Contents

State dynamics	1
Measurements	2
State estimator	3
Optimal estimator gain	3
Steady state	5
Steady state prediction error	6
Steady state gain	7
Small p_{std} and small a_{std} limits $\ldots \ldots \ldots \ldots \ldots \ldots$	9
Estimator transfer function	11
Discrete Fourier transform	11
Discrete Fourier transform of the estimator dynamics	12
Calculation of the estimator transfer functions	13
Transfer function from the position measurement	14
Transfer function from the acceleration measurement	15
Transfer function of double integration	15

State dynamics

Each dimension is considered independently. The position x and acceleration a are related according to :

$$\frac{d^2}{dt^2}x = a$$

We introduce the speed v, and rewrite this as a first order linear differential equation on the system state $X = \begin{pmatrix} x \\ v \end{pmatrix}$

$$\frac{d}{dt}x = v$$

$$\frac{d}{dt}v = a$$

$$\frac{d}{dt} \begin{pmatrix} x \\ v \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ v \end{pmatrix} (t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} a(t)$$

The observations of the state are made at discrete measurement timepoints separated by a duration T = 1/F, where F is the sampling frequency. To obtain

the change in state between successive measurements, we integrate the previous equation, assuming that the acceleration a is constant between measurements:

$$\begin{pmatrix} x \\ v \end{pmatrix} (kT+T) = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ v \end{pmatrix} (kT) + \begin{pmatrix} \frac{T^2}{2} \\ T \end{pmatrix} a (kT)$$

We introduce the notations: $x_k = x (kT)$, $v_k = v (kT)$, $a_k = a (kT)$, $X_k = \begin{pmatrix} x_k \\ v_k \end{pmatrix}$.

The discrete time dynamics are then:

$$x_{k+1} = x_k + Tv_k + \frac{T^2}{2}a_k$$

$$v_{k+1} = v_k + Ta_k$$

$$X_{k+1} = \begin{pmatrix} x_{k+1} \\ v_{k+1} \end{pmatrix} = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} X_k + \begin{pmatrix} \frac{T^2}{2} \\ T \end{pmatrix} a_k$$

We introduce the matrix $A = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix}$ and the vector $B = \begin{pmatrix} \frac{T^2}{2} \\ T \end{pmatrix}$. The dynamics are then given by:

$$X_{k+1} = AX_k + Ba_k \tag{1}$$

Measurements

The position measurement x_k^{meas} is given by:

$$x_k^{meas} = x_k + w_k = CX_k + w_k \tag{2}$$

where $C = \begin{pmatrix} 1 & 0 \end{pmatrix}$ and the position noise w_k is assumed to be Gaussian with zero mean and standard deviation p_{std} .

The acceleration measurement a_k^{meas} is given by:

$$a_k^{meas} = a_k + \nu_k$$

where the acceleration noise ν_k is assumed to be Gaussian with zero mean and standard deviation a_{std} .

State estimator

We define $X_k^{est} = \begin{pmatrix} x_k^{est} \\ v_k^{est} \end{pmatrix}$ as the best estimate of the system state X_k given all the observations $a_{j=1,\dots,k}^{meas}, x_{j=1,\dots,k}^{meas}$ up to timepoint k. Given this estimate X_k^{est} and the acceleration measurement a_k^{meas} , a prediction X_{k+1}^{pred} of the system state at timepoint k+1 can be obtained by double integration of the measured acceleration (as in equation 1) :

$$X_{k+1}^{pred} = AX_k^{est} + Ba_k^{meas} \tag{3}$$

The position prediction x_{k+1}^{pred} is then compared to the position measurement x_{k+1}^{meas} , and the position error $x_{k+1}^{meas} - x_{k+1}^{pred}$ is used to adjust the estimate of both position and speed at timepoint k+1 using the estimator gain L_k :

$$X_{k+1}^{est} = X_{k+1}^{pred} + L_k \left(x_{k+1}^{meas} - x_{k+1}^{pred} \right) = X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} = (1 - L_k C) X_{k+1}^{pred} + L_k x_{k+1}^{meas} - L_k C X_{k+1}^{pred} + L_k X_{k+1}^{pred} +$$

Replacing equations 3 and ?? in the above equation, we obtain the following dynamics for the state estimator:

$$X_{k+1}^{est} = (1 - L_k C)(A X_k^{est} + B a_k^{meas}) + L_k (C X_{k+1} + w_{k+1})$$
(4)

Optimal estimator gain

We introduce the estimation error at timestep k: $\Delta_k = X_k - X_k^{est}$, and the mean squared error $P_k = \mathbb{E}(\Delta_k \cdot \Delta_k^T)$, where $\mathbb{E}(.)$ denotes the expected value. We wish to find the estimator gain L_k which minimises P_{k+1} .

First, we determine the evolution of the estimation error using equation ??:

$$\Delta_{k+1} = X_{k+1} - X_{k+1}^{est}$$

= $X_{k+1} - (1 - L_k C) (A X_k^{est} + B a_k^{meas}) - L_k (C X_{k+1} + w_{k+1})$
= $(1 - L_k C) (X_{k+1} - A X_k^{est} - B a_k^{meas}) - L_k w_{k+1}$

Replacing equation 1 in the above equation, we obtain:

$$\Delta_{k+1} = (1 - L_k C) (AX_k + Ba_k - AX_k^{est} - Ba_k^{meas}) - L_k w_{k+1}$$

= $(1 - L_k C) (A(X_k - X_k^{est}) + B(a_k - a_k^{meas})) - L_k w_{k+1}$
= $(1 - L_k C) (A\Delta_k - B\nu_k) - L_k w_{k+1}$

To obtain the evolution of the mean squared error $P_{k+1} = E(\Delta_{k+1}, \Delta_{k+1}^T)$, we use the fact that the measurement errors ν_k and w_k are independent from each other and independent of the current estimation error:

$$0 = \mathrm{E}\left(\Delta_k . \nu_k^T\right) = \mathrm{E}\left(\Delta_k . w_k^T\right) = \mathrm{E}\left(w_k . \nu_k^T\right)$$

We then have

$$P_{k+1} = (1 - L_k C) AE (\Delta_k . \Delta_k^T) A^T (1 - C^T L_k^T) + (1 - L_k C) BE (\nu_k . \nu_k^T) B^T (1 - C^T L_k^T) + L_k E (w_k . w_k^T) L_k^T = (1 - L_k C) AP_k A^T (1 - C^T L_k^T) + a_{std}^2 (1 - L_k C) BB^T (1 - C^T L_k^T) + p_{std}^2 L_k L_k^T$$

To find L_k which minimises P_{k+1} , we rewrite the above equation as a second order polynomial in L_k :

$$P_{k+1} = AP_k A^T + a_{std}^2 BB^T + L_k \left(-CAP_k A^T - a_{std}^2 CBB^T \right) + \left(-AP_k A^T C^T - a_{std}^2 BB^T C^T \right) L_k^T + L_k (CAP_k A^T C^T + a_{std}^2 CBB^T C^T + p_{std}^2) L_k^T$$
(5)

To simplify notations, we introduce the symmetrical matrix M_k corresponding to the mean squared error of the predictor:

$$M_k = AP_k A^T + a_{std}^2 BB^T = E\left((X_k - X_k^{pred}) \cdot \left(X_k - X_k^{pred}\right)^T\right)$$
(6)

Replacing in the equation 26, we obtain:

$$P_{k+1} = M_k - L_k C M_k - M_k C^T L_k^T + L_k (C M_k C^T + p_{std}^2) L_k^T$$
(7)

To determine the value of L_k which minimises equation 7, we introduce the scalar r_k corresponding to the sum of the variances of the position measurement and position prediction:

$$r_k = CM_kC^T + p_{std}^2$$

Replacing in equation 7, we obtain:

$$P_{k+1} = M_k + r_k \left(-L_k \frac{CM_k}{r_k} - \frac{M_k C^T}{r_k} L_k^T + L_k L_k^T \right)$$
$$= M_k + r_k \left(\left(L_k - \frac{M_k C^T}{r_k} \right) \left(L_k - \frac{M_k C^T}{r_k} \right)^T - \frac{M_k C^T}{r_k} \frac{CM_k}{r_k} \right)$$

The value of L_k which minimises P_{k+1} is therefore given by:

$$L_{k}^{opt} = \frac{M_{k}C^{T}}{r_{k}} = \frac{M_{k}C^{T}}{CM_{k}C^{T} + p_{std}^{2}}$$
(8)

The optimal estimation error is then:

$$P_{k+1}^{opt} = M_k - \frac{M_k C^T C M_k}{r_k} = M_k - \frac{M_k C^T C M_k}{C M_k C^T + p_{std}^2}$$
(9)

The optimal prediction error is obtained by injecting equation 9 into equation 6:

$$M_{k+1}^{opt} = AP_{k+1}^{opt}A^T + a_{std}^2BB^T = A\left(M_k - \frac{M_k C^T C M_k}{C M_k C^T + p_{std}^2}\right)A^T + a_{std}^2BB^T$$
(10)

Steady state

We assume that the recursive equations for the optimal gain (equation 8), estimation error (equation 9) and prediction error (equation 10) have converged to their steady-state values. We wish to determine the steady-state optimal gain, which we write:

$$L = \begin{pmatrix} l_1 \\ \frac{l_2}{T} \end{pmatrix} \tag{11}$$

This can be obtained from the steady state prediction error which we write:

$$M = \begin{pmatrix} m_1 & \frac{m_2}{T} \\ \frac{m_2}{T} & \frac{m_3}{T^2} \end{pmatrix}$$

Indeed, using equation 8, we have:

$$l_1 = \frac{m_1}{m_1 + p_{std}^2} \tag{12}$$

$$l_2 = \frac{m_2}{m_1 + p_{std}^2} \tag{13}$$

We start by determining a system of three equations with three unkowns m_1, m_2, m_3 . Replacing with equations 12 and 13, we then determine a system of two equations with unkowns $l_{1,2}$, which we solve to determine the optimal steady-state gains.

Steady state prediction error

The steady state prediction error ${\cal M}$ is a fixed point of the recursive equation 10. Therefore, it verifies:

$$M = A \left(M - \frac{MC^{T}CM}{CMC^{T} + p_{std}^{2}} \right) A^{T} + a_{std}^{2}BB^{T}$$
$$0 = -M + AMA^{T} - \frac{AMC^{T}CMA^{T}}{CMC^{T} + p_{std}^{2}} + a_{std}^{2}BB^{T}$$
(14)

We write:

Equation 14 corresponds to a system of three equations with three unkowns m_1, m_2, m_3 . We start by writing out these three equations explicitly.

We have:

$$MA^{T} = \begin{pmatrix} m_{1} & \frac{m_{2}}{T} \\ \frac{m_{2}}{T} & \frac{m_{3}}{T^{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ T & 1 \end{pmatrix} = \begin{pmatrix} m_{1} + m_{2} & \frac{m_{2}}{T} \\ \frac{m_{2} + m_{3}}{T} & \frac{m_{3}}{T^{2}} \end{pmatrix}$$

Therefore:

$$AMA^{T} = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} m_{1} + m_{2} & \frac{m_{2}}{T} \\ \frac{m_{2} + m_{3}}{T} & \frac{m_{3}}{T^{2}} \end{pmatrix} = \begin{pmatrix} m_{1} + 2m_{2} + m_{3} & \frac{m_{2} + m_{3}}{T} \\ \frac{m_{2} + m_{3}}{T} & \frac{m_{3}}{T^{2}} \end{pmatrix}$$
$$-M + AMA^{T} = \begin{pmatrix} 2m_{2} + m_{3} & \frac{m_{3}}{T} \\ \frac{m_{3}}{T} & 0 \end{pmatrix}$$

Moreover:

$$CMA^{T} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} m_1 + m_2 & \frac{m_2}{T} \\ \frac{m_2 + m_3}{T} & \frac{m_3}{T^2} \end{pmatrix} = \begin{pmatrix} m_1 + m_2 & \frac{m_2}{T} \end{pmatrix}$$

Therefore:

$$AMC^{T}CMA^{T} = (CMA^{T})^{T}CMA^{T} = \begin{pmatrix} m_{1} + m_{2} \\ \frac{m_{2}}{T} \end{pmatrix} \begin{pmatrix} m_{1} + m_{2} & \frac{m_{2}}{T} \end{pmatrix}$$
$$= \begin{pmatrix} (m_{1} + m_{2})^{2} & (m_{1} + m_{2})\frac{m_{2}}{T} \\ (m_{1} + m_{2})\frac{m_{2}}{T} & \frac{m_{2}^{2}}{T^{2}} \end{pmatrix}$$

Finally,

$$BB^{T} = T^{4} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{T} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{T} \end{pmatrix} = T^{4} \begin{pmatrix} \frac{1}{4} & \frac{1}{2T} \\ \frac{1}{2T} & \frac{1}{T^{2}} \end{pmatrix}$$

Replacing all the above into equation 14 and using $CMC^T = m_1$, we obtain:

$$0 = \begin{pmatrix} 2m_2 + m_3 & \frac{m_3}{T} \\ \frac{m_3}{T} & 0 \end{pmatrix} - \frac{1}{m_1 + p_{std}^2} \begin{pmatrix} (m_1 + m_2)^2 & (m_1 + m_2)\frac{m_2}{T} \\ (m_1 + m_2)\frac{m_2}{T} & \frac{m_2^2}{T^2} \end{pmatrix} + (a_{std}T^2)^2 \begin{pmatrix} \frac{1}{4} & \frac{1}{2T} \\ \frac{1}{2T} & \frac{1}{T^2} \end{pmatrix}$$

This gives the following system of three equations with three unkowns:

$$0 = 2m_2 + m_3 - \frac{(m_1 + m_2)^2}{m_1 + p_{std}^2} + \frac{(a_{std}T^2)^2}{4}$$
(15)

$$0 = m_3 - \frac{(m_1 + m_2)m_2}{m_1 + p_{std}^2} + \frac{(a_{std}T^2)^2}{2}$$
(16)

$$0 = 0 - \frac{m_2^2}{m_1 + p_{std}^2} + (a_{std}T^2)^2 \Rightarrow (a_{std}T^2)^2 = \frac{m_2^2}{m_1 + p_{std}^2}$$
(17)

Steady state gain

To obtain a system of two equations with unkowns l_1, l_2 , we start by removing m_3 from the above equations by subtracting equation 16 from equation 15:

$$0 = 2m_2 + \frac{(m_1 + m_2)}{m_1 + p_{std}^2} (m_2 - m_1 - m_2) - \frac{(a_{std}T^2)^2}{4}$$

= $2m_2 - m_1 \frac{(m_1 + m_2)}{m_1 + p_{std}^2} - \frac{(a_{std}T^2)^2}{4}$ (18)

Replacing equation 17 into equation 18:

$$2m_2 - m_1 \frac{(m_1 + m_2)}{m_1 + p_{std}^2} - \frac{1}{4} \frac{m_2^2}{m_1 + p_{std}^2}$$
(19)

Dividing by $m_1 + p_{std}^2$ we can replace m_1 and m_2 with the steady state gains l_1 and l_2 using equations 12 and 13:

$$0 = 2l_2 - l_1(l_1 + l_2) - \frac{1}{4}l_2^2$$
(20)

We now need to express l_1 as a function of l_2 . Dividing equation 17 by $m_1 + p_{std}^2$ and replacing with the equation for l_2 (equation 13):

$$l_2^2 = \frac{(a_{std}T^2)^2}{m_1 + p_{std}^2} \tag{21}$$

Using equation 12, we have:

$$m_{1} = l_{1}(m_{1} + p_{std}^{2}) \Rightarrow m_{1}(1 - l_{1}) = l_{1}p_{std}^{2} \Rightarrow m_{1} = p_{std}^{2}\frac{l_{1}}{1 - l_{1}}$$
$$\Rightarrow m_{1} + p_{std}^{2} = p_{std}^{2}(1 + \frac{l_{1}}{1 - l_{1}}) = p_{std}^{2}\frac{1 - l_{1} + l_{1}}{1 - l_{1}} = \frac{p_{std}^{2}}{1 - l_{1}}$$
(22)

Using equation 18, we can remove m_1 from equation 21:

$$l_2^2 = \frac{(a_{std}T^2)^2}{p_{std}^2} (1 - l_1)$$
(23)

Introducing the dimensionless ratio $r = \frac{p_{std}}{a_{std}T^2}$, equation 23 can be rewritten as:

$$r^{2}l_{2}^{2} = 1 - l_{1}$$

$$l_{1} = 1 - r^{2}l_{2}^{2}$$
(24)

Using equation 24, we can remove l_1 from equation 20:

$$0 = 2l_2 - (1 - r^2 l_2^2)(1 - r^2 l_2^2 + l_2) - \frac{1}{4} l_2^2$$

= $2l_2 - 1 + r^2 l_2^2 - l_2 + r^2 l_2^2 - (r^2 l_2^2)^2 + r^2 l_2^3 - \frac{1}{4} l_2^2$
$$0 = r^4 l_2^4 - r^2 l_2^3 + l_2^2 (\frac{1}{4} - 2r^2) - l_2 + 1$$
 (25)

Multiplying by r^4 , we find that $x = r^2 l_2$ verifies:

$$0 = x^{4} - x^{3} + x^{2} \left(\frac{1}{4} - 2r^{2}\right) - r^{2}x + r^{4}$$
(26)

This polynomial has four roots. To determine the steady-state gain, we must determine the root x^* for which both $l_2 = x^*/r^2$ and $l_1 = 1 - r^2 l_2^2 = 1 - (x^*)^2/r^2$ are real and positive over the whole range of r. We start by decomposing the fourth order polynomial in equation 26 into a product of two second order polynomials:

$$x^{4} - x^{3} + x^{2} \left(\frac{1}{4} - 2r^{2}\right) - r^{2}x + r^{4} = \left(x^{2} + x\left(-\frac{1}{2} + 2r\right) + r^{2}\right)\left(x^{2} - x\left(\frac{1}{2} + 2r\right) + r^{2}\right)$$

The first of these second order polynomials has discriminant:

$$\Delta_1 = \left(-\frac{1}{2} + 2r\right)^2 - 4r^2 = \frac{1}{4} - 2r$$

For $r > \frac{1}{8}$, we have $\Delta_1 < 0$ and this first second order polynomial has two complex roots. Therefore, the roots of this polynomial do not correspond to x^* . Next, we determine the roots of the polynomial $x^2 - x(\frac{1}{2} + 2r) + r^2$. Its discriminant is:

$$\Delta_2 = \left(\frac{1}{2} + 2r\right)^2 - 4r^2 = \frac{1}{4} + 2r > 0$$

Its roots are:

$$x_{\pm} = \frac{1}{2} \left(\left(\frac{1}{2} + 2r \right) \pm \sqrt{\frac{1}{4} + 2r} \right) = \frac{1}{4} + r \pm \frac{1}{4}\sqrt{1 + 8r}$$

To determine which of these roots corresponds to x^* , we calculate $1-x_\pm^2/r^2,$ which must be positive over the whole range of r.

$$\begin{aligned} 1 - \frac{x_+^2}{r^2} &= 1 - \frac{1}{r^2} \left(\frac{1}{16} + r^2 + \frac{1+8r}{16} + \frac{r}{2} + \frac{1}{8}\sqrt{1+8r} + r\frac{1}{2}\sqrt{1+8r} \right) \\ &= -\frac{1}{r^2} \left(-r^2 + \frac{1}{16} + r^2 + \frac{1+8r}{16} + \frac{r}{2} + \frac{1}{8}\sqrt{1+8r} + r\frac{1}{2}\sqrt{1+8r} \right) \\ &= -\frac{1}{r^2} \left(\frac{1}{16} + \frac{1+8r}{16} + \frac{r}{2} + \frac{1}{8}\sqrt{1+8r} + r\frac{1}{2}\sqrt{1+8r} \right) < 0 \end{aligned}$$

Therefore x_+ does not correspond to x^* .

$$\begin{aligned} 1 - \frac{x_{-}^2}{r^2} &= 1 - \frac{1}{r^2} \left(\frac{1}{16} + r^2 + \frac{1+8r}{16} + \frac{r}{2} - \frac{1}{8}\sqrt{1+8r} - \frac{r}{2}\sqrt{1+8r} \right) \\ &= -\frac{1}{r^2} \left(\frac{1}{16} + \frac{1+8r}{16} + \frac{r}{2} - \frac{1}{8}\sqrt{1+8r} - \frac{r}{2}\sqrt{1+8r} \right) \\ &= -\frac{1}{r^2} \left(\frac{1}{8} + r - \left(\frac{1}{8} + \frac{r}{2}\right)\sqrt{1+8r} \right) = -\frac{1}{8r^2} \left(1 + 8r - (1+4r)\sqrt{1+8r} \right) \\ &= -\frac{1}{r^2}\sqrt{1+8r} \left(\sqrt{1+8r} - 1 - 4r\right) \end{aligned}$$

$$1-\frac{x_-^2}{r^2}>0 \Leftrightarrow 1+4r>\sqrt{1+8r} \Leftrightarrow 1+8r+16r^2>1+8r \Leftrightarrow r^2>0$$

Therefore, x_{-} corresponds to x^{*} and the optimal gains are given by (Figure 1):

$$l_2 = \frac{x_-}{r^2} = \frac{1 + 4r - \sqrt{1 + 8r}}{4r^2}$$
(27)

$$l_1 = 1 - r^2 l_2^2 = \frac{\left(\sqrt{1+8r}\right)\left(1+4r\right) - 1 - 8r}{8r^2}$$
(28)

Small p_{std} and small a_{std} limits

In the limit where $p_{std} \rightarrow 0$, we have $r \rightarrow 0$. We do a Taylor expansion:

$$l_2 = \frac{1 + 4r - \sqrt{1 + 8r}}{4r^2} \approx \frac{1 + 4r - (1 + 4r - (8r)^2/8)}{4r^2} = 2$$

$$l_1 = 1 - r^2 l_2^2 \approx 1$$

Figure 1: Estimator gains as a function of the ratio of position to acceleration noise

Note that, in this limit, $l_1 = 1$, therefore the position estimate exactly follows the position measurement.

In the limit where $a_{std} \to 0$, we have $r \to +\inf$.

$$l_2 = \frac{1+4r-\sqrt{1+8r}}{4r^2} \approx \frac{4r}{4r^2} = \frac{1}{r} \to 0$$

$$l_1 = 1-r^2 l_2^2 \to 0$$

Note that, in this limit, $l_1 = l_2 = 0$, therefore the position measurement is ignored and the position estimate is obtained by double integration of the acceleration measurement.

Estimator transfer function

The estimate is a linear combination of the position and acceleration measurements. To gain insight into how these measurements are combined, we calculate the steady-state transfer function from from position and acceleration measurements to the estimate.

Discrete Fourier transform

We introduce the discrete Fourier transform: the Fourier coefficients (which we denote by a tilde) of a finite sequence $\{s_{n=0,\dots,N-1}\}$ of length N are given by:

$$\forall j \in [0, ..., N-1], \tilde{s}_j = \sum_{k=0}^{N-1} s_k \exp\left(-i\frac{2\pi jk}{N}\right)$$

The original sequence $\{s_{n=0,\dots,N-1}\}$ can then be obtained from the Fourier coefficients using the inverse discrete Fourier transform:

$$\forall k \in [0, ..., N-1], s_k = \frac{1}{N} \sum_{j=0}^{N-1} \tilde{s}_j \exp\left(i\frac{2\pi jk}{N}\right) = \frac{1}{N} \sum_{j=0}^{N-1} \tilde{s}_j \left(\exp\left(i\frac{2\pi j}{N}\right)\right)^k$$
$$= \frac{1}{N} \sum_{j=0}^{N-1} \tilde{s}_j (z_j)^k$$

where $z_j = \exp\left(-i\frac{2\pi j}{N}\right)$.

We introduce the discrete Fourier coefficients $\tilde{x}_j^{meas}, \tilde{a}_j^{meas}, \tilde{X}_j^{est}$ of the position measurement, acceleration measurement and estimate. The original signals can

then be obtained using the inverse discrete Fourier transform:

$$\forall k \in [0, ..., N-1], a_k^{meas} = \frac{1}{N} \sum_{j=0}^{N-1} \tilde{a}_j^{meas}(z_j)^k$$
(29)

$$x_k^{meas} = \frac{1}{N} \sum_{j=0}^{N-1} \tilde{x}_j^{meas}(z_j)^k$$
 (30)

$$X_{k}^{est} = \frac{1}{N} \sum_{j=0}^{N-1} \tilde{X}_{j}^{est}(z_{j})^{k}$$
(31)

Discrete Fourier transform of the estimator dynamics

To obtain the transfer functions from position and acceleration measurements to the estimate, we need to express \tilde{X}_{j}^{est} as a linear combination of \tilde{x}_{j}^{meas} and \tilde{a}_{j}^{meas} . For this, we first express the steady-state estimator dynamics in terms of the position and acceleration measurements, by replacing equation 2 into equation 4:

$$X_{k+1}^{est} = (1 - LC)(AX_k^{est} + Ba_k^{meas}) + Lx_{k+1}^{meas}$$
(32)

To simplify notations, we introduce:

$$D = (1 - LC)A$$
$$U = (1 - LC)B$$

Replacing in equation 32, we obtain:

$$X_{k+1}^{est} = DX_k^{est} + Ua_k^{meas} + Lx_{k+1}^{meas}$$

$$\Rightarrow X_{k+1}^{est} - DX_k^{est} = Ua_k^{meas} + Lx_{k+1}^{meas}$$
(33)

We now replace the expressions in equations 29 to 31 into equation 33, using:

$$\begin{aligned} x_{k+1}^{meas} &= \frac{1}{N} \sum_{j=0}^{N-1} \tilde{x}_j^{meas}(z_j)^{k+1} &= \frac{1}{N} \sum_{j=0}^{N-1} \tilde{x}_j^{meas}(z_j)^k z_j \\ X_{k+1}^{est} &= \frac{1}{N} \sum_{j=0}^{N-1} \tilde{X}_j^{est}(z_j)^k z_j \\ X_{k+1}^{est} - DX_k^{est} &= Ua_k^{meas} + Lx_{k+1}^{meas} \\ &= \frac{1}{N} \sum_{j=0}^{N-1} (z_j)^k (z_j - D) \tilde{X}_j^{est} &= \frac{1}{N} \sum_{j=0}^{N-1} (z_j)^k \left(U\tilde{a}_j^{meas} + z_j L \tilde{x}_j^{meas} \right) (34) \end{aligned}$$

For equation 34 to be valid for all k in [0, ..., N - 1], we must have:

$$\forall j \in [0, ..., N-1], (z_j - D)\tilde{X}_j^{est} = \left(U\tilde{a}_j^{meas} + z_j L\tilde{x}_j^{meas}\right)$$

We can thus express \tilde{X}_{j}^{est} as a function of \tilde{a}_{j}^{meas} and \tilde{x}_{j}^{meas} :

$$\begin{aligned} \forall j \in [0, \dots, N-1], \tilde{X}_j^{est} &= (z_j - D)^{-1} U \tilde{a}_j^{meas} + z_j (z_j - D)^{-1} L \tilde{x}_j^{meas} \\ &= H_{a \to X}(z_j) \tilde{a}_j^{meas} + H_{x \to X}(z_j) \tilde{x}_j^{meas} \end{aligned}$$

where $H_{a\to X}$: $z \to (z-D)^{-1}U$ is the transfer function from acceleration measurement to estimate, and $H_{x\to X}$: $z \to z (z-D)^{-1}L$ is the transfer function from position measurement to estimate.

Calculation of the estimator transfer functions

To obtain explicit expressions for $H_{a\to X}(z)$ and $H_{x\to X}(z)$, we start by showing that:

$$(z_j - D)^{-1} = \frac{1}{\det(z_j - D)} (z_j - \det(D)D^{-1})$$
(35)

For this, we write:

$$D = \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix}$$

We use the fact that the inverse of any such 2 by 2 matrix D is given by:

$$D^{-1} = \frac{1}{\det(D)} \begin{pmatrix} d_{22} & -d_{12} \\ -d_{21} & d_{11} \end{pmatrix}$$

Indeed:

$$\begin{pmatrix} d_{22} & -d_{12} \\ -d_{21} & d_{11} \end{pmatrix} \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix} = \begin{pmatrix} d_{22}d_{11} - d_{12}d_{21} & 0 \\ 0 & d_{12}d_{21} + d_{22}d_{11} \end{pmatrix} = \det(D) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

We likewise have:

$$(z_j - D)^{-1} = \frac{1}{\det(z_j - D)} \begin{pmatrix} z_j - d_{22} & d_{12} \\ d_{21} & z_j - d_{11} \end{pmatrix}$$

= $\frac{1}{\det(z_j - D)} (z_j - \det(D)D^{-1})$

To obtain an expression for det(D), we write:

$$\det(D) = \det((1 - LC)A) = \det(1 - LC)\det(A) = \det(1 - LC)$$

$$1 - LC = 1 - \binom{l_1}{\frac{l_2}{T}}(1 \quad 0) = \binom{1 - l_1 \quad 0}{-\frac{l_2}{T} \quad 1}$$
(36)

$$\Rightarrow \det(D) = \det(1 - LC) = 1 - l_1 \tag{37}$$

To obtain an expression for $det(z_j - D)$, we write:

$$\det(z_j - D) = (z_j - d_{11})(z_j - d_{22}) - d_{21}d_{12} = z_j^2 - z_j(d_{11} + d_{22}) + \det(D)$$

To obtain an expression for $d_{11} + d_{22}$, we explicitly calculate D (using equation 36):

$$D = (1 - LC)A = \begin{pmatrix} 1 - l_1 & 0 \\ -\frac{l_2}{T} & 1 \end{pmatrix} \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - l_1 & T(1 - l_1) \\ -\frac{l_2}{T} & 1 - l_2 \end{pmatrix}$$
$$\Rightarrow d_{11} + d_{22} = 2 - (l_1 + l_2)$$
$$\Rightarrow \det(z_j - D) = z_j^2 - z_j \left(2 - (l_1 + l_2)\right) + 1 - l_1 \tag{38}$$

Transfer function from the position measurement

The transfer function from the position measurement is given by:

$$H_{x \to X}(z_j) = (z_j - D)^{-1}L = \frac{1}{\det(z_j - D)}(z_j - \det(D)D^{-1})L$$
$$= \frac{1}{\det(z_j - D)}(z_j - \det(D)A^{-1}(1 - LC)^{-1})L$$
(39)

We have:

$$(1-LC)^{-1}L = \frac{1}{\det(1-LC)} \begin{pmatrix} 1 & 0\\ \frac{l_2}{T} & 1-l_1 \end{pmatrix} \begin{pmatrix} l_1\\ \frac{l_2}{T} \end{pmatrix} = \frac{1}{\det(D)} \begin{pmatrix} l_1\\ \frac{l_2}{T}(l_1+1-l_1) \end{pmatrix} = \frac{1}{\det(D)}L$$

Reinjecting this into equation 39, we have:

$$H_{x \to X}(z_j) = \frac{1}{\det(z_j - D)} (z_j - A^{-1})L = \frac{1}{\det(z_j - D)} \begin{pmatrix} z_j - 1 & T \\ 0 & z_j - 1 \end{pmatrix} \begin{pmatrix} l_1 \\ \frac{l_2}{T} \end{pmatrix}$$
$$= \frac{1}{\det(z_j - D)} \begin{pmatrix} l_1(z_j - 1) + l_2 \\ \frac{l_2}{T}(z_j - 1) \end{pmatrix}$$
(40)

Injecting equation 38 into equation 40, we obtain the transfer function from the position measurement to the position estimate x^{est} (Figure 2.A):

$$H_{x \to x^{est}}(z_j) = \frac{l_1(z_j - 1) + l_2}{z_j^2 - z_j \left(2 - (l_1 + l_2)\right) + 1 - l_1}$$
(41)

Likewise, the transfer function from the position measurement to the velocity estimate v^{est} is given by:

$$H_{x \to v^{est}}(z_j) = \frac{1}{T} \frac{l_2(z_j - 1)}{z_j^2 - z_j \left(2 - (l_1 + l_2)\right) + 1 - l_1}$$

Transfer function from the acceleration measurement

The transfer function from the acceleration measurement is given by:

$$H_{x \to X}(z_j) = (z_j - D)^{-1} U = \frac{1}{\det(z_j - D)} (z_j - \det(D)D^{-1})(1 - LC)B$$

$$= \frac{1}{\det(z_j - D)} (z_j(1 - LC) - \det(D)A^{-1}(1 - LC)^{-1}(1 - LC))B$$

$$= \frac{1}{\det(z_j - D)} \left(z_j \begin{pmatrix} 1 - l_1 & 0 \\ -\frac{l_2}{T} & 1 \end{pmatrix} - (1 - l_1) \begin{pmatrix} 1 & -T \\ 0 & 1 \end{pmatrix} \right)B$$

$$= \frac{1}{\det(z_j - D)} \begin{pmatrix} (z_j - 1)(1 - l_1) & T(1 - l_1) \\ -z_j \frac{l_2}{T} & z_j - (1 - l_1) \end{pmatrix} \left(\frac{T^2}{2} \\ T \right)$$

$$= \frac{1}{\det(z_j - D)} \left(\frac{T^2}{2} (1 - l_1)(z_j - 1 + 2) \\ T(-\frac{l_2}{2} z_j + z_j - 1 + l_1) \end{pmatrix}$$

$$= \frac{1}{\det(z_j - D)} \left(\frac{T^2}{2} (1 - l_1)(z_j + 1) \\ T(z_j (1 - \frac{l_2}{2}) - 1 + l_1) \end{pmatrix}$$
(42)

Injecting equation 38 into equation 42, we obtain the transfer function from the acceleration measurement to the position estimate:

$$H_{a \to x^{est}}(z_j) = \frac{T^2}{2} \frac{(1-l_1)(z_j+1)}{z_j^2 - z_j \left(2 - (l_1+l_2)\right) + 1 - l_1}$$
(43)

Likewise, the transfer function from the acceleration measurement to the velocity estimate is given by:

$$H_{a \to v^{est}}(z_j) = T \frac{z_j(1 - \frac{l_2}{2}) - 1 + l_1}{z_j^2 - z_j \left(2 - (l_1 + l_2)\right) + 1 - l_1}$$

Transfer function of double integration

We wish to compare the estimator to the state estimate X^{int} obtained by integration of the acceleration measurement. This state estimate follows the dynamics:

$$X_{k+1}^{int} = AX_k^{int} + Ba_k^{meas}$$

A derivation similar to the one presented above yields the following transfer function from the acceleration measurement to the integrated state:

$$H_{a \to X^{int}}(z_j) = (z_j - A)^{-1} B = \frac{1}{\det(z_j - A)} (z - \det(A) A^{-1}) B$$

$$= \frac{1}{\det(z_j - A)} \begin{pmatrix} z_j - 1 & T \\ 0 & z_j - 1 \end{pmatrix} \begin{pmatrix} \frac{T^2}{2} \\ T \end{pmatrix} = \frac{1}{\det(z_j - A)} \begin{pmatrix} \frac{T^2}{2}(z_j + 1) \\ T(z_j - 1) \end{pmatrix}$$

$$\det(z_j - A) = \det \begin{pmatrix} z_j - 1 & -T \\ 0 & z_j - 1 \end{pmatrix} = (z_j - 1)^2$$

The transfer function from the acceleration measurement to the position obtained by integration x^{int} is thus:

$$H_{a \to x^{int}}(z_j) = \frac{T^2}{2} \frac{z_j + 1}{(z_j - 1)^2}$$

The ratio of the estimator and integrator positions (Figure 2.B) is given by:

$$\frac{H_{a \to x^{est}}(z_j)}{H_{a \to x^{int}}(z_j)} = (1 - l_1) \frac{(z_j - 1)^2}{z_j^2 - z_j \left(2 - (l_1 + l_2)\right) + 1 - l_1} \\
= (1 - l_1) \frac{(z_j - 1)^2}{(z_j - 1)^2 + z_j (l_1 + l_2) - l_1}$$
(44)

Note that, at low frequencies (i.e. when $z_j \to 1$), the integrator transfer function $H_{a \to x^{int}}(z_j)$ diverges whereas the estimator transfer function $H_{a \to x^{est}}(z_j)$ reaches a finite value $\frac{T^2(1-l_1)^2}{2l_2}$. The ratio of the two thus goes to zero at low frequencies. The transfer function from the acceleration measurement to the velocity obtained by integration v^{int} is :

$$H_{a \to v^{int}}(z_j) = \frac{T}{z_j - 1}$$

The ratio of the estimator and integrator velocities is given by:

$$\frac{H_{a \to v^{est}}(z_j)}{H_{a \to v^{int}}(z_j)} = (z_j - 1) \frac{z_j(1 - \frac{l_2}{2}) - 1 + l_1}{z_j^2 - z_j \left(2 - (l_1 + l_2)\right) + 1 - l_1}$$

Figure 2: Amplitude of the transfer function (A) from the kinematic to the estimate position, and (B) from the double integral of acceleration to the estimate position, as a function of the frequency divided by the sampling frequency F = 1/T, for different values of the noise ratio r