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State dynamics
Each dimension is considered independently. The position x and acceleration a
are related according to :

d2

dt2 x = a

We introduce the speed v, and rewrite this as a first order linear differential

equation on the system state X =
(

x
v

)
d

dt
x = v

d

dt
v = a

d

dt

(
x
v

)
=
(

0 1
0 0

)(
x
v

)
(t) +

(
0
1

)
a(t)

The observations of the state are made at discrete measurement timepoints
separated by a duration T = 1/F, where F is the sampling frequency. To obtain
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the change in state between successive measurements, we integrate the previous
equation, assuming that the acceleration a is constant between measurements:

(
x
v

)
(kT + T ) =

(
1 T
0 1

)(
x
v

)
(kT ) +

(
T 2

2
T

)
a (kT )

We introduce the notations: xk = x (kT ) , vk = v (kT ) , ak = a (kT ), Xk =(
xk

vk

)
.

The discrete time dynamics are then:

xk+1 = xk + Tvk + T 2

2 ak

vk+1 = vk + Tak

Xk+1 =
(

xk+1
vk+1

)
=
(

1 T
0 1

)
Xk +

(
T 2

2
T

)
ak

We introduce the matrix A =
(

1 T
0 1

)
and the vector B =

(
T 2

2
T

)
. The dynamics

are then given by:

Xk+1 = AXk + Bak (1)

Measurements
The position measurement xmeas

k is given by:

xmeas
k = xk + wk = CXk + wk (2)

where C =
(
1 0

)
and the position noise wk is assumed to be Gaussian with

zero mean and standard deviation pstd.

The acceleration measurement ameas
k is given by:

ameas
k = ak + νk

where the acceleration noise νk is assumed to be Gaussian with zero mean and
standard deviation astd.
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State estimator

We define Xest
k =

(
xest

k

vest
k

)
as the best estimate of the system state Xk given

all the observations ameas
j=1,..,k, xmeas

j=1,..,kup to timepoint k. Given this estimate
Xest

k and the acceleration measurement ameas
k , a prediction Xpred

k+1 of the system
state at timepoint k+1 can be obtained by double integration of the measured
acceleration (as in equation 1) :

Xpred
k+1 = AXest

k + Bameas
k (3)

The position prediction xpred
k+1 is then compared to the position measurement

xmeas
k+1 , and the position error xmeas

k+1 − xpred
k+1 is used to adjust the estimate of

both position and speed at timepoint k+1 using the estimator gain Lk:

Xest
k+1 = Xpred

k+1 +Lk

(
xmeas

k+1 − xpred
k+1

)
= Xpred

k+1 +Lkxmeas
k+1 −LkCXpred

k+1 = (1−LkC)Xpred
k+1 +Lkxmeas

k+1

Replacing equations 3 and ?? in the above equation, we obtain the following
dynamics for the state estimator:

Xest
k+1 = (1 − LkC)(AXest

k + Bameas
k ) + Lk(CXk+1 + wk+1) (4)

Optimal estimator gain
We introduce the estimation error at timestep k: ∆k = Xk − Xest

k , and the mean
squared error Pk = E

(
∆k.∆T

k

)
, where E(.) denotes the expected value. We wish

to find the estimator gain Lk which minimises Pk+1.

First, we determine the evolution of the estimation error using equation ??:

∆k+1 = Xk+1 − Xest
k+1

= Xk+1 − (1 − LkC) (AXest
k + Bameas

k ) − Lk (CXk+1 + wk+1)
= (1 − LkC) (Xk+1 − AXest

k − Bameas
k ) − Lkwk+1

Replacing equation 1 in the above equation, we obtain:

∆k+1 = (1 − LkC) (AXk + Bak − AXest
k − Bameas

k ) − Lkwk+1

= (1 − LkC)
(
A(Xk − Xest

k ) + B(ak − ameas
k )

)
− Lkwk+1

= (1 − LkC) (A∆k − Bνk) − Lkwk+1
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To obtain the evolution of the mean squared error Pk+1 = E
(
∆k+1.∆T

k+1
)
, we

use the fact that the measurement errors νk and wk are independent from each
other and independent of the current estimation error:

0 = E
(
∆k.νT

k

)
= E

(
∆k.wT

k

)
= E

(
wk.νT

k

)
We then have

Pk+1 = (1 − LkC) AE
(
∆k.∆T

k

)
AT
(
1 − CT LT

k

)
+ (1 − LkC) BE

(
νk.νT

k

)
BT

(
1 − CT LT

k

)
+ LkE

(
wk.wT

k

)
LT

k

= (1 − LkC) APkAT
(
1 − CT LT

k

)
+ a2

std (1 − LkC) BBT
(
1 − CT LT

k

)
+ p2

stdLkLT
k

To find Lk which minimises Pk+1, we rewrite the above equation as a second
order polynomial in Lk:

Pk+1 = APkAT + a2
std BBT + Lk

(
−CAPkAT − a2

stdCBBT
)

+
(
−APkAT CT − a2

stdBBT CT
)

LT
k + Lk(CAPkAT CT + a2

stdCBBT CT + p2
std)LT

k (5)

To simplify notations, we introduce the symmetrical matrix Mk corresponding
to the mean squared error of the predictor:

Mk = APkAT + a2
stdBBT = E

(
(Xk − Xpred

k ).
(

Xk − Xpred
k

)T
)

(6)

Replacing in the equation 26, we obtain:

Pk+1 = Mk − LkCMk − MkCT LT
k + Lk(CMkCT + p2

std)LT
k (7)

To determine the value of Lk which minimises equation 7, we introduce the
scalar rk corresponding to the sum of the variances of the position measurement
and position prediction:

rk = CMkCT + p2
std

Replacing in equation 7, we obtain:

Pk+1 = Mk + rk

(
−Lk

CMk

rk
− MkCT

rk
LT

k + LkLT
k

)
= Mk + rk

((
Lk − MkCT

rk

)(
Lk − MkCT

rk

)T

− MkCT

rk

CMk

rk

)
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The value of Lk which minimises Pk+1 is therefore given by:

Lopt
k = MkCT

rk
= MkCT

CMkCT + p2
std

(8)

The optimal estimation error is then:

P opt
k+1 = Mk − MkCT CMk

rk
= Mk − MkCT CMk

CMkCT + p2
std

(9)

The optimal prediction error is obtained by injecting equation 9 into equation 6:

Mopt
k+1 = AP opt

k+1AT + a2
stdBBT = A

(
Mk − MkCT CMk

CMkCT + p2
std

)
AT + a2

stdBBT

(10)

Steady state
We assume that the recursive equations for the optimal gain (equation 8),
estimation error (equation 9) and prediction error (equation 10) have converged
to their steady-state values. We wish to determine the steady-state optimal gain,
which we write:

L =
(

l1
l2
T

)
(11)

This can be obtained from the steady state prediction error which we write:

M =
(

m1
m2
T

m2
T

m3
T 2

)

Indeed, using equation 8, we have:

l1 = m1

m1 + p2
std

(12)

l2 = m2

m1 + p2
std

(13)

We start by determining a system of three equations with three unkowns
m1, m2, m3. Replacing with equations 12 and 13, we then determine a sys-
tem of two equations with unkowns l1,2, which we solve to determine the optimal
steady-state gains.
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Steady state prediction error
The steady state prediction error M is a fixed point of the recursive equation 10.
Therefore, it verifies:

M = A

(
M − MCT CM

CMCT + p2
std

)
AT + a2

stdBBT

0 = −M + AMAT − AMCT CMAT

CMCT + p2
std

+ a2
stdBBT (14)

We write:

Equation 14 corresponds to a system of three equations with three unkowns
m1, m2, m3. We start by writing out these three equations explicitly.

We have:
MAT =

(
m1

m2
T

m2
T

m3
T 2

)(
1 0
T 1

)
=
(

m1 + m2
m2
T

m2+m3
T

m3
T 2

)
Therefore:

AMAT =
(

1 T
0 1

)(
m1 + m2

m2
T

m2+m3
T

m3
T 2

)
=
(

m1 + 2m2 + m3
m2+m3

T
m2+m3

T
m3
T 2

)

−M + AMAT =
(

2m2 + m3
m3
T

m3
T 0

)
Moreover:

CMAT =
(
1 0

)(m1 + m2
m2
T

m2+m3
T

m3
T 2

)
=
(
m1 + m2

m2
T

)
Therefore:

AMCT CMAT = (CMAT )T CMAT =
(

m1 + m2
m2
T

)(
m1 + m2

m2
T

)
=
(

(m1 + m2)2 (m1 + m2) m2
T

(m1 + m2) m2
T

m2
2

T 2

)

Finally,

BBT = T 4
( 1

21
T

)( 1
2

1
T

)
= T 4

( 1
4

1
2T1

2T
1

T 2

)
Replacing all the above into equation 14 and using CMCT = m1, we obtain:

0 =
(

2m2 + m3
m3
T

m3
T 0

)
− 1

m1 + p2
std

(
(m1 + m2)2 (m1 + m2) m2

T

(m1 + m2) m2
T

m2
2

T 2

)
+(astdT 2)2

( 1
4

1
2T1

2T
1

T 2

)
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This gives the following system of three equations with three unkowns:

0 = 2m2 + m3 − (m1 + m2)2

m1 + p2
std

+ (astdT 2)2

4 (15)

0 = m3 − (m1 + m2)m2

m1 + p2
std

+ (astdT 2)2

2 (16)

0 = 0 − m2
2

m1 + p2
std

+ (astdT 2)2 ⇒ (astdT 2)2 = m2
2

m1 + p2
std

(17)

Steady state gain
To obtain a system of two equations with unkowns l1, l2, we start by removing
m3 from the above equations by subtracting equation 16 from equation 15:

0 = 2m2 + (m1 + m2)
m1 + p2

std

(m2 − m1 − m2) − (astdT 2)2

4

= 2m2 − m1
(m1 + m2)
m1 + p2

std

− (astdT 2)2

4 (18)

Replacing equation 17 into equation 18:

2m2 − m1
(m1 + m2)
m1 + p2

std

− 1
4

m2
2

m1 + p2
std

(19)

Dividing by m1 + p2
std we can replace m1 and m2 with the steady state gains l1

and l2 using equations 12 and 13:

0 = 2l2 − l1(l1 + l2) − 1
4 l2

2 (20)

We now need to express l1 as a function of l2. Dividing equation 17 by m1 + p2
std

and replacing with the equation for l2 (equation 13):

l2
2 = (astdT 2)2

m1 + p2
std

(21)

Using equation 12, we have:

m1 = l1(m1 + p2
std) ⇒ m1(1 − l1) = l1p2

std ⇒ m1 = p2
std

l1
1 − l1

⇒ m1 + p2
std = p2

std(1 + l1
1 − l1

) = p2
std

1 − l1 + l1
1 − l1

= p2
std

1 − l1
(22)

Using equation 18, we can remove m1 from equation 21:

l2
2 = (astdT 2)2

p2
std

(1 − l1) (23)
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Introducing the dimensionless ratio r = pstd

astdT 2 , equation 23 can be rewritten as:

r2l2
2 = 1 − l1

l1 = 1 − r2l2
2 (24)

Using equation 24, we can remove l1 from equation 20:

0 = 2l2 − (1 − r2l2
2)(1 − r2l2

2 + l2) − 1
4 l2

2

= 2l2 − 1 + r2l2
2 − l2 + r2l2

2 − (r2l2
2)2 + r2l3

2 − 1
4 l2

2

0 = r4l4
2 − r2l3

2 + l2
2(1

4 − 2r2) − l2 + 1 (25)

Multiplying by r4, we find that x = r2l2 verifies:

0 = x4 − x3 + x2
(

1
4 − 2r2

)
− r2x + r4 (26)

This polynomial has four roots. To determine the steady-state gain, we must
determine the root x∗ for which both l2 = x∗/r2 and l1 = 1−r2l2

2 = 1− (x∗)2/r2

are real and positive over the whole range of r. We start by decomposing the
fourth order polynomial in equation 26 into a product of two second order
polynomials:

x4−x3+x2
(

1
4 − 2r2

)
−r2x+r4 =

(
x2 + x

(
−1

2 + 2r

)
+ r2

)(
x2 − x

(
1
2 + 2r

)
+ r2

)

The first of these second order polynomials has discriminant:

∆1 =
(

−1
2 + 2r

)2
− 4r2 = 1

4 − 2r

For r > 1
8 , we have ∆1 < 0 and this first second order polynomial has two

complex roots. Therefore, the roots of this polynomial do not correspond to x∗.

Next, we determine the roots of the polynomial x2 − x
( 1

2 + 2r
)

+ r2. Its
discriminant is:

∆2 =
(

1
2 + 2r

)2
− 4r2 = 1

4 + 2r > 0

Its roots are:
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x± = 1
2

((
1
2 + 2r

)
±
√

1
4 + 2r

)
= 1

4 + r ± 1
4

√
1 + 8r

To determine which of these roots corresponds to x∗ , we calculate 1 − x2
±/r2,

which must be positive over the whole range of r.

1 −
x2

+
r2 = 1 − 1

r2

(
1
16 + r2 + 1 + 8r

16 + r

2 + 1
8

√
1 + 8r + r

1
2

√
1 + 8r

)
= − 1

r2

(
−r2 + 1

16 + r2 + 1 + 8r

16 + r

2 + 1
8

√
1 + 8r + r

1
2

√
1 + 8r

)
= − 1

r2

(
1
16 + 1 + 8r

16 + r

2 + 1
8

√
1 + 8r + r

1
2

√
1 + 8r

)
< 0

Therefore x+ does not correspond to x∗.

1 −
x2

−
r2 = 1 − 1

r2

(
1
16 + r2 + 1 + 8r

16 + r

2 − 1
8

√
1 + 8r − r

2
√

1 + 8r

)
= − 1

r2

(
1
16 + 1 + 8r

16 + r

2 − 1
8

√
1 + 8r − r

2
√

1 + 8r

)
= − 1

r2

(
1
8 + r − (1

8 + r

2)
√

1 + 8r

)
= − 1

8r2

(
1 + 8r − (1 + 4r)

√
1 + 8r

)
= − 1

r2

√
1 + 8r

(√
1 + 8r − 1 − 4r

)

1 −
x2

−
r2 > 0 ⇔ 1 + 4r >

√
1 + 8r ⇔ 1 + 8r + 16r2 > 1 + 8r ⇔ r2 > 0

Therefore, x− corresponds to x∗ and the optimal gains are given by (Figure 1):

l2 = x−

r2 = 1 + 4r −
√

1 + 8r

4r2 (27)

l1 = 1 − r2l2
2 =

(√
1 + 8r

)
(1 + 4r) − 1 − 8r

8r2 (28)

Small pstd and small astd limits

In the limit where pstd → 0, we have r → 0. We do a Taylor expansion:

l2 = 1 + 4r −
√

1 + 8r

4r2 ≈ 1 + 4r − (1 + 4r − (8r)2/8)
4r2 = 2

l1 = 1 − r2l2
2 ≈ 1
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Figure 1: Estimator gains as a function of the ratio of position to acceleration
noise
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Note that, in this limit, l1 = 1, therefore the position estimate exactly follows
the position measurement.

In the limit where astd → 0, we have r → + inf.

l2 = 1 + 4r −
√

1 + 8r

4r2 ≈ 4r

4r2 = 1
r

→ 0

l1 = 1 − r2l2
2 → 0

Note that, in this limit, l1 = l2 = 0, therefore the position measurement is ignored
and the position estimate is obtained by double integration of the acceleration
measurement.

Estimator transfer function
The estimate is a linear combination of the position and acceleration mea-
surements. To gain insight into how these measurements are combined, we
calculate the steady-state transfer function from from position and acceleration
measurements to the estimate.

Discrete Fourier transform
We introduce the discrete Fourier transform: the Fourier coefficients (which we
denote by a tilde) of a finite sequence {sn=0,...,N−1} of length N are given by:

∀j ∈ [0, ..., N − 1], s̃j =
N−1∑
k=0

sk exp
(

−i
2πjk

N

)

The original sequence {sn=0,...,N−1} can then be obtained from the Fourier
coefficients using the inverse discrete Fourier transform:

∀k ∈ [0, ..., N − 1], sk = 1
N

N−1∑
j=0

s̃j exp
(

i
2πjk

N

)
= 1

N

N−1∑
j=0

s̃j

(
exp

(
i
2πj

N

))k

= 1
N

N−1∑
j=0

s̃j(zj)k

where zj = exp
(
−i 2πj

N

)
.

We introduce the discrete Fourier coefficients x̃meas
j , ãmeas

j , X̃est
j of the position

measurement, acceleration measurement and estimate. The original signals can
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then be obtained using the inverse discrete Fourier transform:

∀k ∈ [0, ..., N − 1], ameas
k = 1

N

N−1∑
j=0

ãmeas
j (zj)k (29)

xmeas
k = 1

N

N−1∑
j=0

x̃meas
j (zj)k (30)

Xest
k = 1

N

N−1∑
j=0

X̃est
j (zj)k (31)

Discrete Fourier transform of the estimator dynamics
To obtain the transfer functions from position and acceleration measurements
to the estimate, we need to express X̃est

j as a linear combination of x̃meas
j and

ãmeas
j . For this, we first express the steady-state estimator dynamics in terms

of the position and acceleration measurements, by replacing equation 2 into
equation 4:

Xest
k+1 = (1 − LC)(AXest

k + Bameas
k ) + Lxmeas

k+1 (32)

To simplify notations, we introduce:

D = (1 − LC)A
U = (1 − LC)B

Replacing in equation 32, we obtain:

Xest
k+1 = DXest

k + Uameas
k + Lxmeas

k+1

⇒ Xest
k+1 − DXest

k = Uameas
k + Lxmeas

k+1 (33)

We now replace the expressions in equations 29 to 31 into equation 33, using:

xmeas
k+1 = 1

N

N−1∑
j=0

x̃meas
j (zj)k+1 = 1

N

N−1∑
j=0

x̃meas
j (zj)kzj

Xest
k+1 = 1

N

N−1∑
j=0

X̃est
j (zj)kzj

Xest
k+1 − DXest

k = Uameas
k + Lxmeas

k+1

= 1
N

N−1∑
j=0

(zj)k(zj − D)X̃est
j = 1

N

N−1∑
j=0

(zj)k
(
Uãmeas

j + zjLx̃meas
j

)
(34)

For equation 34 to be valid for all k in [0, ..., N − 1], we must have:

∀j ∈ [0, ..., N − 1], (zj − D)X̃est
j =

(
Uãmeas

j + zjLx̃meas
j

)
12



We can thus express X̃est
j as a function of ãmeas

j and x̃meas
j :

∀j ∈ [0, ..., N − 1], X̃est
j = (zj − D)−1

Uãmeas
j + zj (zj − D)−1

Lx̃meas
j

= Ha→X(zj)ãmeas
j + Hx→X(zj)x̃meas

j

where Ha→X : z → (z − D)−1
U is the transfer function from acceleration

measurement to estimate, and Hx→X : z → z (z − D)−1
L is the transfer function

from position measurement to estimate.

Calculation of the estimator transfer functions
To obtain explicit expressions for Ha→X(z) and Hx→X(z), we start by showing
that:

(zj − D)−1 = 1
det(zj − D) (zj − det(D)D−1) (35)

For this, we write:

D =
(

d11 d12
d21 d22

)
We use the fact that the inverse of any such 2 by 2 matrix D is given by:

D−1 = 1
det(D)

(
d22 −d12

−d21 d11

)
Indeed:(

d22 −d12
−d21 d11

)(
d11 d12
d21 d22

)
=
(

d22d11 − d12d21 0
0 d12d21 + d22d11

)
= det(D)

(
1 0
0 1

)
We likewise have:

(zj − D)−1 = 1
det(zj − D)

(
zj − d22 d12

d21 zj − d11

)
= 1

det(zj − D) (zj − det(D)D−1)

To obtain an expression for det(D), we write:

det(D) = det ((1 − LC)A) = det(1 − LC) det(A) = det(1 − LC)

1 − LC = 1 −
(

l1
l2
T

)(
1 0

)
=
(

1 − l1 0
− l2

T 1

)
(36)

⇒ det(D) = det(1 − LC) = 1 − l1 (37)

To obtain an expression for det(zj − D), we write:

det(zj − D) = (zj − d11)(zj − d22) − d21d12 = z2
j − zj(d11 + d22) + det(D)
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To obtain an expression for d11 + d22, we explicitly calculate D (using equation
36):

D = (1 − LC)A =
(

1 − l1 0
− l2

T 1

)(
1 T
0 1

)
=
(

1 − l1 T (1 − l1)
− l2

T 1 − l2

)
⇒ d11 + d22 = 2 − (l1 + l2)

⇒ det(zj − D) = z2
j − zj (2 − (l1 + l2)) + 1 − l1 (38)

Transfer function from the position measurement

The transfer function from the position measurement is given by:

Hx→X(zj) = (zj − D)−1L = 1
det(zj − D) (zj − det(D)D−1)L

= 1
det(zj − D) (zj − det(D)A−1(1 − LC)−1)L (39)

We have:

(1−LC)−1L = 1
det(1 − LC)

(
1 0
l2
T 1 − l1

)(
l1
l2
T

)
= 1

det(D)

(
l1

l2
T (l1 + 1 − l1)

)
= 1

det(D)L

Reinjecting this into equation 39, we have:

Hx→X(zj) = 1
det(zj − D) (zj − A−1)L = 1

det(zj − D)

(
zj − 1 T

0 zj − 1

)(
l1
l2
T

)
= 1

det(zj − D)

(
l1(zj − 1) + l2

l2
T (zj − 1)

)
(40)

Injecting equation 38 into equation 40, we obtain the transfer function from the
position measurement to the position estimate xest (Figure 2.A):

Hx→xest(zj) = l1(zj − 1) + l2
z2

j − zj (2 − (l1 + l2)) + 1 − l1
(41)

Likewise, the transfer function from the position measurement to the velocity
estimate vest is given by:

Hx→vest(zj) = 1
T

l2(zj − 1)
z2

j − zj (2 − (l1 + l2)) + 1 − l1
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Transfer function from the acceleration measurement

The transfer function from the acceleration measurement is given by:

Hx→X(zj) = (zj − D)−1
U = 1

det(zj − D) (zj − det(D)D−1)(1 − LC)B

= 1
det(zj − D)

(
zj(1 − LC) − det(D)A−1(1 − LC)−1(1 − LC)

)
B

= 1
det(zj − D)

(
zj

(
1 − l1 0
− l2

T 1

)
− (1 − l1)

(
1 −T
0 1

))
B

= 1
det(zj − D)

(
(zj − 1)(1 − l1) T (1 − l1)

−zj
l2
T zj − (1 − l1)

)(
T 2

2
T

)
= 1

det(zj − D)

(
T 2

2 (1 − l1)(zj − 1 + 2)
T (− l2

2 zj + zj − 1 + l1)

)
= 1

det(zj − D)

(
T 2

2 (1 − l1)(zj + 1)
T (zj(1 − l2

2 ) − 1 + l1)

)
(42)

Injecting equation 38 into equation 42, we obtain the transfer function from the
acceleration measurement to the position estimate:

Ha→xest(zj) = T 2

2
(1 − l1)(zj + 1)

z2
j − zj (2 − (l1 + l2)) + 1 − l1

(43)

Likewise, the transfer function from the acceleration measurement to the velocity
estimate is given by:

Ha→vest(zj) = T
zj(1 − l2

2 ) − 1 + l1

z2
j − zj (2 − (l1 + l2)) + 1 − l1

Transfer function of double integration

We wish to compare the estimator to the state estimate Xint obtained by
integration of the acceleration measurement. This state estimate follows the
dynamics:

Xint
k+1 = AXint

k + Bameas
k

A derivation similar to the one presented above yields the following transfer
function from the acceleration measurement to the integrated state:

Ha→Xint(zj) = (zj − A)−1B = 1
det(zj − A) (z − det(A)A−1)B

= 1
det(zj − A)

(
zj − 1 T

0 zj − 1

)(
T 2

2
T

)
= 1

det(zj − A)

(
T 2

2 (zj + 1)
T (zj − 1)

)
det(zj − A) = det

(
zj − 1 −T

0 zj − 1

)
= (zj − 1)2
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The transfer function from the acceleration measurement to the position obtained
by integration xint is thus:

Ha→xint(zj) = T 2

2
zj + 1

(zj − 1)2

The ratio of the estimator and integrator positions (Figure 2.B) is given by:

Ha→xest(zj)
Ha→xint(zj) = (1 − l1) (zj − 1)2

z2
j − zj (2 − (l1 + l2)) + 1 − l1

= (1 − l1) (zj − 1)2

(zj − 1)2 + zj(l1 + l2) − l1
(44)

Note that, at low frequencies (i.e. when zj → 1), the integrator transfer function
Ha→xint(zj) diverges whereas the estimator transfer function Ha→xest(zj) reaches
a finite value T 2(1−l1)2

2l2
. The ratio of the two thus goes to zero at low frequencies.

The transfer function from the acceleration measurement to the velocity obtained
by integration vint is :

Ha→vint(zj) = T

zj − 1

The ratio of the estimator and integrator velocities is given by:

Ha→vest(zj)
Ha→vint(zj) = (zj − 1)

zj(1 − l2
2 ) − 1 + l1

z2
j − zj (2 − (l1 + l2)) + 1 − l1
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Figure 2: Amplitude of the transfer function (A) from the kinematic to the
estimate position, and (B) from the double integral of acceleration to the estimate
position, as a function of the frequency divided by the sampling frequency
F = 1/T , for different values of the noise ratio r
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