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State dynamics

Each dimension is considered independently. The position x and acceleration a
are related according to :

We introduce the speed v, and rewrite this as a first order linear differential

equation on the system state X = <i)

ix—’u
dt
iv—a
dt

()= 0) () o+ (e

The observations of the state are made at discrete measurement timepoints
separated by a duration T = 1/F, where F is the sampling frequency. To obtain



the change in state between successive measurements, we integrate the previous
equation, assuming that the acceleration a is constant between measurements:

T 1 T\ (z 2
= 2
(> (KT +T) (0 1) () (KT) + (T) o (k)
We introduce the notations: zp = z (kT) , v, = v (kT) , ar, = a (kT), X}, =
Ty
Vk ’
The discrete time dynamics are then:
2

Tp1 = ok + Tog + 5

Vg1 = g + Tag

(T4 (1 T %2
Xiy1 = (Uk+1) = (0 1) X + (T ay
T2

We introduce the matrix A = (1 T) and the vector B = ( %) . The dynamics

0 1
are then given by:

X1 = AXy + Bay, (1)

Measurements

The position measurement x;'“*® is given by:

xzneas =x +wg = CXg + wy (2)

where C' = (1 O) and the position noise wy, is assumed to be Gaussian with
zero mean and standard deviation psq.

The acceleration measurement a;'**® is given by:

ap*® = ap + vy

where the acceleration noise v}, is assumed to be Gaussian with zero mean and
standard deviation agq.



State estimator

est

We define X5 = <i§“) as the best estimate of the system state X given
k

all the observations aj TS pup to timepoint k. Given this estimate

X¢5t and the acceleration measurement a}'**$, a prediction X ]ffld of the system

state at timepoint k+1 can be obtained by double integration of the measured
acceleration (as in equation 1) :

red es meas
X£+1 = AXk t “I‘Bak (3)

.. . . ed . ..
The position prediction 2} is then compared to the position measurement

T, and the position error z7'f7* — mif{j is used to adjust the estimate of
both position and speed at timepoint k+1 using the estimator gain Lg:

est __ pred meas pred\ __ pred meas pred __ pred meas
X = X L <xk+1 - $k+1) = Xp1 HLpap =Ly CX( = (1= Ly O) X\ T 4 Lty

Replacing equations 3 and ?? in the above equation, we obtain the following
dynamics for the state estimator:

X5t = (1= LyO)(AXE + Bap ™) + Li(C Xpq1 + Wigr) (4)

Optimal estimator gain

We introduce the estimation error at timestep k: Ay = Xj — X¢%, and the mean
squared error P, = E (Ak.Af), where E(.) denotes the expected value. We wish
to find the estimator gain Lj which minimises Pg1.

First, we determine the evolution of the estimation error using equation 77:

Apir = Xy — X5
Xk+1 - (1 — LkC) (AX;:St + Ba;neas) - Lk (CXk+1 + wk+1)
= (1 — LkC) (Xk+1 — AX;:St — Ba?eas) — Lkwarl

Replacing equation 1 in the above equation, we obtain:

Ak+1 = (1 - LkC) (AXk + Bayp — AXESt — Bazneas) — Lpwg41
= (1 — LkC) (A(Xk — XzSt) + B(ak — a?eas)) — Lkwk+1
= (1-LyC) (AAy, — Brg) — Liwgta



To obtain the evolution of the mean squared error Py11 = E (AkH.A{H), we
use the fact that the measurement errors v and wy are independent from each
other and independent of the current estimation error:

0=E (Ak.ykT) =E (Ak.wkT) =E (wkyg)

We then have

Pey1 = (1—LyC) AE (Ap.AT) AT (1 - CTLY)
+ (1-LyC)BE (v.{) BT (1 - CTL])
+  LyE (wp.wi) Li

(1 - LyC)APAT (1 - CTLY) + a2,y (1 — LyC) BB (1 — CTL{) + pqLiL{

To find Ly which minimises Pj41, we rewrite the above equation as a second
order polynomial in Ly:

Poy1 = AP AT + a2, BBT + Ly, (-CAPA" — a2, ,CBB")
+ (—APATCT — a2, ;BBTCT) L] + Liy(CAP,ATCT + a2, ,CBBTCT + p2, )L (5)

To simplify notations, we introduce the symmetrical matrix M}, corresponding
to the mean squared error of the predictor:

T
M, = AP AT + a2,,BBY = E ((X,c — xPred), (Xk - X,f’”ed) ) (6)
Replacing in the equation 26, we obtain:

Pyy1 = My — LiC My, — MyCT LY + Li(CMyC™ + p2,4)Li (7)

To determine the value of Lj which minimises equation 7, we introduce the
scalar rj corresponding to the sum of the variances of the position measurement
and position prediction:

r = CMpCT + p2yy

Replacing in equation 7, we obtain:

CM, MCT
Pey = My + 1 (—Lk f o LT+ L] )
Tk Tk
T T\ 7T T
Mt ((Lk M, C > <Lk MC ) MO CMk>
Tk Tk Tk Tk



The value of Ly which minimises Py is therefore given by:

M,CT  MCT

LoPt — =
k Tk CMkCT + pgtd

The optimal estimation error is then:

MCTC M, M,CTC M,
pert — pp, - EE Ry, o R TR
kb1 T " CMLCT + 2, ®)

The optimal prediction error is obtained by injecting equation 9 into equation 6:

MCTC M,

opt opt AT 2 T
Mk—zi)-l = APkilA + astdBB = A (Mk - m

) AT +a?,,BB”
(10)

Steady state

We assume that the recursive equations for the optimal gain (equation 8),

estimation error (equation 9) and prediction error (equation 10) have converged
to their steady-state values. We wish to determine the steady-state optimal gain,

which we write:
L= <§1) (11)
T

This can be obtained from the steady state prediction error which we write:

mq ma
T T2
Indeed, using equation 8, we have:

my

= ——F— 12

Fom Pia (12)
ma

lg = ————— 13

? m1 + pgtd (13)

We start by determining a system of three equations with three unkowns
my,ms, m3. Replacing with equations 12 and 13, we then determine a sys-
tem of two equations with unkowns [1,2, which we solve to determine the optimal
steady-state gains.



Steady state prediction error

The steady state prediction error M is a fixed point of the recursive equation 10.
Therefore, it verifies:

MCTCM
M = A(M-————"F+——) AT +a2,BBT
< CMCT + p?td) o
AMCTCOM AT
0 = —M+AMAT ¢cc + a?,,BB” (14)

CMCT +p2,,
We write:

Equation 14 corresponds to a system of three equations with three unkowns
my,ms, m3. We start by writing out these three equations explicitly.

We have:
mq D2 1 0 mi1 + mo D2
war= (2 E) (0= (i )
T T2 T T2

Therefore:

1 T\ (mi+myg T2 my + 2meo + ms  T2tma
T 1 2 1 2 3
= (o 3) ()= ("™ F)

7 7
2mo +ms 22
T 2 3
—-M+ AMA* = < ma 6 >
T
Moreover:
mi + mo 2 N
CMAT = (1 O) < ma+ms 7'%) = (ml +m2 mT)
T T2
Therefore:

AMCTCMAT = (CMATYTCMAT = (ml + m2> (m1+my 22)

ma T
T
- (m1+m2)?  (my +T2nz)%
(my + ma) T2 T

Finally,

el

s5" =7 (1) 4

T

= (4 %)

Replacing all the above into equation 14 and using CMCT = m, we obtain:

2my +ms T 1 (m1+m2)?  (my +ma)22 11
= < ma B )2 - mi | HlawdT®)?( 10T
T (m1 +mo) 2 Tz 2T



This gives the following system of three equations with three unkowns:

(m1+m2)?  (asaT?)?

0 = 2mo+mg— 15
’ ’ m1+ Pl 4 (15)
mi + meo)m asigT?)?
0 = my— M 2'2)2+(“ ) (16)
m1+pstd 2
2 2
my 212 212 my
0 = 0————+4 (astdT?)* = (asqd")* = —————— 17
e R T P

Steady state gain

To obtain a system of two equations with unkowns Iy, 3, we start by removing
mg from the above equations by subtracting equation 16 from equation 15:

(mq + ma) (astaT?)?
0 = 2 2 (g —my — _ \Dstd” )
mo + - +p§td (ma —mq — ma) 1
s T2 2
= 2mg—my (ma + @2) - (a5taT”) (18)
mi + pstd 4

Replacing equation 17 into equation 18:

(m1 + mg) B 1 m%
my+pl,  4dmitply

2m2 — ma (19)

Dividing by m1 + p2,, we can replace m; and mo with the steady state gains Iy
and [y using equations 12 and 13:
Lo

0=2ly— ll(ll + lg) — 112 (20)

We now need to express [; as a function of l. Dividing equation 17 by ms + p2,,
and replacing with the equation for I (equation 13):

s T2 2
2 = (astaT”)” 2) (21)
my +pstd

Using equation 12, we have:

l
my =l (my + ply) = mi(1— 1) = hply = my = plg——r

1-10
1—10+1 P2
2 2 1 2 1 1 std
my +pstd pstd( + 1— Zl) pstd 1— l]_ 1— ll ( )
Using equation 18, we can remove m; from equation 21:
(asth2)2
B="—5—"01-1h) (23)



Introducing the dimensionless ratio r = apj;%h equation 23 can be rewritten as:
std

rPlE=1-1

Lh=1-17%2 (24)
Using equation 24, we can remove [ from equation 20:

1

0 = 2&—(1—ﬁ@x1—ﬂ@+b)—1@
1

= w2—1+ﬁ@—b+4%§—u%@?+ﬂg—ig

1
0 = #gfﬁg+&zfm%7b+1 (25)

Multiplying by 74, we find that « = r2l, verifies:
a3, .2(1 2 2 4
0=2"—-2"+uz <4—2T)—rx+r (26)

This polynomial has four roots. To determine the steady-state gain, we must
determine the root z* for which both Iy = 2*/r? and Iy = 1—1r%13 = 1— (z*)?/r?
are real and positive over the whole range of r. We start by decomposing the
fourth order polynomial in equation 26 into a product of two second order
polynomials:

1 1 1
at— a3 4a? (4 - 21“2) —rlp4rt = <x2 + (—2 + 21") + 1"2) (z2 - <2 + 2r) + 7‘2)

The first of these second order polynomials has discriminant:

1 2 1
A = (—24—27“) —47"2:1—27“

For r > %, we have A; < 0 and this first second order polynomial has two

complex roots. Therefore, the roots of this polynomial do not correspond to z*.

Next, we determine the roots of the polynomial z? — z (% + 27") +r2. Its
discriminant is:

1 ? 1
Ag = (2—1—27’) —4r2:i+2r>0

Its roots are:



1 1 /1 1 1
xi=2<(2+2r)i 4+2r> :Z—&-rizx/l—i—&“

To determine which of these roots corresponds to z* | we calculate 1 — 23 /r?,
which must be positive over the whole range of r.

2
x4 1 1 1+8 r 1 1
B L VIT S +r=VI+8
r2 (16+ T T tgviterArgviaer
1 148 r 1 1
= = =2+ = VST VI
7’2( r’ +16+ Tt Tttty +8T>

1 1 148 » 1 1
= _7“2(16+ 16 +2+8\/1+8T+7"2\/1+8T><0

Therefore z does not correspond to z*.

2 1 1+8 1
-5 = - (gt - g - VIFs - ZVIEsr
r2 r2 16 2 8
1 1+8r r 1 T
= — — — =1 — V1
(16 6 T3 gVlty gV +8r>
1 /1 1
= r2<8 2)\/14-87“):—872(1+8r—(1+4r)\/1+8r)
1
= 2\/1+87’(\/1+8T*174T)
.7;2
1—7;>O(:»1+4r>\/1+8r(:>1+8r+16r2>1+8r(:>7“2>0

Therefore, x_ corresponds to z* and the optimal gains are given by (Figure 1):

T 1+4r —+/1+8r

2 = r2 4r2 (27)
VI+8r)(1+4r)—1-8
ho— 1o WVAES) S : (28)

812

Small ps;q and small agq limits

In the limit where psq — 0, we have r — 0. We do a Taylor expansion:

L= 1—|—47"—\/1—|—87‘N1+4r—(1+4r—(87‘)2/8)_2
2 4r2 - 4r2 N

h = 1-r3=1
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Figure 1: Estimator gains as a function of the ratio of position to acceleration
noise
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Note that, in this limit, {; = 1, therefore the position estimate exactly follows
the position measurement.

In the limit where as;q — 0, we have r — + inf.

14+4r — 1+ 8r 4r 1
~-—=-—0
472 4r2  r

L = 1-7%12-0

lo

Note that, in this limit, [; = Iy = 0, therefore the position measurement is ignored
and the position estimate is obtained by double integration of the acceleration
measurement.

Estimator transfer function

The estimate is a linear combination of the position and acceleration mea-
surements. To gain insight into how these measurements are combined, we
calculate the steady-state transfer function from from position and acceleration
measurements to the estimate.

Discrete Fourier transform

We introduce the discrete Fourier transform: the Fourier coefficients (which we
denote by a tilde) of a finite sequence {s,—o,... n—1} of length N are given by:

vl 2wk
Vg 0,....N —1],5;, = —1
jelo,.., 1,8, kz_oskexp( i )

The original sequence {s,—o,.. . n—1} can then be obtained from the Fourier
coeflicients using the inverse discrete Fourier transform:

| Nl o ik L Nl 92\ \ ¥
el N o = g S sen () = 5 5 (e (7))
j=0 3=0
N—1
1 _
- N Sj(zj)k
7=0

where z; = exp (712%])

We introduce the discrete Fourier coefficients z7"“*%, a7*“**, X ;?St of the position

measurement, acceleration measurement and estimate. The original signals can

11



then be obtained using the inverse discrete Fourier transform:

1 N—-1
k€0, N =1 = = ares(z;)" (29)
j=0
1 N—-1
xgneas — N Zi,;neae(zj)k (30)
7=0
1 N-1 _
Xt = o SR (31)
7=0

Discrete Fourier transform of the estimator dynamics

To obtain the transfer functions from position and acceleration measurements
to the estimate, we need to express X st as a linear combination of ziees and

a;*“**. For this, we first express the bteady state estimator dynaIme in terms

of the position and acceleration measurements, by replacing equation 2 into
equation 4:
X,ﬁitl = (1 — LO)(AX{" + Baj™**) + Laey® (32)

To simplify notations, we introduce:
D=(1-LO)A
U=(1-LC)B
Replacing in equation 32, we obtain:
X]Sitl _ DXest + Ua?]z’beas + Lx;cnffs
= X% — DXt = Ua’*® + Lal¢ (33)

We now replace the expressions in equations 29 to 31 into equation 33, using:

N-1 N-1

1 1

meas __ ~meas Nk+1 _ - ~meas Nk .

T4l = N Ly (%) - N Ly (25)" 2
Jj=0 Jj=0
1 N-1

est . vest
Xk+1 - ﬁ i (Z]) Zj
Jj=0
est est __ meas meas
Xk+l DX = Uak +ka+l

=
7

1 Y es 1 ~meas ~meas
=~ (zj)k(zj - D)X; o= i (zj)k (Uaj + z; L&} )(34)
=0

<.
I
o

<

For equation 34 to be valid for all k in [0, ..., N — 1], we must have:

Vj S [O, ceey N — 1]’( XeSt ( smeas + ZjL.i“;'neas)

12



We can thus express X jSt as a function of @]

vjeo,...,N —1], X¢t

where H,_, x

~rmeas rmeas.

and zj :

(zj — D)t UG + 2 (z; — D)™ Laees

Hqoyx (2)a*"" + Hyoyx (25) %

.z = (z— D) U is the transfer function from acceleration

. -1, . .
measurement to estimate, and H,_, x : 2 — z (2 — D)™ L is the transfer function
from position measurement to estimate.

Calculation of the estimator transfer functions

To obtain explicit expressions for H,_,x(z) and H,_,x(z), we start by showing

that:

(zj— D)™

For this, we write:

1

=———(2; —det(D)D™)

det(zj — D)

di1  dio
D=
(d21 d22>

We use the fact that the inverse of any such 2 by 2 matrix D is given by:

_ 1 daa  —di2
det(D) \—d21 dn

Indeed:

d22 _dl
_d21 dll

2\ (di1 di2 doadin — di2da 0
= = det(D
) <d21 d22) ( 0 di2da + d22d11> et(D) (

-1

We likewise have:

(zj— D)™

1 zj — daa di2
det(z; — D) do1 zj — di1

m(zj —det(D)D™)

To obtain an expression for det(D), we write:

det(D) =det ((1 — LC)A) = det(1 — LC) det(A) = det(1 — LC)

1-LC=1- (i;) (1 0)= <1__lfl ?)
T T

= det(D)=det(l1-LC)=1—-1

To obtain an expression for det(z; — D), we write:

det(zj — D)

(zj — d11)(z;

dag) — dardia = 22 — zj(d11 + daz) + det(D)

13

(35)

1 0
0 1

)



To obtain an expression for di1 + dag, we explicitly calculate D (using equation

36):
D=(1-LC)A= <1__le1 2) <(1) {) = <1__1Tzll Tgl—_zil))

$d11+d22=2—(11+12)

=det(z; —D) =27 —2;2— (i + 1) +1—-1 (38)

Transfer function from the position measurement

The transfer function from the position measurement is given by:

Hoox(z) = (z—D)'L= det(zjl_D)(zj — det(D)D~Y)L
1 -1 1
= iy DA (- 1O (39)
We have:

0=z (b o) (5) = ) (o) = awimy”

Reinjecting this into equation 39, we have:

fex) = g4 (o) (8)

Injecting equation 38 into equation 40, we obtain the transfer function from the
position measurement to the position estimate x¢*¢ (Figure 2.A):

ll(Z' — 1) + l2
Hx*)xest (Z]) - 2_ J

25 C-(hth)+1-0 (41)

Likewise, the transfer function from the position measurement to the velocity
estimate v is given by:

1 lQ(Zj — 1)

H est 7)) = —
v (Zj) TZJZ-—Z]' (2—(11+l2))+1—l1

14



Transfer function from the acceleration measurement
The transfer function from the acceleration measurement is given by:

1

Hyx(z) = (2 *D)_lU: m

(zj —det(D)D~')(1 — LC)B

1 —1)(z—1+2)
T(—%2zi+2 —1+10)

_ 1 (1= 1) (2 +1)
~ etz — D) (T(zj(l _Ly g zg) (42)

Injecting equation 38 into equation 42, we obtain the transfer function from the
acceleration measurement to the position estimate:

™ ()t
2 Z?——Zj(2—(l1 +l2))+1—ll

Hygest(25) = (43)

Likewise, the transfer function from the acceleration measurement to the velocity
estimate is given by:

zj( —%2)—14-11
ZJQ-—Zj(Q—(ll—‘rlg))—‘rl—ll

Ha*)vest (Z_]) =T

Transfer function of double integration

We wish to compare the estimator to the state estimate X' obtained by
integration of the acceleration measurement. This state estimate follows the
dynamics: _ _

X];L:Z-tl — AX]ZCnt —|—BCLZLGGS

A derivation similar to the one presented above yields the following transfer
function from the acceleration measurement to the integrated state:

1

= 3~ (z — det(A)A™")B

Hyxme(2) = (3 —A)7'B

- e (0t L) (B) rme e (B

det(z; —A) = det (Zj 0_ 1 Z,_T1> = (2 — 1)?
i —

15
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The transfer function from the acceleration measurement to the position obtained
by integration z**! is thus:

- T2 Zj —+ 1

Hy ypini(25) = PR

The ratio of the estimator and integrator positions (Figure 2.B) is given by:

Ha*)xest (Z]) o B (Zj — 1)2
Hoygine(25) 4 ll)zf- -z (2=(h+k)+1-0
= (1-0) (2 — 1)” (44)

(Zj - 1)2 + Zj(ll + lz) — ll

Note that, at low frequencies (i.e. when z; — 1), the integrator transfer function

H,_,int(2;) diverges whereas the estimator transfer function H,_, .=t (z;) reaches
T2 (1-1)*

TP The ratio of the two thus goes to zero at low frequencies.

a finite value

The transfer function from the acceleration measurement to the velocity obtained
by integration v is :
T

Zj—l

Ha—)v“”’ (ZJ) =

The ratio of the estimator and integrator velocities is given by:

Ha pest y Z5 _ll _].+l
Soest (25) = (z — 1) i ( 5) 1

Ha*)l,mt(zj') Zj —Zj (2— (ll +l2))+1—ll

16
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Figure 2: Amplitude of the transfer function (A) from the kinematic to the
estimate position, and (B) from the double integral of acceleration to the estimate
position, as a function of the frequency divided by the sampling frequency
F =1/T, for different values of the noise ratio r
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