008, see network on left of Figure 1 as an illustration) in response 

to intensification, namely networks that are similar to a tree. These findings support those of 

Mestre et al. (2022), who showed that low human pressures favours scale-free architectures, 

i.e. where the node degree distribution follows a power-law. A scale-free architecture combined 

with a high compartmentalization results in a hierarchical architecture (Barabási et al., 2003). 

This hierarchical architecture tends to limit the number of predators per basal species. Apex 

predators were also relatively more diverse under lower human pressures, suggesting a better 

regulation of mesopredators, which might indirectly limit the predation pressure on the basal 

layer (Prugh et al., 2009). 

High land management intensity resulted in a concentration of species diversity among 

mesopredators. In these environments, food webs exhibited a reduced proportion of apex 

predator species, a phenomenon often attributed to direct human interference (Prugh et al., 

2009, De Visser et al., 2011, Estes et al., 2011). Additionally, human activities led to a decline in

the proportion of basal tetrapod species. Consequently, the proportion of mesopredator species 

increased, aligning with the concept of mesopredator release as proposed by Prugh et al. 

(2009).
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The decline of basal tetrapods can be attributed to a combination of direct and indirect drivers. 

Human activities, including hunting, transportation or agricultural practices, account for a 

significant portion of tetrapod prey mortality  (Hill et al., 2019). Moreover, the mesopredator 

release phenomenon, amplified by top predators decline (Prugh et al., 2009), may increase 

predation pressure on basal tetrapods, considering that predation is the primary cause of their 

mortality (Hill et al., 2019).

Beyond these general trends of food-web architecture response to land management intensity, 

we observed a variety of more specific responses depending on the bioclimatic regions and land

uses. For instance, we observed a decrease of omnivory and an increase of trophic chain 

lengths in response to higher land management intensity in cities and peri-urban areas, partly 

explaining the unexpected general trends for these two facets. These results support trophic 

dynamics phenomena previously documented in urbanised habitats called prey specialisation 

and predator subsidy consumption (Fischer et al., 2012): Dense urban habitats may select 

mesopredator species specialising on prey adapted to such habitat (prey specialisation), such 

as certain small bird and rodent species, or mesopredators consuming anthropogenic food 

(predator subsidy consumption) such as garbage.

Context dependencies and discrepant results could also be explained by other forms of human 

impacts that do not always act in concert with intense land management. For instance, higher 

habitat fragmentation and diversity were significantly associated with higher intensity only in 

Mediterranean and Alpine forests (Figure s9.14). This may partly explain the singular response 

of Mediterranean forests, i.e. the decreased connectance and increased compartmentalization. 

A higher agglomeration of diverse land uses at a small spatial scale is thought to host more 

diverse independent trophic chains even though empirical evidence is still rare (Gonzalez et al., 

2011, Kortsch et al., 2015). Braga et al. (2019) showed, in the same area, that the increase of 

human footprint was related to a higher compartmentalization, in contradiction with our results. 
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This discrepancy might be due to the difference between land management intensity and 

human footprint (which incorporate different factors such as night light intensity, road and 

population density), but also to differences in the analysis methods, such as our choice to 

control for the context and to use food-web metrics normalised for species richness. When not 

accounted for, food-web size variability drives important variations in most metrics (Botella et 

al., 2022), which are not interesting in our context because the effects of human pressures on 

species richness have been well studied.

We acknowledge several limitations in our study stemming from constraints related to the data, 

spatial resolution, and food-web representation. We used a space-for-time substitution strategy 

(Walker et al., 2010, Blois et al., 2013) to examine the effects associated with varying land 

management intensity across space. These spatial effects likely reflect historical changes in 

intensification occurring over several decades. However, spatial patterns may not always 

accurately mirror the effects of land use intensification or other global changes (Gaüzère & 

Devictor, 2021). While we compared areas with similar large-scale bioclimates and land uses, 

we recognize that small-scale environmental variations covarying with land management 

intensity, such as elevational gradients in mountain regions, could also impact food-webs 

architecture and bias our results. Another limitation of our study pertains to the spatial scale 

used to reconstruct the local meta food-webs (1km²). Some species may have much larger 

home ranges (e.g. wolf, bear), and interact with other species in neighbouring cells, the extent 

of which depends not only on the species itself but also on landscape structure. Our cell 

selection process favoured areas with intense and multi-year sampling efforts, which facilitated 

the detection of highly mobile species in each occupied cell. Nevertheless, it is possible that we 

underestimated the presence of the largest and most mobile species, potentially introducing a 

negative bias in our estimates of apex proportions. 
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Moreover, our study did not account for the dynamic nature of species distributions, primarily 

relying on species observations over the past 30 years. Consequently, we may have overlooked

local declines of species during this period. Improving control for spatial sampling biases could 

also be achieved through statistical modelling of species detection and absence probabilities 

(Guillera Arroita, 2017). Yet, even though such modelling was successfully used with presence-‐

only data from crowdsourcing (van Strien et al., 2013), a better understanding of opportunistic 

sampling behaviours would be necessary to implement it effectively in our context.

Unlike sampled interaction networks, our local meta food-webs are neither snapshots frozen in 

time, nor limited by the imperfect detection of interactions. Instead, they represent a “maximum” 

depiction of all the interactions that likely occurred locally over several years, which makes 

sense in the context of our study (Thuiller et al., 2023). However, these potential trophic 

interactions may not necessarily manifest locally due to factors like phenological mismatches or 

low abundances of one or both interacting partners. As a result, we may unintentionally over-

emphasize certain rare trophic interactions. Further, local meta food-webs ignore how the 

realisation of interactions depends on the environment, which might bias our results. To 

enhance our approach, it would be valuable to conduct a critical comparison with sampled food-

webs. Another broader perspective is to integrate non-trophic interactions (Kéfi et al., 2016), 

interaction strengths (Saint-Béat et al., 2015) and feeding behaviours (Heckmann et al., 2012) 

into future attempts to characterise interaction network architecture changes.

Despite these limitations, our observations fuel the pressing question of the extent of future 

basal tetrapod collapse due to global changes. Further decline of basal tetrapods could incur 

further losses of crucial ecosystem services already threatened by climate change, as for 

instance the control of mosquito borne diseases (Brugueras et al., 2020), and of crop pests 

(Civantos et al., 2012). 
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Conclusion. Land use intensification has already changed the architecture of food-webs, likely 

affecting ecosystem functions, services, stability and resilience. The general influence of 

intensification on European tetrapod food-webs consistently undermine top predators. It often 

decreased the proportion of basal tetrapod species, compartmentalization, and increased 

connectance and trophic chain lengths. However, some contexts showed marked discrepant 

responses, such as an increase of basal tetrapod proportions and compartmentalization in 

Mediterranean forest and Atlantic croplands. Intensive urbanisation especially favoured longer 

trophic chains and lower omnivory. In summary, intensification has the potential to disrupt the 

regulation of mesopredators and heighten predation pressure on the basal layer of food webs. 

This underscores the importance of protecting top predators and raises questions about the 

long-term stability of food webs in the face of human-induced pressures.
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Figures

Figure 1. Hypothetical food-web architecture changes related to the ecological processes 
associated with land use intensification. However, our general assumptions could be 
contradicted by the context dependence of these processes, i.e. intensification does not 
necessarily enhance all these processes under all land uses or climates, their interactions and 
the effect of other unknown processes.
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Figure 2.  The metaweb of trophic interactions of our 756 European tetrapods aggregated per
trophic groups (O’Connor et al., 2020). Each node is one of the 46 trophic groups (detailed in
Table  S2.1),  its  size  represents  the  number  of  species  while  the  colours  represent  the
proportion of classes. The trophic groups were automatically positioned vertically according to
their  trophic  level  and  horizontally  so  that  connected  groups  are  more  aligned  than  non-
connected  ones  (TL-tsne  layout  method  of  the  R  package  metanetwork:
https://marcohlmann.github.io/metanetwork/).  Basal  resources  (i.e  diets  that  are  not  wild
vertebrates) were included as yellow nodes.
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Figure 3.  Map of the 67,051 studied local meta food-webs (1km² cells). Top: Cell locations 
colored by land management intensity. Bottom:  Cell locations colored by observed species 
richness.
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Figure 4. Food-web metric deviations related to higher land management intensity per 
architecture facet and agreement with the initial hypothesis. Top: For each metric (x-axis), the 
relative deviation (barplot on y-axis) is the average over 18 contexts (grey dots) of the mean 
deviation from low to high intensity food-webs divided by the interquartile range of the global 
metric distribution. This relative deviation indicates the general response to land management 
intensity while controlling for context-dependence. The bar plot’s colour indicates if the deviation
is confirming (green) or contradicting (red) the initial hypothesis on the corresponding facet (see 
Figure 1). Bottom: For each facet, a pie plot summarises the tests of deviation significance 
over the 38 contexts and intensity level comparisons (high versus low and medium versus low) 
into agreements (green) or disagreements (red) with the hypothesis, discordant metrics (purple) 
or non-significant, based on the multivariate test. 
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Figure 5.  Changes of trophic group frequencies when increasing land management intensity. 
This difference plot between average networks in high and low land management intensity cells 
is produced by the diff_plot function in metanetwork R package. As in Figure S2.2, each node 
is one trophic group and its size represents the sum of species frequencies across the 67,051 
local meta food-webs. A red (resp. green) node colour indicates a decrease (resp. increase) of 
the group frequency in high intensity cells compared to low intensity cells. More details on the 
trophic group compositions are provided in Table S2.1.
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Tables

Architecture 
facet

Metric 
acronym

Description Range of 
values 

Apex 
proportion

pApexMeta Proportion of species that are apex predators
in the metaweb.

[0,0.3]

Basal 
proportions

pBasalMeta Proportion of species that are basal in the 
metaweb.

[0,1]

pBasal Proportion of species that are basal in the 
local meta food-web (have no preys).

[0.1,1]

Connectance dirCon Directed connectance: density of interactions
in the local meta food-web.

[0,0.3]

Omnivory
Levels

omniProp Proportion of general omnivore species 
among non-basal and non-top species.

[0.3,1]

omniLvl Mean standard deviation of prey trophic 
levels of the non-basal and non-top species.

[0.1,0.7]

Chain 
indices

maxPath Maximum length across shortest-paths from 
basal to apex species in the local meta food-
web.

[0,12]

meanPath Mean length across shortest-paths from 
basal to apex species in the local meta  food-
web.

[0,3.8]

sdPath Standard deviation of lengths across 
shortest-paths from basal to apex species in 
the local meta food-web.

[0,2.4]

Compartment
alization 
metrics

modul Modularity (Newman et al., 2006): A 
measure of densely interconnected groups of
species being less connected with other 
species.

[-1,0.4]

meanShortDist Mean path distance across species pairs in 
the undirected transform of the local meta 
food-web.

[1,4.3]

Table 1. Architectural facets and their constituent metrics computed for all local food-webs in 
this study. 

Appendices

Appendix S1 - Data preprocessing

Figure S1.1 summarizes the 4 steps of our data preprocessing pipeline leading to the selection 
of the species, cells and combinations of bioclimatic region, land use and land management 
intensity in this study. In the text below, we also present in more detail the first step, namely 
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data cleaning of the GBIF/iNaturalist occurrences. Finally, we explain how to reproduce the data
preprocessing steps for transparency (optional) and the manuscript Figures using our online 
repositories.

Data cleaning (step 1 of Figure S1.1). We extracted all tetrapod geolocated occurrences from 
the GBIF (except iNaturalist dataset) with date posterior to 1980, including only human 
observations, a geolocation uncertainty below 1km (resolution of our study cells). Besides, we 
extracted the tetrapod iNaturalist research grade occurrences using the rinat R package to add 
them to the GBIF ones. Then, we removed duplicates, and occurrences suffering from various 
coordinates errors using the CoordinateCleaner R library:

- Degree-minute to decimal degree conversion error (cd_ddmm function)
- Location too close to gbif headquarters or other biodiversity institutions, country capitals,

country centroids. 
- Occurrences outside of the IUCN range, if available and including the invasive range 

(spatial ranges are assessed in the context of the IUCN red list of threatened species, 
IUCN, 2021), for the corresponding species. Indeed, we assumed that species presence
outside of the IUCN range was either an identification error, a geolocation error, or a 
vagrant specimen not proving the existence of a local population.

We fully removed the datasets for which the cd_round function of CoordinateCleaner 

detected a spatial rasterization pattern in their coordinates with a  periodicity superior to 1km. 
However, we acknowledge that this automatic detection algorithm was not sufficient to detect all
rasterized datasets as for instance one of them is visible from Figure 3-bottom. Finally, the 756 
species included in this study were those with at least one occurrence remaining and present in 
the tetrapod meta-web of trophic interactions (Maiorano et al., 2020).

Reproduction. To reproduce our result Figures, one can simply download preprocessed_data
and TrophicNetworksList Rdata files from our Zenodo repository 
(https://zenodo.org/record/5831144) and run R script analyse_preprocessed_data.R provided 
in our Github repository (https://github.com/ChrisBotella/foodwebs_vs_land_use). It will 
generate the Figures of this manuscript locally. To reproduce steps 2 to 4 of the data 
preprocessing pipeline given in Figure S1.1 from the cleaned GBIF/iNaturalist occurrences, it is 
possible to download the raw_data Rdata file from Zenodo (several Gb file) and run the 
preprocess_data.R script from our Github. It will re-generate preprocessed_data and 
TrophicNetworksList locally, which are the inputs for analyse_preprocessed_data.R.
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Figure S1.1. Data preprocessing pipeline (center), potential errors that each step is meant to 
control (left) and the websites where our material is provided for reproduction (right).

Appendix S2 - metaweb details
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Figure S2.2 The metaweb of trophic interactions of our 756 European tetrapod species and 
their 46 trophic groups. Top: The meso-scale metaweb where each node is one trophic group 
numbered as in Table S2.1, and identified by a combination of shape and colour. The vertical 
positioning is based on the trophic level, while the horizontal one is based on the proximity in 
the network (more connected groups are more aligned than non-connected ones). Diets are 
included as basal nodes. Each arrow indicates trophic interactions between species of two 
groups (going from prey to predator). Bottom: The micro scale metaweb where each node is 
one species and species belonging to a same trophic group are aggregated into clusters (group-
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TL-tsne method of the R package metanetwork) with the same trophic group shape and colour 
code as in the above Figure. 

Table S2.1. The 46 trophic groups of the European tetrapod metaweb as defined in O’Connor et
al. (2020) and represented in Figure S2.2-bottom above and Figure 4 of the main manuscript. 
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Groups are ordered by decreasing average trophic level. The table also shows their number of 
species (of the 756 studied here), the most frequently present species across the 67,051 local 
meta food-webs and the most common taxonomic class of the group. 

Appendix S3- Land systems and study area coverage

land uses Composition Land management 
intensity classes

Indicators of 
intensity used

1. Forest All forests except 
some clear cuts

Low, medium, high Wood production, 
probability of 
primary forest

2. Grassland All grasslands 
excluding grassed 
wetlands

Low, medium, high Inorganic fertilizer 
input, mowing 
frequency, 
livestock density

3. Permanent 
cropland

vineyards, olive 
graves, fruit 
gardens

Extensive (low), 
Intensive (high)

Understory 
vegetation

4. Arable 
cropland

Annual crops 
(wheat, etc)

Low, medium, high Inorganic fertilizer 
input, field size

5. Agricultural 
mosaic 

cropland and 
grassland

Low, medium, high Inorganic fertilizer 
input, field size, 
livestock density

6. Human 
settlement

Cities and 
surrounding urban 
areas

Low, medium, high Population 
density, distance 
from urban core, 
imperviousness

Table S3.2. Classification of land uses and land management intensity.
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Figure S3.4. Numbers of 1km² cells per land group (combination of bioclimatic region, land use 
and land management intensity included in the study) with >70% of all tetrapod species 
certainly present or absent and a richness >20. Land groups are colored based on their number 
of cells: No cell (red), 1 to 9 cells (orange), 10 to 29 (yellow) and more than 29 cells (green). We
finally kept a total of 67,051 cells for our study, including only the green combinations above and
discarding Black Sea and Pannonian regions because they lacked intensity levels for 
comparison.

Appendix S4- Detailed network metrics per architecture facet

Apex proportion: To define apex species, we first computed species trophic levels (MacKay et

al.,  2020) in the metaweb completed with species diets (Figure S2.2),  as recommended by
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Maiorano et al. (2020). There are 10 diets (1) “algae”, (2) “fish”, (3) “invertebrates”, (4) “domestic

animals”, (5) “mushrooms”, (6) “mosses and lichens”, (7) “detritus”, (8) “fruit”, (9) “seed, nuts

and  grains”  and  (10)  “other  plant  parts”.  They  were  integrated  as  additional  nodes  in  the

metaweb along with trophic relationships between them, that is: (1), (7) is eaten by (2) and (3).

(3) is eaten by (2) and (4). (5), (6), (7), (8), (9), (10) are eaten by (4). (10) is eaten by (5). This

makes  the  trophic  levels  more  meaningful,  especially  for  the  many  tetrapod  species  that

otherwise have no prey among tetrapods, because they can have variable height in the whole

trophic chains including non-tetrapod species. We define that species with trophic level above

2.262 are apex predators, so that the 59 selected species fitted best to those generally qualified

as  apex  predators,  including  wolf,  brown  bear,  wolverine,  foxes,  badger,  wild  cat,  eagles,

falcons, owls, and macro vipers. We then computed, in each local network, the proportion of

apex predators, hereafter called  pApexMeta. In the example local meta food-web of  Figure

S4.5, there are two species that are apex in the metaweb (their trophic level is higher than 2.26)

so pApexMeta=2/8=0.25.  

Figure S4.5. Virtual example of a local food-web and the values of our metrics. Eight species

are present in this virtual trophic community, and they are positioned vertically according to their
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trophic  level  in  the  metaweb of  tetrapod species.  If  a  species  has no tetrapod  prey  in  the

metaweb, it is a basal species (filled in green), if its trophic level is above 2.26, it is an apex

predator (filled in red), otherwise it is a mesopredator. The compartmentalization metrics are

computed from the undirected transform of the food-web, which is represented in the bottom.

Basal proportions: We computed the proportion of basal species in the local network (species

with no prey),  called  pBasal, and the proportion of  species that  are basal  in  the metaweb

(species without any tetrapod prey in the metaweb), called pBasalMeta. This gives a different

perspective as a non-basal species in the metaweb can be locally observed without its prey. In

the example  local  food-web of  Figure S4.5,  there  are  three  species  that  are  basal  in  the

metaweb (F, G, H) so pBasalMeta=3/8=0.375, but there are four species that have no prey in

the local food-web (E, F, G, H) so  pBasal=4/8=0.5. By comparing proportions of basal and

proportions of apex species between two sets of networks, we can also deduce the variation of

proportion of mesopredator species.

Connectance: We computed the directed connectance of  the local  network  as the average

number of prey per species (i.e. the average in-degree, reflecting trophic generalism) divided by

species richness, called dirCon. This metric captures the density of trophic interactions in the

local network and enables to compare the level of generalism independently of richness. We

preferred it to the actual average in-degree which tends to scale linearly with species richness

and may thus bias our signal here as observed richness is partially biased by heterogeneous

sampling effort. Note that we only accounted here for predation on terrestrial vertebrates as we

lack data for assessing the full trophic generalism on non-tetrapod species (e.g. invertebrates,

marine vertebrates, plants, fungi).

Omnivory levels: We computed two metrics for each local network. omniLvl takes the average,

over locally present mesopredator species in the metaweb (non-basal nor apex), of the standard

deviation of their prey trophic levels in the metaweb. This metric is based on a continuous view

of omnivory. In the example local food-web of Figure S4.5, the mesopredator species are E, C

and D. For each of these species, we must gather the trophic levels of its prey in the metaweb

and compute their standard deviation (which can’t be done from the information available in this

virtual example).  omniLvl is then the average of these three standard deviations.  omniProp

computes the proportion of locally present mesopredator species in the metaweb (non-basal nor

apex) that are classified as omnivores, namely feeding on several trophic level intervals in the

metaweb. We considered three trophic level intervals: basal (0 to the maximum trophic level of
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basal species in the metaweb, i.e. 1.572), mesopredators (from the latter to the apex trophic

level threshold,  explained above),  and apex (above the apex trophic level threshold).  In the

example local food-web of Figure S4.5, This definition enables us to locally detect surpluses of

species that have a potentially broader trophic niche, even though many of their prey are not

locally present. As defined here, our omnivory metrics are insensitive to species richness, basal

and apex proportions in the local community. Our choice to exclude apex predators from the

computation of omnivory levels is a consequence of the fact that most tetrapod apex predators

are very omnivore so that including them would induce a strong correlation with apex proportion

and carry no information about the omnivory of mesopredators, which are the main focus of this

facet. 

Chain indices: For each local network, we computed the longest, the mean, and the standard

deviation of trophic chain lengths linking basal and top species, based on directed shortest-path

lengths. More precisely, we computed the matrix of shortest-path lengths between basal and top

species only. Each row of this matrix corresponds to a basal species (no prey in local network),

each column to a top species (no predator in local network) and the coefficient (i,j) indicates the

length of the shortest path in the network (trophic chain) starting from basal species i and going

to top species j. When no path exists from i to j, it is indicated by an infinite coefficient. Note that

species without any prey or predator are excluded. Then, we turned this matrix to a vector,

removing  infinite  coefficients,  and  summarized  it  with  its  maximum  (maxPath),  mean

(meanPath) and standard deviation (sdPath) values. For instance, in the example local food-

web of Figure S4.5, there are four existing paths from the four local basal species (E, F, G, H) to

the single local top predator A. The associated four shortest-path lengths are: 2 (E->A), 2 (F-

>A),  3 (G->A), 3 (H->A). Then, maxPath is the largest (3), meanPath is their mean (2.5) and

sdPath is their standard deviation (~0.577).

Compartmentalization: We hypothesized that the replacement of trophic specialists with trophic

generalists and omnivores would tend to break up compartments within networks, i.e. sets of

species with denser  interactions between them than with the rest  of  the network.  It  should

translate into a decrease of network modularity (Newman et al., 2006), and a decrease of mean

distance between species  in  the  undirected network  (where the initial  directed edges are

replaced by undirected ones). Thus, we computed those two metrics, respectively called modul,

meanShortDist, in this architectural facet. More precisely,  modul is the sum (over all pairs of

nodes belonging to a same compartment) of the number of edges between two nodes (zero or

one here) minus its expectation if edges were placed at random, standardised by the number of
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edges. There are several ways to detect communities in a network. We first divided the network

into its connected components (sets of nodes between which there exist a path through edges)

and for each of them, we detected communities inside it with the cluster_spinglass function of

the igraph R package (spinglass model with simulated annealing, see Reichardt & Bornholdt,

2006), so that the network communities are the union of  communities across its connected

components. Then, the exact formula of the modularity Q for a network of n nodes and m edges

is given below:

Where  k_i  is  the degree (number of  edges) of node  i,  A_ij  equals one if  there is an edge

between  i  and  j  or zero otherwise,  and  com(i,j) equals  one if  i  and  j  belong to the same

community or zero otherwise. The modularity of a network lies between -1 and 1, with a value

above zero if nodes inside each community are more connected than expected by chance. This

is the case in the example local food-web of Figure S4.5 which has a modularity of 0.248. The

spinglass  algorithm  detected  three  node  communities:  (E,C,F),  (A,B)  and  (G,D,H).  These

communities make sense visually given the topology of the network undirected transform in the

bottom of Figure S4.5. 
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Appendix S5- Relationships between network metrics

Figure S5.6. Relationships between food-web metrics used in this study. Lower triangle: Scatter
plots of metrics values over 650 randomly sampled cells. Upper triangle: Pearson correlations 
between metric pairs over all cells.
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Appendix S6- Quantifying and testing effects of land management intensity
on food-webs architecture per land use and bioclimatic region 

We  notably  tested  whether  the  mean  deviations  related  to  an  increase  of  intensity  were
significant  for  each facet  and context.  We tested the equality  between the two multivariate
distributions of food-web metrics (high versus low intensity,  or medium versus low intensity)
included in the facet, and detected significant deviations when the null hypothesis  was rejected
(i.e.  no effect of  higher land management intensity).  This was done using a non-parametric
multivariate test based on Wilk's Lambda statistics, which accounts for the unbalanced number
of cells between intensity levels (Liu et al., 2011, implemented in the npmv R package, Burchett
et al., 2017). For every context, we set the first order risk  of detecting at least one false non-𝞪
equality across our 6 facets to 5%, which translates into a risk of 1-(1- )^( ) ≈ 0.009 in each⍺ ⅙
facet,  a rather conservative choice.  Following the procedure of Burchett  et  al.  (2017), when
three intensity levels were available for a context, we first tested the equality between the three
distributions with risk , and if equality was rejected, we tested the equality between each pair𝞪
with risk 2 /3, to maintain a strong control of the familywise error rate. The significance of the𝞪
deviation in each context is indicated by a blue background of cells in Tables S6.7 to S6.11. 

Figure S6.7. Food-web metrics deviations related to land management intensity, Part 1: Apex 
proportion embedding (pApexMeta). For each bioclimatic region (columns), land use and 
land management intensity level (rows), we show the index of variation along each metric 
between the considered intensity level (medium/high) and the reference one (low). This index is 
the centroid coordinate of the highest intensity group minus the centroid coordinate of the lower 
intensity group, divided by the interquartile range of the metric across all studied cells (as in 
Figure 2). It indicates the direction of the deviation and its importance compared to the dataset 
variability. Cells with a number over a white background indicate a significant multivariate 
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deviation in the corresponding context, established with a non-parametric multivariate test, while
cells with a grey background indicate a non-significant deviation and empty cells indicate no 
data. A significant deviation is written in pale green when its direction confirms our initial 
expectation, in dark red when it contradicts it, and in black for discordant deviations.

Figure S6.8. Food-webs modifications related to land management intensity, Part 2: Basal 
proportion facet (pBasalMeta; pBasal).

Figure S6.9. Food-webs modifications related to land management intensity, Part 3: 
Connectance embedding (dirCon). 
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Figure S6.10. Food-webs modifications related to land management intensity, Part 4: 
Omnivory levels facet (omniLev; omniProp). 

Figure S6.11. Food-webs modifications related to land management intensity, Part 5: Chains 
indices facet (maxPath; meanPath;sdPath). 
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Figure S6.12. food-webs modifications related to land management intensity, Part 6: 
Compartmentalization metrics facet (modul; meanShortDist). 
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Figure S6.13. Summary of the relative deviations per context and facet directions in a summary
2 dimensional plane. The multivariate responses of the six facets relative deviations (averaged 
for high and mid intensities) over the 21 contexts were summarised in two axes using a Singular
Value Decomposition (SVD), explaining 55% of the total variability. 
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Appendix S7- Fit of linear models per metric and the relative influence of 
climate, land use, and land management intensity

Table S7.3. Coefficient of determination (R²) per metric for the full linear model with all 
explanatory factors (climate, land use and land management intensity, see column 3) and partial
R²s for the sequential addition of the factors: the R² with climate only (column 2), and the partial 
R² related to the addition of land use (column 3) and to the addition of intensity compared to 

climate and land use only (column 4). The full model was also re-fitted (4th column) by 
excluding the 10% most outliers local meta food-webs, namely the 5% most negative and 5% 
most positive residuals.

Appendix S8- Shortest-Path lengths distribution in low vs high land 
management intensity

Metric R² climate Part. R²
Use |

climate

Part. R²
intensity |

use,
climate

R² all R² 
(-10%

outliers)

pApexMeta 0.163 0.034 0.008 0.198 0.319
pBasalMeta 0.032 0.046 0.007 0.083 0.135

pBasal 0.042 0.032 0.007 0.078 0.131
dirCon 0.009 0.019 0.007 0.034 0.055

omniProp 0.024 0.008 0.004 0.037 0.055
omniLev 0.069 0.025 0.004 0.097 0.161
maxPath 0.015 0.030 0.007 0.052 0.072

meanPath 0.018 0.045 0.009 0.071 0.14
sdPath 0.019 0.030 0.007 0.055 0.072
modul 0.007 0.012 0.009 0.027 0.056

meanShortD
ist

0.002 0.008 0.004 0.014 0.032

Average 0.036 0.026 0.007 0.068 0.112
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Figure S8.13. Average proportions of shortest-path lengths from basal to top species in 
european tetrapods food-webs under low (red) or high (blue) land management intensity. We 
used a weighted average to give an equal weight to each bioclimatic region and land use, i.e. 
we averaged proportions over networks in the same bioclimatic region, land use and land 
management intensity, before averaging over all networks in the same land management 
intensity.

Appendix S9- Effect of land management intensity on landscape 
fragmentation and diversity per land use and bioclimatic region

We computed for each cell three complementary metrics of landscape fragmentation and 
diversity based on the 36km² square window of cells (9x9 cells) centered on the focal cell: 
patchAntiArea, proxToBorder and divLandUse. patchAntiArea is the opposite of the number
of cells contained in the homogeneous patch of land system (land use and management 
intensity) containing the focal cell. proxToBorder is the opposite of the euclidean distance (in 
cells) to the closest cell border of this patch. We took the opposite of the last two quantities to 
ensure that an increase of value indicates higher fragmentation. divLandUse is the number of 
distinct land system (land use and management intensity) in the 8 adjacent cells to the focal 
one. The mean variation of each fragmentation metric related to higher land management 
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intensity and the significance of the multivariate deviation are reported per land group in Figure 
S9.14.

Figure S9.14. Landscape fragmentation and diversity metrics modifications related to land 
management intensity (patchAntiArea; proxToBorder; divLandUse). For each bioclimatic region 
(columns), land use and land management intensity level (rows), we show the mean variation of
each fragmentation metric related to higher intensity (when taking the low intensity level as 
reference). Cells with a number over a white background indicate a significant multivariate 
deviation in the corresponding context, established with a non-parametric multivariate test, while
cells with a grey background indicate a non-significant deviation and empty cells indicate no 
data. A significant deviation is written in pale green when positive for the three metrics and dark 
red when negative.

Appendix S10- Residual sampling effort variations across land 
management intensity levels

Our general results arised from the analysis of mean metric deviations related to variations of 
land management intensity for 21 contexts (combinations of land use and bioclimatic region). 
The residual spatial sampling bias can only bias the estimated mean deviation for a given 
context if the sampling effort varies between land management intensity levels. We plot in 
Figure S10.15 the distribution of log-sampling effort (number of records across cells, the log was
plotted to visualise to facilitate the comparison across classes) per land management intensity 
(bar colour), taxonomic class (x-axis) and context (plots). The sampling effort varies consistently
across classes, with birds always showing the highest sampling effort, and among cells per 
context and intensity level, we observe no relationship between land management intensity and 
the median sampling effort, whatever the taxonomic class, except in some rare cases. Hence, 
spatial sampling effort variations should not bias our mean deviation estimates. 
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Figure S10.15. Sampling effort per taxonomic class, land management intensity for the 21 
contexts, namely combinations of land use (row) and bioclimatic regions (column). 
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Appendix S11- Robustness of general results to various potential biases

Even though our main analysis was run on the most sampled cells, our cell selection criteria 
might potentially allow certain biases to affect our general results. Hence, we carried three 
independent sensitivity analyses to test the robustness of our main results to three bias factors: 
The stringency of the assumed species detection threshold, the overall sampling bias toward 
some taxonomic classes and the outlier food-webs.

For each type of bias, our approach was to subselect smaller set of cells among the 67,051 
initially selected cells, where the potential bias is minimised and to measure if our main result 
was preserved on this cell subselection, namely the sign and magnitude of the mean deviation 
of each metric between high and low intensity cells (as in Figure 4-top).

Sensitivity to the quantile of the detection threshold. With the cell selection of our main 
analysis, the number of species with uncertain absence were generally a small proportion of the
richness per cell, i.e. less than 20% of the observed richness in 84% of cells and less than 10% 
in 63% of cells. However, the number of uncertain species in a cell depends on the stringency of
the sampling effort threshold above which a given species is considered truly absent. Hence, we
investigated here the effect of the quantile chosen to generate the species-specific sampling 
effort thresholds, determining when the species is assumed absent if not detected. In our 
manuscript, we took the first decile (probability=0.1 in Figure S11.16) of the sampling effort 
values among the species presence cells as the species-specific sampling effort threshold. This 
might not be stringent enough to ensure that the species is truly absent for any species. Hence, 
we compared here the results obtained when the cell subselection was based on the third decile
(probability=0.3 in Figure S11.16) and the median (probability=0.5 in Figure S11.16). The 
number of selected cells decreased with 64,349 cells remaining when choosing the median. As 
a result, the metric deviations are almost unchanged when increasing the quantile, except for 
omniLev and maxPath, for which the deviations collapse. Given that our main results were not 
sensitive to the quantile choice, we kept the first decile in our main analysis to maximise our cell
sample size and hence our ability to detect significant deviations of architecture facets in the 
weakly sampled contexts (e.g.,  see Figure ). 
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Figure S11.16. Food-web metric deviations related to higher land management intensity per 
architecture facet and per choice of quantile value (0.1, in red, is the reference value of our main
results), determining the sampling effort needed for any given species to be considered absent 
when not observed. For each metric (x-axis), the mean relative deviation (y-axis) is the average 
of the mean deviation per context of high versus low intensity food-webs divided by the 
interquartile range of the global metric distribution, as in Figure 4. 

Sensitivity to taxonomic bias. Hence, our network metrics (described below) are likely more 
representative of interaction among birds and mammals, and may hence underestimate the 
effect of other important interactions such as birds predating diverse amphibians and reptiles.

Birds (Aves) and Mammals were overall much more intensively sampled than other classes 
(Reptilia, Amphibia) in our data, due to the large proportion of crowdsourcing data. Even though 
we imposed that 70% of the 751 tetrapod species must be certainly present or absent for a cell 
to be selected, the 30% remaining species may still concentrate a large part of Reptilia and 
Amphibia species due to this taxonomic sampling bias. This could potentially affect food-web 
metrics as for instance most Amphibia are actually basal species in the metaweb of trophic 
interactions (see Figure 3). To minimise this potential bias, we subselected the initially selected 
cells with the constraint that the four taxonomic classes were well sampled. More precisely, we 
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first computed the minimum sampling effort value such that more than 500 cells had a higher 
sampling effort in all four taxonomic classes for both low and high management intensity cells 
(this minimum value was 3). Then, we subselected the associated cells (1329 low intensity and 
561 high intensity cells) and re-computed the 18 mean deviation per metric and compared it 
with our main manuscript result in Figure S11.17. It shows that the sign of the deviation is 
unchanged for most metrics, except for dirCon and omniLev. 

Figure S11.17. Food-web mean relative metric deviations related to higher land management 
intensity per architecture facet for our reference cell selection (red, 67,051 cells) versus a 
subselection with high sampling effort on the four taxonomic classes (blue, 1,890 cells). For 
each metric (x-axis), the mean relative deviation (y-axis) is the average of the mean deviation 
per context of high versus low intensity food-webs divided by the interquartile range of the 
global metric distribution, as in Figure 4.

Sensitivity to the outlier food-webs. For each metric, some local food-webs had extreme 
metric values (|standardised residuals| >3), challenging the gaussian assumption on the 
residuals in linear regressions on the metrics used to estimate their mean deviation per context. 
These outlier food-webs are visible on the quantile-quantile (q-q) plots in the central panel of 
Figures S11.18 and S11.19. Most of the q-q plots showed a fat tailed distribution in the 
residuals (except pBasalMeta, pBasal, dirCon), often with a skewness on the right (pApexMeta, 
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path length and compartmentalisation metrics), mostly due to the 0 lower bound on these 
metrics whose value are low in our context. This is not problematic for our significance test on 
the multivariate deviation per architecture facet because we tested it using a non-parametric 
approach which doesn’t rely on the gaussian assumption. However, these outlier food-webs 
might potentially bias the deviations in our main results (Figure 4-top). Hence, for each food-
web metric, we re-computed the mean relative deviation when removing the outlier food-webs 
(in blue in Figure S11.20) and compared it to our main results (in red in Figure S11.20). Our 
main results appear robust to the removal of the outliers responsible for these long tails. Indeed,
for each metric, the mean relative deviations are almost unchanged when removing the outliers 
before fitting the linear regression (Figure S11.20).
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Figure S11.18. Part 1 diagnostic plots of the multivariate multiple regression. For each metric 
(row), the left panel shows the histogram of residuals, the central panel shows the quantile-
quantile plot to compare the deviation of the residual distribution to a gaussian distribution, and 
the right panel shows the mean and standard deviation with a sliding window along the axis of 
predicted values, enabling to check for homoscedasticity.
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Figure S11.19. Part 2 of diagnostic plots of the multivariate multiple regression. Same principle 
for the last 5 metrics.
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Figure S11.20. Food-web metric deviations related to higher land management intensity per 
metric (same as in Figure 4 of main manuscript) for the 67,512 initially studied local food-webs 
including outliers (blue bars) and for the filtered food-webs excluding the outliers of each linear 
regression (|standardised residuals| >3).
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