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ABSTRACT 
The trajectory of the body center of mass (CoM) is critical for evaluating balance. The 

position of the CoM can be calculated using either kinematic or kinetic methods. Each of 

these methods has its limitations, and it is difficult to evaluate their accuracy as there is no 
ground truth to which the CoM trajectory can be compared. In this paper, we use as ground 

truth the fact that, during the flight phase of running, the acceleration of the CoM is equal 

to gravity. We evaluate the accuracy of kinematic models of different complexity and find 

that the error ranges from 14 % to 36 % of gravity. We propose a novel method for optimally 

combining kinematic and force plate information. When using this proposed method, the 

error drops to 1.1 to 3.1 % for all kinematic models. Moreover, the proposed method 

provides a more reliable evaluation of foot placement control, which is commonly used as 
an indicator of balance during locomotion. 

 

The code for calculating this optimal combination is available in both Python and Matlab 
at:  https://github.com/charlotte-lemouel/center_of_mass 

The documentation is available at: https://center-of-mass.readthedocs.io  
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Introduction 

To maintain balance during movement, the nervous system must adequately control the 

forces acting on the body, in particular the weight, acting at the body center of mass (CoM) (Hof 

et al., 2005; Welch & Ting, 2008; Seethapathi & Srinivasan, 2019). During standing for example, 

the nervous system contracts lower limb muscles proportionally to the position, velocity and 

acceleration of the CoM to counteract postural perturbations (Welch & Ting, 2008). During 

walking, the margin of stability between the position of the extrapolated CoM and the base of 

support is thought to indicate whether subjects adopt a safe or a risky gait (Hof et al., 2005). 

During both walking and running on flat terrain, subjects select their next foot placement based 

on the position and velocity of their CoM (Wang & Srinivasan, 2014; Seethapathi & Srinivasan, 

2019). The CoM thus appears to be a critical variable for balance, and its trajectory is often used 

to evaluate balance and risk of falling. 

 

Unfortunately, the position of the CoM cannot be directly measured. Two types of methods 

are used to estimate the position of the CoM: kinetic methods which use either the Ground 

Reaction Force (GRF) or the Center of Pressure (CoP), and kinematic methods which use 

markers placed on the body. Good quality force-plates have a measurement noise of a few 

Newton, and can provide a very accurate measure of the CoM acceleration. This acceleration 

can then be integrated twice to determine position. However, because of the double 

integration, small offsets in the force measurement result in large drifts in the CoM position. 

One approach to mitigate this drift is to high-pass filter the force data (Maus et al., 2011). As a 

result, the kinetic CoM only has high-frequency movements around a constant average 

position. This approach is therefore only applicable to movements where the person stays in 

place, such as walking on a treadmill, and cannot capture slow changes of the person’s position 

within the treadmill, or changes in mean CoM height when transitioning from standing to 

walking to running (Maus et al., 2011). Another approach to mitigate the drift is to apply the 

double integration only on short segments such as single steps and re-setting the integration 

constants at each step (Pavei et al., 2017). This approach is therefore only applicable to short 

or repetitive movements. Moreover, this method has been shown to be very sensitive to the 

integration constants used, with a 5 % change in the integration constant of initial velocity 

resulting in a 10 % change of the antero-posterior excursions of the CoM during a gait cycle in 

walking (Gutierrez-Farewik et al., 2006). Thus, kinetic methods using the GRF require pre-

processing, are very sensitive to the pre-processing used, and cannot capture slow changes in 

CoM position. An alternative kinetic method is to low-pass filter the CoP (Caron et al., 1997). 

During quiet standing, this should reflect the low-frequency movements of the CoM. This 

method is however less accurate than either kinetic methods using the GRF or the kinematic 

methods described below (Lafond et al., 2004). 

 

An alternative method to determine the CoM position is to use the kinematics. Kinematic 

methods of varying complexity have been proposed. The simplest use a single marker on the 

sacrum (Rankin et al., 2014; Seethapathi & Srinivasan, 2019) or markers on the pelvis (Whittle, 

1997). In more complex models, the body is subdivided into segments. The CoM of each 

segment is calculated using marker coordinates and anthropometric tables, and the whole 

body CoM is determined as the barycentre of the segment CoMs. The most detailed models use 



a large number of markers to calculate three-dimensional segment coordinate systems, which 

are then used to determine the position of the segment CoM in the longitudinal, antero-

posterior and lateral directions relative to the segment origin (Dumas et al., 2007; Dumas & 

Wojtusch, 2018). Intermediate models use fewer markers and are only able to locate the 

segment CoM along the segment’s longitudinal axis (de Leva, 1996; Winter, 2009; Tisserand et 

al., 2016). Various anthropometric tables and marker sets have been proposed, typically based 

on photogrammetry of either living subjects (de Leva, 1996; Dumas et al., 2007) or cadavers 

(Winter, 2009) and in various study populations (Park et al., 1999; Nikolova & Toshev, 2007). 

Importantly, the choice of kinematic model can have a large influence on the resulting CoM 

trajectory (Gullstrand et al., 2009; Pavei et al., 2017; Catena et al., 2017). It is however not known 

which of these models is the most accurate for a given study population. Indeed, since the CoM 

position cannot be measured directly, no ground truth is available to determine the accuracy 

of these kinematic models. 

 

Kinetic methods have been proposed as a way of validating the various kinematic models. 

The most common approach is to compare kinematic and kinetic methods on a single gait cycle 

(or an average gait cycle). When applied at this short timescale, kinetic methods are assumed 

to accurately capture the CoM motion. They are therefore used as a reference and the mismatch 

between kinematic and kinetic methods is thought to reflect mainly the inaccuracy of the 

kinematic model. When using the pelvis or sacrum as the kinematic estimate, the excursions of 

the CoM are over-estimated in the vertical and antero-posterior directions relative to the kinetic 

estimate in able-bodied children and adults (Whittle, 1997; Eames et al., 1999; Gard et al., 2004). 

The excursions may also be overestimated in the lateral direction and phase-shifted in the 

antero-posterior direction (Whittle, 1997), although this is not systematically observed (Eames 

et al., 1999). When using segmental kinematic models, the vertical excursions may also be 

overestimated (Maus et al., 2011), although this is not systematically found (Eames et al., 1999). 

During walking in children, the root mean squared (RMS) distance between the kinetic and the 

segmental kinematic CoM was 15 mm (Gutierrez-Farewik et al., 2006). During walking in adults, 

the RMS distance ranged from 2.5 mm to 6.7 mm for various segmental models and reached 

10.7 mm for the pelvis (Pavei et al., 2017). The RMS was even larger in running, ranging from 4.9 

mm to 6.8 mm for segmental models and reaching 14.9 mm for the pelvis (Pavei et al., 2017). 

There are thus substantial discrepancies between kinematic and kinetic methods during gait, 

which are largest when using the pelvis or sacrum as the kinematic CoM. It isn’t clear whether 

these discrepancies entirely reflect the inaccuracy of the kinematic CoM, or whether they also 

depend on the pre-processing used in the kinetic method. 

 

An alternative way to use kinetics to validate kinematic models is to compare the GRF to the 

kinematic acceleration obtained by double differentiation of the kinematic CoM. Whereas 

comparing CoM positions obtained from kinematic and kinetic methods requires pre-

processing the GRF, comparing the accelerations does not. Instead, it requires additional pre-

processing of the kinematics. Indeed, the double differentiation exacerbates measurement 

noise, therefore kinematic CoM trajectories are first low-pass filtered (Maus et al., 2011; 

Simonetti et al., 2021). Although this approach has not been systematically used to compare 

kinematic models, it has shown discrepancies between kinetic and kinematic accelerations on 



the order of 10 % of the subject’s weight (Simonetti et al., 2021). Similar discrepancies of at least 

10 % of the subject’s weight have been reported when applying inverse kinematics, a method 

which also relies on anthropometric tables (Hamner et al., 2010; Futamure et al., 2017; Sturdy 

et al., 2022).  

 

Finally, kinetics can be used to obtain individualised body segment inertial parameters for 

a personalised kinematic model (Cotton et al., 2008; Jovic et al., 2016; Bonnet et al., 2016; 

Chebel & Tunc, 2023). This requires an identification phase, during which the subject performs 

a series of poses. The inertial parameters providing the best fit between the kinematic CoM and 

the kinetics are determined. This can reduce the mismatch between kinematics and kinetics by 

10 to 45 %, but at the cost of the subject performing an elaborate seven minute “dance” during 

the identification phase (Bonnet et al., 2016). In robotics, the statically equivalent serial chain 

technique is used to obtain personalised kinematic models (Cotton et al., 2008). This allows the 

CoM to be obtained from a more limited set of parameters than the whole set of body inertial 

parameters. The identification these parameters nevertheless requires the subject to perform 

75 static poses, and the mismatch between the horizontal CoM and CoP locations during these 

static poses is still 25.5 mm with the optimal parameters (Chebel & Tunc, 2023). Identification 

techniques therefore require the subject to perform a long series of poses (which may not be 

feasible for pathological populations) for only a moderate improvement in accuracy. 

 

To mitigate discrepancies between kinematics and kinetics, a heuristic method combining 

low-frequency kinematic and high-frequency kinetic information was previously proposed 

(Maus et al., 2011). This relied on a sigmoid weighting of the Fourier coefficients of the CoM 

velocities obtained from the kinematics and from the kinetics. The cut-off frequency was 

determined heuristically based on simulations of human walking with wobbling masses. 

Unfortunately, the accuracy of this method was not evaluated on real human data. 

 

In this paper, we first propose a method to validate kinematic models that requires neither 

GRF pre-processing nor low-pass filtering of the kinematics. For this, we use the fact that, during 

the flight phase of running, when the body is no longer in contact with the ground, the 

acceleration of the CoM is equal to gravity (i.e. downwards, of amplitude 9.81 m/s2). We 

calculate the kinematic CoM acceleration without applying low-pass filtering. For this, we use 

data with a sufficient number of flight phases to obtain accurate estimates of the median 

kinematic CoM acceleration during flight. We compare this kinematic acceleration to the 

ground truth acceleration to determine the accuracy of the kinematic models.  

 

Second, we propose a novel method which uses a Kalman filter to optimally combine 

kinematic and kinetic measurements. This method does not require pre-processing of either 

the GRF or the kinematics. We show that this method substantially improves the accuracy of 

the reconstructed CoM position. The code for implementing this method is publicly available 

both in Python and Matlab.  

 



Finally, we determine the influence of CoM measurement accuracy on a commonly used 

indicator of balance: the control of foot placement according to the CoM state (Seethapathi & 

Srinivasan, 2019).  

Methods 

Measurement protocol 

The data was obtained from two publicly available databases. 

Dataset 1 (Wojtusch & von Stryk, 2015). Two subjects (one male aged 32 years old, one 

female aged 27 years old) performed various tasks on an instrumented treadmill. We analysed 

two tasks: running for one minute at 3 m/s and at 4 m/s. For each trial, the recording starts with 

the treadmill unloaded. After ten seconds, the subject steps onto the treadmill and stands still 

for ten seconds. The subject then performs the task, then stands still for another ten seconds, 

steps off the treadmill, and the recording stops ten seconds after the subject has stepped off. 

Ground reaction forces on the treadmill were recorded at 1000 Hz. The positions of 35 markers 

placed on anatomical landmarks were recorded at 500 Hz. Further information on the 

measurement protocol can be found in the database’s documentation available at: 

https://web.sim.informatik.tu-

darmstadt.de/download/ds/HuMoD/Documentation/Documentation.pdf 

Dataset 2 (Srinivasan & Seethapathi, 2019). Eight subjects (three female and five male, age 

25 ± 5 years) ran on a treadmill at 2.5, 2.7 and 2.9 m/s for around 3.5 minutes at each speed. For 

each trial, the recording starts and ends with the person running at steady-state speed. Ground 

reaction forces on the treadmill were recorded at 1000 Hz. The positions of markers on the 

lower limbs, including 4 markers on the hip (“roughly at the sacral level”) and a marker on the 

heel, were recorded at 100 Hz. Further information on the measurement protocol can be found 

in the corresponding paper (Seethapathi & Srinivasan, 2019). 

Data pre-processing 

Dataset 1. Over all subjects and trials, 8 markers were invisible for a duration of up to 3 

seconds. These gaps were filled through linear interpolation. The raw force data was 

synchronised to the kinematic data. The drift in the force measurement was estimated for each 

trial by fitting an affine function to the force recordings during the initial and final ten seconds 

during which the treadmill was not loaded. This drift was then subtracted to the measured 

force.  

Dataset 2. The drift in the force measurement was estimated for each trial by fitting an 

affine function to the force recordings when the vertical force was below 30 Newton. This drift 

was then subtracted to the measured force. 

Kinematic Center of Mass 

Dataset 1. The CoM position was calculated using three kinematic models of decreasing 

complexity.  

 

The “3D-segments” model is based on the state-of-the-art model proposed by Dumas and 

colleagues (Dumas et al., 2007; Dumas & Wojtusch, 2018) and presented in detail in Appendix A. 

https://web.sim.informatik.tu-darmstadt.de/download/ds/HuMoD/Documentation/Documentation.pdf
https://web.sim.informatik.tu-darmstadt.de/download/ds/HuMoD/Documentation/Documentation.pdf
https://www.biorxiv.org/content/biorxiv/early/2024/07/24/2024.07.24.604923/DC1/embed/media-1.pdf?download=true


The body is divided into sixteen segments (Appendix A Figure 1). The coordinates of 37 markers 

are used to calculate three-dimensional segment coordinate systems. An anthropometric table  

(Dumas et al., 2007; Dumas & Wojtusch, 2018) is then used to place the segment CoM in the 

longitudinal, antero-posterior and lateral directions relative to the segment origin, and to 

determine the fraction of the segment’s weight relative to the person’s weight. The whole body 

CoM is then obtained as a weighted sum of the segment CoMs. The method for calculating 

segment coordinate systems was modified to accommodate for the specific markers present in 

the database. Specifically, to calculate the 3D orientation of the forearm and hand segment 

coordinate systems, the state-of-the-art method uses two markers on each elbow, wrist and 

hand. However, in the database, only a single marker on each elbow and wrist and no markers 

on the hands were present. We could therefore only calculate the longitudinal axis of the 

forearm and hand coordinate systems (Tisserand et al., 2016). We expect the resulting “3D-

segments” CoM to be very similar when using the full marker set, as each hand only accounts 

for 0.5 % of the body weight, and the displacement of the forearm CoM in the antero-posterior 

and lateral directions is less than 3 % of the forearm’s length. Additionally, to calculate the head 

coordinate system, the original method uses a marker on the vertex and one on the sellion. 

Instead, the head coordinate system was calculated from markers on the left and right tragion 

(see Appendix A II.3.b.).  

 

The “Long-axis” model corresponds to the method proposed by Tisserand and colleagues 

(Tisserand et al., 2016) which is a simplified version of the state-of-the-art method, requiring 

only 13 markers. The body is divided into nine segments (each foot is fused with the shank, each 

hand is fused with the forearm, and the pelvis, abdomen, thorax and head are fused into a single 

trunk segment). This only allows for the calculation of the longitudinal axis for each segment 

coordinate system. The segment CoMs and weights are then obtained in the same way as for 

the “3D-segments” model. The full description of the 3D-segments and Long-axis models is 

provided in Appendix A. 

 

The “Hips_1” model is the average position of four markers placed on the left and right 

anterior and posterior illiac spines.  

 

Dataset 2. The “Hips_2” model is the average position of four markers placed “roughly at 

the sacral level” (Seethapathi & Srinivasan, 2019). 

Acceleration during the flight phase of running 

The onset of the flight (respectively stance) phases was determined as the moment when 

the vertical ground reaction force dropped below (respectively rose above) 1 % of the subject’s 

weight. For dataset 1, each subject’s weight was calculated as the median vertical ground 

reaction force during the initial and final quiet standing periods of the subject’s two trials. The 

first ten and last five steps were removed from the analysis to ensure the subject was in steady-

state running. For dataset 2, each subject’s weight was calculated as the mean across the 

subject’s three trials of the vertical force from the first stance onset to the last stance onset of 

each trial. 

 

https://www.biorxiv.org/content/biorxiv/early/2024/07/24/2024.07.24.604923/DC1/embed/media-1.pdf?download=true


The kinematic CoM accelerations were obtained by applying a Savitsky-Golay filter to the 

kinematic CoM positions. The filter was a second order polynomial fit on a sliding window of 3 

samples. The lateral acceleration was flipped for all flight phases preceding a right stance 

phase. The median CoM acceleration during flight was calculated, and the ground truth 

acceleration (downwards of amplitude 9.81 m/s2) was subtracted to the median acceleration to 

obtain the Acceleration Bias in each direction. The one sample sign test (which is a non-

parametric test) was used to determine whether this Acceleration Bias was significantly 

different from zero in each direction for each kinematic model.  

 

We obtained a 95 % confidence interval on the Acceleration Bias using the bootstrapping 

method described by Ott and Longnecker (Ott & Longnecker, 2016) in section 5.9. Specifically, 

let N be the number of samples. Each sample has a 50% chance of being either above or below 

the median. We sort the samples according to their value. Let the nth sample correspond to the 

lower bound of the 95 % confidence interval. This means that only (n-1) of the N samples are 

below the median. We use the percent point function of the binomial distribution with 

parameters N and 0.5 to determine n and thus the lower bound. We use the same approach to 

determine the upper bound of the 95 % confidence interval. 

 

Finally, the Acceleration Bias Amplitude was calculated as the root of the sum of the squares 

of the biases in the upwards, forwards and lateral directions. 

Discrepancy between kinematic and kinetic positions over a gait cycle 

In addition to comparing the kinematic acceleration to the ground truth during flight, we 

also performed a more classical analysis, comparing the kinematic and kinetic CoM positions 

over a gait cycle. As mentioned in the introduction, calculating the CoM position from double 

integration of the force is highly sensitive to the integration constants used. To mitigate this 

problem, the CoM trajectories were calculated over an average gait cycle rather than a single 

gait cycle, and the integration constants were chosen so as to impose periodicity of the average 

trajectory. First, kinematic data was upsampled to the kinematic frequency (1000 Hz) through 

linear interpolation. Then, for each subject and running speed, we averaged the kinematic CoM 

positions and kinetic CoM acceleration over all gait cycles. We flipped the position and 

acceleration in the lateral direction for all gait cycles starting with a left stance. We then 

averaged together left and right gait cycles. We then subtracted an affine function of time from 

the kinematic position to obtain a periodic signal. For the kinetics, the mean was subtracted 

from the kinetic acceleration, and this zero-mean acceleration was integrated to obtain a 

periodic velocity signal. The mean was then subtracted from this velocity, and this zero-mean 

velocity was integrated to obtain a periodic kinetic position signal. Finally, the mean position 

was subtracted for both the kinematic and the kinetic periodic positions. 

 

For each dimension, we calculated the squared difference between the kinematic and 

kinetic periodic positions, averaged this over the duration of the gait cycle, over subjects and 

over trials, and reported the root of this mean as the Position Error. This Position Error 

corresponds to the standard deviation of the difference between the kinematics and kinetics. 

We therefore calculated a 95 % confidence interval on the Position Error using the method 



described by Ott and Longnecker (Ott and Longnecker, 2016) in section 7.2. Let N be the number 

of samples and 𝜒0.025
2  and 𝜒0.975

2   be the percent point functions of the chi-square distribution 

with N-1 degrees of freedom evaluated at 2.5 % and 97.5%. Then the lower and upper bounds 

are equal to the Position Error multiplied respectively by √(𝑁 − 1)/𝜒0.025
2   and √(𝑁 − 1)/𝜒0.975

2 . 

 

Additionally, we calculated the (3-dimensional) distance between the kinematic and kinetic 

periodic positions. The Mann-Whitney U test (which is a non-parametric test) was used to 

determine whether this distance was significantly lower for the 3D-segments compared to the 

Long-axis and Hips_1 kinematic models, and for the Long-axis compared to the Hips_1 models. 

Finally, the square of this distance was averaged aver duration, subjects and trials, and the root 

of this mean is reported as the Position Error Amplitude. For comparison, for each dataset, the 

square of the amplitude of the kinetic periodic positions was averaged aver duration, subjects 

and trials, and the root of this mean is reported as the Kinetic Amplitude. 

Optimal combination of force and kinematic measurements 

To improve the accuracy of the CoM measurement, we used a Kalman filter to optimally 

combine kinematic and kinetic information (with kinematic data upsampled to the kinetic 

frequency through linear interpolation), presented in detail in Appendix B. 

 

In this framework, we model the inaccuracy in the kinematic CoM position and in the kinetic 

CoM acceleration as additive white Gaussian noise with standard deviation 𝑝𝑠𝑡𝑑 (in meters) for 

position and 𝑎𝑠𝑡𝑑  (in m/s2) for acceleration. The filter’s steady-state error, gains and transfer 

function (derived in Appendix B) depend only on the noise ratio 𝑟 of position noise to 

acceleration noise, normalized by the sampling frequency F (in Hertz): 

𝑟 =
𝑝𝑠𝑡𝑑  

𝑎𝑠𝑡𝑑  
F2 

 

The acceleration noise 𝑎𝑠𝑡𝑑  was obtained by dividing the force noise 𝑓𝑠𝑡𝑑 by the subject’s 

mass. The force noise 𝑓𝑠𝑡𝑑 in each direction was taken as the standard deviation of the force 

measurement in dataset 1 when the force plates were empty (after pre-processing the force 

signal to remove drift, as described above). The position noise 𝑝𝑠𝑡𝑑 cannot be measured 

directly. We varied 𝑝𝑠𝑡𝑑 from 0.2 mm to 20 mm. For each value of 𝑝𝑠𝑡𝑑, the optimal gains were 

derived and the CoM estimate was obtained by applying the Kalman filter with these gains. The 

Acceleration Bias in each direction during flight, confidence interval of the Acceleration Bias 

and Total Acceleration Bias were calculated for the estimate in the same way as for the 

kinematic CoM, described above. The estimate periodic position, Position Error in each 

direction, confidence interval of the Position Error and the Position Error Amplitude were also 

calculated for the estimate in the same way as for the kinematic CoM. 

 

For each value of 𝑝𝑠𝑡𝑑, the error in the combined CoM due to kinetic noise was estimated by 

applying the corresponding Kalman filter to the force recordings in dataset 1 during the initial 

and final ten seconds of each trial during which the treadmill was not loaded. The Kinetic Error 

Amplitude was taken as the RMS amplitude of the resulting position. A 95 % confidence interval 

https://www.biorxiv.org/content/biorxiv/early/2024/07/24/2024.07.24.604923/DC2/embed/media-2.pdf?download=true


on the Kinetic Error in each direction was obtained by multiplying the Kinetic Error by 

√(𝑁 − 1)/𝜒0.025
2  and √(𝑁 − 1)/𝜒0.975

2  for the lower and upper bounds. 

 

The total estimation error is due to both the kinematic and the kinetic noise. Considering 

that these two sources of noise are independent, the variance of the estimator error is assumed 

to be the sum of the variances due to kinematic and kinetic noise. The total estimation error 

was thus taken as the root of the sum of the squared Kinetic Error Amplitude and the squared 

Position Error Amplitude. The optimal 𝑝𝑠𝑡𝑑
∗  minimizing this total error was determined. The 

Mann-Whitney U test was used to determine whether the Position Error Amplitude was 

significantly reduced when applying the Kalman filter with this optimal 𝑝𝑠𝑡𝑑
∗ . 

 

Lateral foot placement predictor 

 

During running, the lateral foot placement at the onset of stance can be predicted from the 

state of the CoM at the preceding flight apex: the foot is thus placed more laterally when the 

lateral CoM velocity during flight is larger (Seethapathi & Srinivasan, 2019). Following the 

approach in Seethapathi & Srinivasan (2019), the lateral foot placement was taken as the lateral 

distance between the heel marker and the CoM at stance onset. The CoM apex was taken as the 

time during the flight phase when the vertical position of the CoM was highest. The CoM state 

was composed of the CoM lateral velocity, forwards velocity and height. A linear regression 

between the lateral foot placement and the CoM state at the preceding apex was performed for 

each subject, running speed, leg and CoM measurement (i.e. for the estimate and kinematic 

CoM, and for each of the kinematic models separately). For each CoM measurement, the 

median r-square of the regression was reported. The 95% confidence interval on the median r-

square was obtained using the same method as for the Acceleration Bias. The Mann-Whitney U 

test was used to determine wether the r-square was significantly increased when applying the 

Kalman filter with the optimal 𝑝𝑠𝑡𝑑
∗ . 

Results 

(In-)Accuracy of the kinematic models 

All four kinematic models showed a significant Acceleration Bias during the flight phase of 

running in the upwards and forwards directions, and the Hips_1 and Hips_2 models 

additionally had a significant bias in the lateral direction (p < 0.001 one sample sign test, Table 

1). The downwards acceleration was larger than gravity, indicating that all four kinematic 

models exaggerate the vertical motion of the CoM. The amplitude of the Acceleration Bias 

Amplitude was 1.3 m/s2 for the 3D-segments model, 2.3 m/s2 for the Long-axis model, 3.6 

 m/s2 for the Hips_1 and 2.6 m/s2 for the Hips_2. The state-of-the-art kinematic model thus has 

a 14 % error in acceleration during the flight phase of running, and this error increases to 37 % 

for the most reduced model. 

 The error in the kinematic CoM position cannot be measured directly. Instead, we estimated 

the error over a gait cycle by comparing the kinematic periodic position (Figure 1.A, green for 

3D-segments, yellow for Long-axis and red for Hips_1; and Figure 1.C purple for Hips_2) to the 

reference kinetic periodic position (Figure 1, black). All four kinematic models exaggerated the 



vertical oscillations of the CoM (Figure 1.A, C left). Moreover, the hips movement in the 

horizontal plane does not reflect the movement of the kinetic CoM, with exaggerated antero-

posterior motion (Figure 1.A, C middle, red and purple compared to black) and phase-shifted 

lateral motion (Figure 1.A, C right, red and purple compared to black). The Position Error for all 

models is indicated in Table 2. The Position Error Amplitude was significantly larger for the 

Hips_1 (12.0 mm) followed by the Long-axis model (6.9 mm) then the 3D-segments model (5.9 

mm) (p < 0.001 Mann-Whitney U test). The Position Error Amplitude was 15.4 mm for the Hips_2. 

The average amplitude of the kinetic CoM motion (Kinetic Amplitude) was 21.4 mm for dataset 

1 and 31.4 mm for dataset 2. The state-of-the-art kinematic model thus has a 27 % error in 

position during running, and this error increases to 56 % for the most reduced model. 

Table 1 - Acceleration Bias. Acceleration Bias in each direction and Acceleration Bias 

Amplitude, in m/s2, for the four kinematic models and the estimates obtained when 

applying the Kalman filter to each kinematic model with the optimal gains. The 95 % 

confidence interval is indicated for the Acceleration Bias, and the Acceleration Bias 

Amplitude is additionally reported as a % of gravity. 

   Upwards Forwards Lateral Amplitude 

Kinematic  Dataset 1 3D-segments -1.17 
(-1.28 to -1.04) 

0.66 
(0.49 to 0.81) 

-0.05 
(-0.18 to 0.08) 

1.34 
(13.7 %) 

Long-axis -2.20 
(-2.31 to -2.10) 

0.61 
(0.46 to 0.76) 

-0.12 
(-0.25 to 0.01) 

2.29 
(23.3 %) 

Hips_1 -2.32 
(-2.47 to -2.18) 

-2.65 
(-2.80 to -2.50) 

-0.50 
(-0.62 to -0.38) 

3.56 
(36.3 %) 

Dataset 2 Hips_2 -1.46 
(-1.47 to -1.44) 

-2.15 
(-2.18 to -2.13) 

-0.25 
(-0.26 to -0.24) 

2.61 
(26.6 %) 

Estimate  Dataset 1 3D-segments -0.20 
(-0.20 to -0.20) 

-0.12 
(-0.12 to -0.11) 

0.00 
(-0.00 to 0.00) 

0.23 
(2.3 %) 

Long-axis -0.25 
(-0.25 to -0.25) 

- 0.12 
(- 0.12 to - 0.12) 

-0.03 
(-0.03 to -0.03) 

0.28 
(2.8 %) 

Hips_1 -0.19 
(-0.19 to -0.18) 

-0.24 
(-0.24 to -0.23) 

-0.04 
(-0.04 to -0.04) 

0.30 
(3.1 %) 

Dataset 2 Hips_2 -0.06 
(-0.06 to -0.06) 

-0.07 
(-0.07 to -0.07) 

-0.04 
(-0.04 to -0.04) 

0.10 
(1.1 %) 

 

Table 2 - Position Error. Position Error in each direction and Position Error Amplitude 

(in mm) for the four kinematic models and the estimates obtained when applying the 

Kalman filter to each kinematic model with the optimal gains. The 95 % confidence 

interval is indicated for Position Error, and the Position Error Amplitude is additionally 

reported as a % of the Kinetic Amplitude (21.4 mm for dataset 1, 31.4 mm for dataset 2). 

   Upwards Forwards Lateral Amplitude 

Kinematic  Dataset 1 3D-segments 5.55 
(5.40 to 5.71) 

1.12 
(1.09 to 1.15) 

0.99 
(0.96 to 1.01) 

5.75 
(26.8 %) 

Long-axis 6.49 
(6.31 to 6.67) 

0.87 
(0.85 to 0.90) 

1.75 
(1.70 to 1.80) 

6.78 
(31.6 %) 

Hips_1 7.43 
(7.22 to 7.63) 

7.95 
(7.73 to 8.17) 

4.95 
(4.82 to 5.09) 

11.95 
(55.7 %) 

Dataset 2 Hips_2 8.26 
(8.18 to 8.35) 

10.07 
(9.97 to 10.18) 

8.27 
(8.19 to 8.36) 

15.43 
(49.1 %) 

Estimate  Dataset 1 3D-segments 0.55 
(0.54 to 0.57) 

0.04 
(0.03 to 0.04) 

0.10 
(0.10 to 0.11) 

0.56 
(2.6 %) 

Long-axis 0.60 
(0.58 to 0.61) 

0.03 
(0.03 to 0.03) 

0.17 
(0.16 to 0.17) 

0.62 
(2.9 %) 

Hips_1 0.52 
(0.50 to 0.53) 

0.22 
(0.22 to 0.23) 

0.40 
(0.39 to 0.41) 

0.69 
(3.2 %) 

Dataset 2 Hips_2 0.62 
(0.61 to 0.63) 

0.26 
(0.25 to 0.26) 

0.67 
(0.66 to 0.67) 

0.95 
(3.0 %) 



 

 

Figure 1 - Periodic positions. Kinetic periodic positions (black), kinematic periodic 

positions (full lines) for the 3D-segments (green), Long-axis (yellow) Hips_1 (red) and 

Hips_2 (purple) models, and estimate periodic positions (dashed lines) obtained when 

applying the Kalman filter to each kinematic model with the optimal gains, in the 

upwards (left column), forwards (middle column) and lateral (right column) directions, 

averaged over subjects and trials as a % percent of the gait cycle (with flight onset 

occurring at 50 % of the gait cycle). The first two rows correspond to dataset 1 and the 

third row to dataset 2. The periodic positions for each subject and trial of dataset 1 are 

shown in Supplementary Figure 1. 

 

CoM estimator combining kinematic and kinetic information 

To improve the accuracy of the CoM measurement, we used a Kalman filter to optimally 

combine kinematic and kinetic information. We found that this optimal integration depends 

only on the noise ratio 𝑟 of position noise 𝑝𝑠𝑡𝑑 to acceleration noise 𝑎𝑠𝑡𝑑, normalized by the 

sampling frequency F (in Hertz): 

𝑟 =
𝑝𝑠𝑡𝑑 

𝑎𝑠𝑡𝑑 
F2 

The amplitude of the transfer function for position and acceleration measurements is shown 

in Figure 2 for different values of this ratio. When the ratio is small (purple curves in Figure 2), 

the optimal integration relies mainly on position information. This is coherent with the fact that 

a small ratio indicates that position measurements are far more accurate than acceleration 

measurements (𝑝𝑠𝑡𝑑F2 ≪ 𝑎𝑠𝑡𝑑). When the ratio is large (yellow curves in Figure 2), the optimal 



integration relies mainly on acceleration information, except at low frequencies where it relies 

on position information. Indeed, in this case, despite acceleration measurements being far 

more accurate than position measurements (𝑝𝑠𝑡𝑑F2 ≫ 𝑎𝑠𝑡𝑑), the slow fluctuations in CoM 

position cannot be accurately determined from double integration of the acceleration. The 

ratio determines the cutoff frequency for position and acceleration. 

Improved accuracy of the estimate 

The position of the CoM was estimated by combining each of the kinematic models with 

kinetic information using the proposed Kalman filter. Since the parameter 𝑝𝑠𝑡𝑑 could not be 

determined a priori, the estimation was performed for 𝑝𝑠𝑡𝑑 ranging from 0.2 to 20 mm. With 

increasing 𝑝𝑠𝑡𝑑, there was a dramatic reduction in both the Acceleration Bias (Figure 3.A) and 

the Position Error (Figure 3.B) in all three directions for all four models. There was also a gradual 

increase in the Kinetic Error with 𝑝𝑠𝑡𝑑 (Figure 3.B in black). Note that this Kinetic Error does not 

seem to increase with time, and is much smaller than the drift in position when the CoM is 

obtained by double integration of the kinetic signal (Supplementary Figure 2). Adjusting the 

parameter 𝑝𝑠𝑡𝑑 thus determines a trade-off between the amount of kinematic and kinetic noise 

in the estimation. For the 3D-segments model, the total estimation error was minimal for 𝑝𝑠𝑡𝑑 =

1.8 𝑚𝑚 with a Kinetic Error Amplitude of 0.65 mm. For the Long-axis model, it was minimal for 

𝑝𝑠𝑡𝑑 = 2.0 𝑚𝑚 with a Kinetic Error Amplitude of 0.71 mm. For the Hips_1 model, it was minimal 

for 𝑝𝑠𝑡𝑑 = 2.5 𝑚𝑚 with a Kinetic Error Amplitude of 0.84 mm. For the Hips_2 model, it was 

minimal for 𝑝𝑠𝑡𝑑 = 3.9 𝑚𝑚  with a Kinetic Error Amplitude of 1.15 mm. Combining kinematic 

and kinetic information thus led to a drastic reduction in kinematic error, with only a small 

addition of kinetic noise ( < 1.2 mm for all models). 

 

 

 

Figure 2 - Transfer function. Amplitude of the transfer function from the kinematic to 

the estimate position (A), and from the double integral of acceleration to the estimate 

position (B), as a function of the frequency divided by the sampling frequency 𝐹, for 

different values of the noise ratio 𝑟. 



 

 

Figure 3 - Improved accuracy of the estimate. (A) Acceleration Bias in each direction 

and Acceleration Bias Amplitude for the 3D-segments (green), Long-axis (yellow), Hips_1 

(red) and Hips_2 (purple) models. The values for the kinematic CoM are indicated as a dot 

(at 𝑝𝑠𝑡𝑑 = 0) with a bar indicating the 95 % confidence interval. The values for the 

estimate CoM are indicated as a full line over the range of 𝑝𝑠𝑡𝑑, whose thickness 

corresponds to the 95 % confidence interval (note that this confidence interval is very 

narrow) . (B) Position Error for the kinematic CoM (dot at 𝑝𝑠𝑡𝑑 = 0 with a bar indicating 

the 95 % confidence interval) and the estimate CoM (full colored lines, whose thickness 

corresponds to the 95 % confidence interval), Kinetic Error (black) and total estimation 

error (dashed colored lines). 

When using the optimal 𝑝𝑠𝑡𝑑, the estimate was far more accurate than the kinematic CoM. 

The Acceleration Bias Amplitude decreased from 13.7 % to 2.3 % of gravity for the 3D-segments 

model, from 23.3 % to 2.8 % for the Long-axis model; from 36.3 % to 3.1 % for the Hips_1 and 

from 26.6 % to 1.1 % for the Hips_2 (Table 1). The estimate periodic positions (Figure 1.B, C 

dashed lines) match the kinetic periodic positions (Figure 1, black lines) much more closely 

than the kinematic periodic positions for all four kinematic models (Figure 1.A, C). For the 3D-

segments model, the Position Error Amplitude significantly decreased (p < 0.001, Mann-Whitney 

U test, Table 2) from 5.8 mm to 0.6 mm, with a total estimation error of 0.9 mm (4.2 % of the 

Kinetic Amplitude). For the Long-axis model, it significantly decreased from 6.8 mm to 0.6, with 

a total estimation error of 1.0 mm (4.6 % of the Kinetic Amplitude). For the Hips_1, it 

significantly decreased from 12.0 mm to 0.7 mm, with a total estimation error of 1.1 mm (5.2 % 

of the Kinetic Amplitude). For the Hips_2, it significantly decreased from 15.4 mm to 1.0 mm, 

with a total estimation error of 1.5 mm (4.9 % of the Kinetic Amplitude). The optimal estimation 

error was thus 6 to 10 times smaller than the kinematic error for position and 5 to 10 times 

smaller for acceleration. 

 

         

           

         

      

      

        

           

         

      

      

             

                    

           

         

      

      



Large improvements in accuracy can be obtained for a wide range of the parameter 𝑝𝑠𝑡𝑑 

(Figure 4). An acceleration error of less than 0.6 m/s2 can be obtained for all models when the 

parameter is at least half its optimal value (Figure 4.A). A position error of less than 3.4 mm can 

be obtained when the parameter is between a third and three times its optimal value (Figure 

4.B). Drastic decreases in the error can thus be obtained without requiring the optimal 𝑝𝑠𝑡𝑑 to 

be accurately determined. 

 

Improved accuracy of the lateral foot placement prediction 

 

The lateral position of the foot relative to the CoM at the stance onset was predicted from 

the CoM state at the preceding flight apex. For all four kinematic models, the prediction was 

much more accurate when it was based on the estimate rather than the kinematic CoM state 

(Table 3, Figure 5). When using the optimal 𝑝𝑠𝑡𝑑, the median r-square of the linear regression 

was significantly increased (p < 0.001, Mann-Whitney U test) from 0.38 for the kinematics to 0.58 

for the estimate for the 3D-segments, from 0.33 to 0.58 for the Long-axis, from 0.13 to 0.58 for 

the Hips_1 and from 0.23 to 0.52 for the Hips_2 models. 

 

 

Figure 4 - Sensitivity to 𝒑𝒔𝒕𝒅. Amplitude of the estimate Acceleration Bias (A) and total 

estimate error (B) for the 3D-segments (green), Long-axis (yellow), Hips_1 (red) and 

Hips_2 (purple) models, as a function of the ratio of 𝑝𝑠𝑡𝑑  to the optimal 𝑝𝑠𝑡𝑑
∗ . 

 

Table 3 Accuracy of the lateral foot placement prediction. Median and 95 % 

confidence interval of the r-square of the linear regressions of lateral foot placement 

onto the CoM state at the preceding flight apex. 

 3D-segments Long-axis Hips_1 Hips_2 

Kinematics 0.38 
(0.20 to 0.47) 

0.33  
(0.25 to 0.48) 

0.13  
(0.03 to 0.22) 

0.23 
(0.18 to 0.27) 

Estimate 0.58 
(0.53 to 0.66) 

0.58  
(0.52 to 0.68) 

0.58  
(0.53 to 0.68) 

0.52  
(0.49 to 0.56) 

           

         

      

      



 

 

Figure 5 – Improved accuracy of the foot placement prediction. r-square of the foot 

placement prediction for the 3D-segments (green), Long-axis (yellow), Hips_1 (red) and 

Hips_2 (purple) models. A. The median r-square for the kinematic CoM is indicated as a 

dot (at 𝑝𝑠𝑡𝑑 = 0) with a bar indicating the 95 % confidence interval. The median r-square 

for the estimate CoM is indicated as a thick line over the range of 𝑝𝑠𝑡𝑑, with the value at 

the optimal 𝑝𝑠𝑡𝑑  indicated by a cross. Thin lines correspond to the r-square for individual 

subjects, speeds and legs. B. r-square of the foot placement prediction from the estimate 

(at the optimal 𝑝𝑠𝑡𝑑) compared to the kinematic CoM. Each individual subject, speed and 

leg is indicated by a cross.  

Discussion 

Conclusion 

The accuracy of different kinematic models of the whole body center of mass was evaluated 

by comparing the kinematic CoM acceleration to gravity during the flight phases of running. 

The advantage of this method is that it does not require pre-processing of the force. This 

showed a large error (13 to 23 % of gravity for the segmental models). This is of similar 

magnitude to previous reports of discrepancies between the GRF and the kinematic CoM 

acceleration of around 10 % of the subject’s weight (Hamner et al., 2010; Futamure et al., 2017; 

Simonetti et al., 2021; Sturdy et al., 2022). The error was even larger for the hips, reaching 27 to 

36 % of gravity. The accuracy of the kinematic models was also evaluated using a classical 

method: comparing the kinematic position to the kinetic position. As explained in the 

introduction, this method relies on pre-processing and double integration of the GRF, and 

therefore cannot be considered as ‘ground truth’. However, it provides a useful estimate of 

Position Error. We thus found a Position Error Amplitude of 5.8 mm and 6.8 mm for the 

segmental models, and 12.0 mm and 15.4 mm for the hips. This is of similar magnitude to 

previous reports of position errors during running ranging from 4.9 mm to 6.8 mm for segmental 

models and reaching 14.9 mm for the pelvis (Pavei et al., 2017). We confirmed previous findings 

that the hips provide a very inaccurate measure of the CoM (Whittle, 1997; Eames et al., 1999; 

Gard et al., 2004; Pavei et al., 2017). Additionally, we found that the accuracy of the 3D-segments 

model is very close to that of the long-axis model, except for acceleration in the upwards 



direction (Figure 3). It thus seems that locating the segments’ CoM in the antero-posterior and 

lateral directions improves the overall CoM accuracy only slightly. 

 

Whereas the error in the kinematic models was high (13 % to 36 % for Acceleration Bias 

Amplitude and 27 to 56 % for Position Error Amplitude), this error was drastically reduced when 

using the novel proposed method. Interestingly, the estimate error was very similar for the four 

kinematic models (1.1 to 3.2 % for both acceleration and position). This suggests that the 

kinetic signal carries sufficient information to compensate for the imprecision of even the hips 

model. Thus, while using hips markers alone to determine the CoM position is highly inaccurate, 

the proposed method combining hip markers and force plate recordings is 4 to 10 times more 

accurate than the current state-of-the-art kinematic model. The proposed method thus offers 

a convenient way to have high-accuracy measurements while using few markers. 

 

The accuracy with which the subject’s foot placement could be predicted was critically 

dependent on the accuracy of the CoM measurement. When using the (inaccurate) hips 

markers, the CoM state at midstance could only account for 13 to 23 % of the variance in lateral 

foot placement. When using the more accurate segmental models, this increased to 33 to 38 %. 

When using the proposed method, this increased to 52 to 58 %. Thus, the poor prediction 

obtained when using the hips markers does not indicate that the subject has poor control of 

foot placement, but simply that the CoM measurement is inaccurate.  

 

During walking, balance in the frontal plane is achieved largely through foot placement (for 

a review, see Bruijn & van Dieën, 2018). The CoM state at midstance can account for 73 % of the 

variance in lateral foot placement in younger adults (mean age 27.3 years) and only 60 % in 

healthy older adults (mean age 70.8 years)(Arvin et al., 2018). The r-square of this prediction has 

therefore been proposed as a measure of balance. When comparing this r-square between two 

populations, it is crucial that the accuracy of the CoM measurement is the same in the two 

populations. Indeed, suppose there are no differences in balance control between younger and 

older subjects, but a single anthropometric table based on measurements of young subjects 

(de Leva, 1996; Dumas et al., 2007) is used to calculate the CoM for both populations. This will 

provide a more accurate measure of CoM state in younger subjects, and therefore a better 

prediction of foot placement, despite there being no actual differences in control. Importantly, 

the novel method we propose can mitigate biases which are due to the choice of the kinematic 

model. Indeed, whereas when using only the kinematics, the 3D-segments, Long-axis and 

Hips_1 models provide values of r-square ranging from 13 % to 38 %, when using the proposed 

method these three kinematic models provide the same r-square of 58 %. The novel method 

may therefore be less biased when evaluating balance indicators in populations for which no 

accurate anthropometric data is available. This improved accuracy is critical for correctly 

identifying fall risk in pathological populations, and for assessing the progress of rehabilitation. 

 

The method depends on a single parameter: the ratio of position to acceleration noise. 

Importantly, drastic improvements in accuracy can be obtained without needing to estimate 

this ratio precisely (Figure 4). In practice the ratio is large. Indeed, good quality force-plates 

have a measurement noise of a few Newton. With subjects weighing 50 to 100 kg, the force noise 



is thus on the order of 1 % of the subject’s weight, resulting in an acceleration noise of around 

0.01 m/s2. The position noise (i.e. the inaccuracy of the kinematic model used to calculate the 

CoM position) ranges typically from 5 to 15 mm. The sampling frequency of modern motion 

capture equipment is typically larger than 100 Hz. The squared frequency term results in a large 

value of 𝑟. Thus, in practice, the ratio is large and optimal integration relies mainly on double 

integration of the acceleration at medium and high frequencies (Figure 2.B). Only low 

frequencies of the position measurement are used (Figure 2.A). This may explain why the 

accuracy of the estimate is not very sensitive to the kinematic model used. This is qualitatively 

similar to the heuristic method developed by Maus and colleagues (Maus et al., 2011). However, 

in our case the cutoff frequency is determined automatically from 𝑟, and the transfer functions 

are more complex than a sigmoid (Figure 2, Appendix B section Estimator transfer function). 

Limitations 

The two open-access databases used for validating the method only contain ten young 

subjects. The exact values of the kinematic errors may therefore not match those of the general 

population. We nevertheless found errors in position which are very similar to previously 

reported values (Pavei et al., 2017). We only evaluated two of the many segmental models 

available, and could only use the two subjects of the first dataset to calculate segmental 

models. We found errors in kinematic position which are similar to previously published results. 

Importantly, we found that the estimate error was very similar even for models with very 

different levels of kinematic error. We therefore expect our results to generalize to a wide range 

of kinematic models. 

 

The Kalman filter yields the optimal combination of position and acceleration 

measurements, provided that these measurements have additive white Gaussian noise. In 

practice, the noise structure may be more complex. In particular, force measurements typically 

have a slow drift. There is no guarantee that the Kalman filter is the optimal way of dealing with 

such drift. However, our results show that, after removing a linear fit to the force measurement 

before and after the task, the small residual drift caused an error of less than 1.2 mm in the 

estimate position (which was much smaller than the error of the double integral of the force, 

see Supplementary Figure 2).  

 

  



Supplementary Figures 

 

 

Supplementary Figure 1 - Periodic positions of individual trials. Kinetic periodic 

position (black) and kinematic periodic positions for the 3D-segments (green), Long-axis 

(yellow) and Hips_1 (red) models, in the upwards (first column), forwards (middle 

column) and lateral (right column) directions, when running at 3 m/s (A) and 4 m/s (B) for 

each of the two subjects, as a function of time relative to heel strike . 

  

 

  

 
 
 
  
  
 
  
 
 
 

                      

  

 

  

 
 
 
  
  
 
  
 
 
 

  

 

  

 
 
 
  
  
 
  
 
 
 

            

        

  

 

  

 
 
 
  
  
 
  
 
 
 

            

        

            

        

 

 

                 

           

         

      

       



 
Supplementary Figure 2 - Kinetic Error. Amplitude of the drift in position (A) when the 

Kalman filter is applied to the empty force plate signals with 𝑝𝑠𝑡𝑑 = 0.2 𝑚𝑚 (top row), 

𝑝𝑠𝑡𝑑 = 2 𝑚𝑚 (middle row) and 𝑝𝑠𝑡𝑑 = 20 𝑚𝑚 (bottom row), and (B) after double 

integration of the empty force plate signal. Individual curves correspond to the initial and 

final portions of each of the trials of dataset 1.  Note that the Kinetic Error of the Kalman 

filter increases with 𝑝𝑠𝑡𝑑  but does not seem to increase with time, and is much smaller 

than the drift due to double integration. 
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The data was obtained from two publicly available databases. The first database (Wojtusch 

& von Stryk, 2015) was accessed through the following link:  

https://web.sim.informatik.tu-darmstadt.de/humod2/index.html  

The second database was accessed through the following link:  

https://doi.org/10.5061/dryad.1nt24m0  

The scripts for obtaining the results and figures of this paper are available at:  

https://github.com/charlotte-lemouel/center_of_mass/tree/main/validation  

The appendices are available at: 

 https://www.biorxiv.org/content/10.1101/2024.07.24.604923v1.supplementary-material  

 

The code for calculating the kinematic CoM and the optimal combination is available as a 

python package using: “pip install center_of_mass”. The documentation is available at:  

https://center-of-mass.readthedocs.io 

Alternately, the Python and Matlab code are downloadable at the following link:  

https://github.com/charlotte-lemouel/center_of_mass 

 

The code for calculating the kinematic CoM is available in Python. It is flexible and works for a 

variety of marker sets. It requires a minimum of 13 markers - those used in the long-axis model 

(Tisserand et al., 2016) – to calculate the segments’ CoM location in the longitudinal direction. 

When additional markers are available, it additionally calculates the segments’ CoM location in 

the antero-posterior and lateral directions, to provide the best possible accuracy for a given 

marker set. 

 

The code for calculating the optimal combination is available in both Python and Matlab. The 

code takes as input the kinetics and the kinematic CoM. The user may use their own method for 

calculating the kinematic CoM. Based on the results of the current paper, the code uses a default 

value of 𝑝𝑠𝑡𝑑 = 2 𝑚𝑚 and 𝑓𝑠𝑡𝑑 = 2 𝑁. The user can however manually set the position and force 

noise. We recommend performing a recording with empty force plates and using the standard 

deviation of this signal as 𝑓𝑠𝑡𝑑. 
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