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Abstract

Children have less text understanding capability than adults. Moreover, this capability differs among the
children of different ages. Hence, automatically predicting a recommended age based on texts or sentences
would be a great benefit to propose adequate texts to children and to help authors writing in the most
appropriate way. This paper presents our recent advances on the age recommendation task. We consider
age recommendation as a regression task, and discuss the need for appropriate evaluation metrics, study the
use of state-of-the-art machine learning model, namely Transformers, and compare it to different models
coming from the literature. Our results are also compared with recommendations made by experts. Further,
this paper deals with preliminary explainability of the age prediction model by analyzing various linguistic
features. We conduct the experiments on a dataset of 3, 673 French texts (132K sentences, 2.5M words). To
recommend age at the text level and sentence level, our best models achieve MAE scores of 0.98 and 1.83
respectively on the test set. Also, compared to the recommendations made by experts, our sentence-level
recommendation model gets a similar score to the experts, while the text-level recommendation model
outperforms the experts by an MAE score of 1.48.

1 Introduction

Nowadays, children spend considerable time on the Internet. The primary concern is to ensure them
to accessing adequate online content depending on their age. Therefore, in recent years, safe Internet
for children has gained interest in many research domains (Tomczyk and Kopeckỳ, 2016; Byrne and
Burton, 2017; Livingstone, 2019). Most studies focus on filtering abusive texts containing hate, violence,
pornography, etc. (Liu and Forss, 2015; Suvorov et al., 2013). However, the adequacy also relates to
the capacity of a child to understand the textual content (blogs, newspapers, etc.). Beyond the issue of
safely browsing the web, this question of comprehensibility more widely concerns all types of documents
that could be submitted or narrated to children, like books, schoolbook, etc. Thus, besides the impact
on the user experience (children’s and parent’s ones), recommending and understanding the linguistic
adequacy of a textual content for children of a given age is of primary interest to help children build up
their knowledge.

Overall, text understanding by children is a well known topic in psycho-linguistics and cognitive
sciences (Gathercole, 1999; Tartas, 2010; Mouw et al., 2019). In particular, key findings have shown the
impact of memory (Gathercole, 1999), temporality (Tartas, 2010; Hickmann, 2012), and emotions (David-
son, 2006; Mouw et al., 2019). On the contrary, this is still poorly studied in Natural Language Processing
(NLP). Yet, the automatic recommendation of a target age for a given text could be benefit to various
applications. For instance, this could help search engines to provide custom search settings by indexing a
recommended age along with each document/web page. Computer-assisted writing tools could also be
proposed to help authors or editors to propose suitable texts.

Toward this objective, this paper studies the task of automatically predicting a recommended age from
textual productions. This task is addressed as a machine learning regression problem where multiple
dimensions are defined and studied. The idea is to provide a solid and detailed frame for further progress
in this area, both regarding methodological aspects and experimental results. This includes the following
contributions:
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1. The task of age recommendation from texts is defined and discussed to clarify difficulties or short-
comings possibly induced by some key choices, especially when defining the the fuzzy notion of
"recommended" age. This mixes questions about the quality/reliability of the data annotations, the
biases that specific text genres/styles can introduce or the evaluation of the results.

2. The paper proposed a dataset for textual age recommendation. This dataset is composed of French
texts of various genres (novels, newspapers, and encyclopedias) for a wide range of ages. Moreover,
the approach for the construction of this dataset can be easily transposed to other languages.

3. A particular attention is paid to the potentially relevant metrics for the task through the proposition
of various metrics. Their respective behavior is studied through an artificial study case, and the best
metrics are then used all along the paper.

4. With existing machine learning techniques, various recommendation models are proposed and
compared. They cover various settings such that age can be recommended from texts or isolated
sentences; using word/sentence embeddings, linguistic expert features or both; and with more or
less complex models (transformers, feed-forward neural network or random forests). The results are
compared against naive, histical and expert baselines.

5. Since explainability is required for the perspective of human interactive applications, the paper
proposes an opening where various linguistic features are studied to understand what makes a text
easy or difficult to understand.

In the remainder, Section 2 discusses the related work, Section 3 precisely defines the age recommenda-
tion task, and Section 4 details the dataset used for the experiments. An exhaustive study of the evaluation
metrics is provided in Section 5 which is followed by the recommendation models and experimental
results in Section 6. Finally, Section 7 investigates which linguistic features contribute most for age
recommendation.

2 Related Work

Age recommendation from text is related to text understanding/readability analysis, and it has been studied
in the fields of human and social sciences (Section 2.1), and NLP (Section 2.2).

2.1 Human and Social Sciences
In the literature of psycho-linguistics and cognitive sciences, text comprehension by children has been
studied well. Children have less text understanding capabilities than adults as their brain is still developing.
The brain activity of a child peaks at 4 years. For language acquisition, the activity can be equivalent to
150% of an adult (Gathercole, 1999). Short-term memory affects language understanding or accomplish-
ment of complex tasks, and such memory is developed particularly between two to eight years (Gathercole,
1999). Acquisition of temporal notions is crucial for children to understand calendar-time and chrono-
logical orders (Tartas, 2010; Hickmann, 2012). Emotions are also important factors to establishing and
maintaining the coherency of facts in a text (Mouw et al., 2019), and the basic emotions (joy, anger,
sadness, fear, etc.) are acquired around the age of 10 (Davidson, 2006). When children start learning to
read, (Frith, 1985) argued that reading is acquired through three main stages: logographic, alphabetical,
and orthographic stage. The logographic stage refers to the faculty of recognizing the drawing of a word
rather than deciphering it, and is developed between the ages of 5 to 6 years. At later ages, the second
stage (alphabetical), splitting a word into simpler graphical units (graphemes) and phonological units
(phonemes), and the third stage (orthographic), linguistic ability to break down a word into meaningful
units (morphemes) are developed.

However, one can relate age recommendation to the task of text readability, where various scores have
historically been proposed to quantify the difficulty of a text, like the Flesch-Kincaid score (Kincaid et al.,
1975), Dale-Chall formula (Dale and Chall, 1948; Chall and Dale, 1995) or the Gunning fog index (Robert,
1968). The Flesch-Kincaid score computes frequency ratios on syllables, while the Dale-Chall formula



additionally counts difficult words. In contrast, the Gunning fog index considers the ratio of word to
sentence counts, and the ratio of complex words to total words counts in a text. More recently, (Todirascu
et al., 2013) studied the use of coherence and cohesion properties to assess the readability of texts, and
they found some good correlations between such property and readability. (Islam and Rahman, 2014)
proposed to predict texts into four classes (very easy, easy, medium, and difficult) where the readability
classes corresponded to some child age ranges. The approach inherits the readability index features along
with the lexical features. In a very recent work, (Wilkens et al., 2022) developed a readability assessment
toolkit for french texts that aggregates various linguistic variables to train a classifier and a regression
model. Also, this toolkit makes a ranking of the different features by measuring their correlations to the 9
readability levels.

2.2 Natural Language Processing

In spite of these psycho-linguistic studies, the adequacy between ages and linguistic or cognitive skills
has been less studied in the field of NLP. The first step comes from (Schwarm and Ostendorf, 2005)
where the authors explored how to automatically predict from which US school grade a child could read
news articles. This problem was considered as a classification task among four classes. The model was a
support vector machine with word n-gram, lexical and syntactic features.

The traditional study of text readability (Dell’Orletta et al., 2011; Islam et al., 2012) or age recommen-
dation (Schwarm and Ostendorf, 2005) mostly relies on the hand-crafted linguistic features which may
become very difficult to extract for low-resource languages. In recent years, using neural networks for text
readability classification (Mesgar and Strube, 2018; Balyan et al., 2020; Martinc et al., 2021; Feng et al.,
2022) and age prediction from text (Bayot and Gonçalves, 2017; Chen et al., 2019) has risen great interest
in the field of computational linguistics. One major strength of the current approaches is to delegate the
step of feature extraction to the neural network model based on the sole word embeddings of the input
texts. Hence, such methods do not anymore necessarily require hand-crafted features for the training
purpose. For instance, Blandin et al. (2020) explored feed-forward neural networks to recommend the
age corresponding to a text. The authors showed, among a large set of various linguistic features, word
embedding features were the most contributory. However, these models still suffer to achieve very good
scores, and lack explainability of the predictions, but they show how difficult the task is.

Apart from age recommendation or text readability, one popular related task is to characterize authors
of textual contents. In Nguyen et al. (2011), linear regression was used with gender and different textual
features to predict the age of the authors of blogs, telephone conversations, and online forum posts.
Similarly, Chen et al. (2019) proposed LSTM-based regression and classification models to guess adult
ages (from 14 to 34 years) of blog authors. The same task is performed by Bayot and Gonçalves (2017)
on tweets using a Convolutional Neural Network (CNN). Finally, an active learning based approach has
also been explored in Chen et al. (2016) as a regression task for age prediction from social media texts by
using textual and social features. The task of author’s age prediction from text is also a difficult one as the
prediction performances are not so good yet. However, these studies show prospects of using regression
models for age recommendation task.

Finally, in a very broad scope, in the last years, transformers (Wolf et al., 2020) have become a very
attractive neural architecture for many NLP tasks. Especially, encoder models like BERT (Devlin et al.,
2019) for many regression and classification tasks. Generally, such a model is pre-trained with a very large
dataset and then it is used to perform on some downstream tasks by fine-tuning it with a smaller dataset.
This architectural improvement motivates us to explore the advanced models for our age recommendation
task. Nonetheless, it is interesting to highlight that these models are slower and more energy-consuming
than former machine learning models. Hence, their benefit in terms of performance for the task should be
balanced with the relative benefit compared to simpler approaches.

Yet, to our knowledge, no research studied any pre-trained BERT type model for age recommendation
from text. In this paper, we propose to use CamemBERT (Martin et al., 2020), a pre-trained French
language model built on the RoBERTa (Liu et al., 2019) architecture. We consider age recommendation
as a regression task. To compare with our proposed CamemBERT approaches, this paper explores also



Feed-forward and a Random Forest models. Moreover, we introduce two metrics (by tackling some
special cases) for evaluating age recommendation, and provide a deeper analysis on these metrics. Finally,
to explain the recommendations or predictions (as a preliminary expalinability), this paper presents
different feature ranking approaches to show which linguistic features are most contributory for age
recommendation.

3 Task Definition

We aim to assist children in their reading activities (online, leisure, or in schools) by suggesting them
comprehensible texts according to their ages, and to facilitate the authors in writing the appropriate texts
for the children. Therefore, the goal is to predict the target age from a given text.

3.1 Challenges

Text understanding capability differs to different children based on their ages, literacy, vocabulary etc.
The children of same age may not have the same capacity of comprehending a piece of text. Some
related studies worked on recommending texts to different school-grade levels (Schwarm and Ostendorf,
2005), and on text-complexity classification for different groups of school-grade levels (Islam et al.,
2014). However, the grade levels corresponding to child-ages vary in different cultures and/or countries.
When some grade levels or child-ages are merged into a group (or class), another question arises how
large the interval of grade levels (or child-ages) is to be allowed. On the contrary, if one considers text
recommendation for each individual child-age (or grade level), it lacks sufficient annotated data (to train
a recommendation model) corresponding to the ages. Thus, from the computational linguistic point of
view, defining the target age for automatically recommending age is very difficult. It requires to do some
trade-offs among the different issues.

3.2 Target Age

In age recommendation task, the target age can be defined in several ways. First, one can think of the
minimum age at which a text is comprehensible. However, in real world, suggesting a text to a child based
on the minimum age may not be very practical as he/she cannot find it very interesting after certain age.
For example, in general, a child of 12 years does not like the text (poem, fiction etc.) written for the kids of
4 years although he/she understands it very well. Such issues can be tackled by defining the target age as
an interval (or range) of lower bound and upper bound, [a, b] meaning that a text, T is comprehensible by
the children of ages between a and b years. This interval further can be deduced to a mean-age, µ = a+b

2
with a considerable deviation. For example, if a text corresponds to the age-range of [4− 8], the target
age is 6 years with a deviation of 2 years. In this paper, the target age is mainly defined as an age-range,
but it studies the mean-age(µ) as well.

3.3 Recommendation Method

Regarding the definition of the target age, we consider age recommendation as a regression task to predict
the age as a numeric value from an input. The input of age recommendation can be either a full text or a
sentence. The text level and sentence level recommendations allow us to deeper analyze different aspects
and to serve different objectives of this task. In text level age recommendation method, the target age
is predicted by analyzing the full text as a whole. However, for sentence level recommendation, each
sentence is analyzed separately. Further, the sentence level predictions can be aggregated (e.g., mean
aggregation) to make a text level global recommendation. Thus, the text level recommendation method
can serve only the readers while the sentence level recommendation method can be useful for an author as
well to incrementally verify (while writing a text) if the text is suitable for the readers of a certain age.

In age recommendation, an input text/sentence is represented with several features which are computed
by various linguistic analysis. The feature-values are fed to a regression model in a supervised manner.
Such a model is able to predict an age-range, an individual bound (min or max), and a mean age depending
on the training setup.



Genre # texts # sentences Age range (avg.) Mean age (avg.)

Train

Encyclopedia 738 21,960 [ 11.33 , 15.71 ] 13.52
Newspaper 793 18,245 [ 09.44 , 13.85 ] 11.64

Fiction 966 47,277 [ 09.06 , 11.85 ] 10.45
Overall 2,509 87,882 [ 09.73 , 13.26 ] 11.49

Validation

Encyclopedia 201 6,495 [ 10.62 , 15.13 ] 12.87
Newspaper 147 3,224 [ 09.38 , 13.78 ] 11.58

Fiction 255 12,471 [ 07.86 , 10.90 ] 09.38
Overall 605 22,261 [ 08.90 , 12.57 ] 10.74

Test

Encyclopedia 135 4,325 [ 11.52 , 15.86 ] 13.69
Newspaper 189 4,118 [ 09.49 , 13.86 ] 11.67

Fiction 231 13,186 [ 08.66 , 11.83 ] 10.24
Overall 559 21,701 [ 09.41 , 13.03 ] 11.22

Total

Encyclopedia 1074 32,780 [ 11.21 , 15.61 ] 13.41
Newspaper 1129 25,587 [ 9.44 , 13.84 ] 11.64

Fiction 1452 72,934 [ 8.78 , 11.68 ] 10.23
Overall 3,673 131,844 [ 9.53 , 13.11 ] 11.32

Table 1: Sizes and ages for the whole, training, validation and tests datasets. Statistics are given overall and for each
text genre.

4 Data

This section presents the corpus of 3, 673 French texts (132K sentences, 2.5M words) that we have
constituted to perform age recommendation. The main statistics of this corpus are given in Table 1 and
are described in the remainder. This corpus is intended to be publicly available1.

4.1 Age Annotations

All texts are associated with an age range. As previously discussed, this range is interpreted as the
rough interval of ages from which the text is mostly adequate and can be fully understood. Age ranges
come from indications given by the authors or editors in the case of children-dedicated texts, whereas
they are arbitrary set to [ 14 , 18 ] for adults. It is important to highlight that these annotations are
probably imperfect since editors and authors are not psycho-linguists2. Indeed, age ranges are usually
empirically defined, based on the feeling and experience of the authors and editors, as well as marketing
considerations3.

When working on isolated sentences later on in the paper, please note that all sentences will be
associated with age range of the text from which they come. For example, if a text annotated with
an age range of [a, b], all the sentences in the text are considered with the same age range. This is an
inaccurate assumption since it is clear that all sentences of a difficult text may not be difficult when taken in
isolation. Maybe only few of them are difficult or even the difficulty may come from the reasoning linking
the sentences. However, this is the best approximation that one could reasonably expect as annotating
thousands of sentences would be difficult and there would not be any guarantee that these annotations are
consistent with the text level ones (again, the logics of the editors and authors is unknown).

1Due to the legal issue, now we are currently able to publicly release 25% of this dataset. The complete dataset will be
released very soon.

2Experiments of Section 6.3 provide an idea of the differences between these reference age ranges and those recommended
by experts.

3For instance, age ranges for novels/stories are usually associated as a whole to collections, rather than individually to each
book. Furthermore, some strategies may incite to lower the age range if this can help differenting a product from its concurent.
Furthermore, age ranges tend to be large to attract more parents.



4.2 Balancing and partitioning

To avoid linguistic biases due to specific genres, the corpus mixes encyclopedic, newspaper and fictional
texts. Encyclopedic texts comes from Vikidia4 and Wikimini5 for children, and Wikipedia article on
difficult topics regarding the adult age range. Newspaper texts come from various newspapers and
magazines like Le P’titLibé6 or Albert7 for children, whereas they come from usual newspapers for adults
(L’Humanité, Le Monde diplomatique, etc.). Finally, fictional texts come form stories or novels with
various authors.

The corpus is balanced in terms of text genres and age ranges. However, no specific attention has been
paid on balancing the topics across the age ranges and genres. This is simply because multiplying the
constraints makes it impossible to build a corpus large enough to perform machine learning8.

Text lengths are very different according to their genre and target age, especially regarding novels
which can be very long for adults. The information about length could be taken by the models as a clue
in favor of high ages. To avoid this bias, all texts larger than 10, 000 characters have been segmented
on paragraph boundaries9 with a segment length of 5, 000 characters approximately. This segmentation
avoids the biases due to the genre and target age too. Moreover, it is consistent with one of our goals to
index online texts (which are rarely presented as one very long page but rather paginated) or to assist
writers (they may probably not want to study their whole text but rather portions of it).

The whole dataset is partitioned into train/validation/test sets with respective proportions of
68.3/16.5/15.2% in terms of texts, and 66.7/16.9/16.5% regarding the sentences. All texts segments
coming from a same original text are gathered in the same subset to guarantee that the validation and test
data are completely unseen data after training. In all subsets, fictions count more texts and sentences than
two other genres of encyclopedia and newspaper. Moreover, the average age ranges and mean ages per
subset and per genre vary slightly. Especially, it can be noticed that the ages from the validation set differ
more to the training set than the test set does.

4.3 Statistics on Ages

The distributions of the texts and sentences per age are shown in Figure 1. One text or sentence with age
range [a, b] is counted up for an age x as soon as x ∈ [a, b]. This figure shows that the ages from 8 to
12 years are slightly more represented, especially regarding sentences. This corresponds to the period
where children can read but are still considered as children (as opposed to teenagers). In contrast, few
texts/sentences correspond to the ages between 0 to 3 years. This is normal as the children of these ages
are too young to read and their attention time is smaller. Hence, these texts are supposed to be narrated,
and they are short.

The detailed statistics of the dataset per age range are shown in Table 2. The dataset contains texts for
32 different age ranges. However, the train, validation and test sets individually does not cover the same
age ranges. The three sets contain 29, 19, and 24 age ranges, respectively where 18 age ranges are in
common.

5 Evaluation metrics

This section presents and studies different metrics to compute the error between a reference interval
r = [a, b] provided by the annotations, and a hypothesis interval h = [c, d]. While this study does not
pretend to be exhaustive, the objective is to highlight the main questions for the age recommendation
task and to come up with one or few metrics for the remainder of the paper, hopefully future work in the
community as well.

4fr.vikidia.org
5fr.wikimini.org
6https://ptitlibe.liberation.fr/
7https://www.journal-albert.fr/
8In this regard, the corpus could have been much large if text genres were not balanced since encyclopedic data for children

is easy to massively collect.
9In practice, these boundaries are detected by blank lines instead of simply line returns since the latter strategy would badly

segment dialogues.

fr.vikidia.org
fr.wikimini.org
https://ptitlibe.liberation.fr/
https://www.journal-albert.fr/


Figure 1: Distribution of the texts and sentences over the different ages in the train, validation, and test sets

Age Train Validation Test
Range Mean Texts Sent. Tokens Texts Sent. Tokens Texts Sent. Tokens
[ 0 , 2 ] 1.0 1 6 73 – – – – – –
[ 0 , 3 ] 1.5 3 29 255 2 33 277 2 60 686
[ 2 , 4 ] 3.0 – – – – – – 1 17 258
[ 2 , 7 ] 4.5 1 20 486 – – – – – –
[ 3 , 5 ] 4.0 28 1,116 13,318 7 241 3,029 8 206 2,402
[ 3 , 6 ] 4.5 79 1,552 25,660 11 197 3,215 16 360 5,143
[ 3 , 7 ] 5.0 15 321 5,034 7 104 1,669 4 88 1,225
[ 3 , 8 ] 5.5 29 683 12,761 11 262 4,371 5 107 1,925
[ 3 , 9 ] 6.0 20 459 7,918 1 23 356 3 132 2,229
[ 4 , 6 ] 5.0 – – – 1 58 650 1 121 1,121
[ 4 , 7 ] 5.5 1 20 336 – – – 1 37 948
[ 4 , 8 ] 6.0 31 494 6,917 14 219 3,318 10 166 2,393
[ 4 , 9 ] 6.5 11 217 4,614 3 69 1,358 2 59 1,254
[ 5 , 7 ] 6.0 5 275 4,301 – – – – – –
[ 5 , 8 ] 6.5 1 38 623 – – – – – –
[ 5 , 9 ] 7.0 25 989 17,420 15 592 11,493 1 48 948

[ 5 , 12 ] 8.5 1 27 632 – – – – – –
[ 6 , 8 ] 7.0 70 5,571 69,513 16 1,208 15,494 7 479 6,311
[ 6 , 9 ] 7.5 42 1,365 24,396 8 276 5,414 8 361 7,219

[ 6 , 12 ] 9.0 – – – – – – 3 167 2,879
[ 7 , 11 ] 9.0 17 1,096 13,608 – – – 4 279 3,306
[ 7 , 12 ] 9.5 466 11,231 232,898 83 1,989 41,918 106 2,477 51,352
[ 8 , 10 ] 9.0 57 4,915 58,352 – – – – – –
[ 8 , 11 ] 9.5 29 1,706 27,799 120 7,562 104,882 62 4,232 56,106
[ 8 , 12 ] 10.0 28 765 13,507 2 80 1,390 4 129 2,283
[ 8 , 13 ] 10.5 277 8,781 223,954 101 3,356 79,749 46 1,456 36,687
[ 10 , 12 ] 11.0 12 751 9,707 8 645 7,105 38 2,533 32,724
[ 10 , 13 ] 11.5 63 4,169 57,710 – – – – – –
[ 10 , 14 ] 12.0 30 2,815 28,214 – – – 32 2,790 27,946
[ 11 , 13 ] 12.0 183 11,593 175,219 – – – – – –
[ 12 , 14 ] 13.0 58 2,844 43,870 9 365 6,243 12 503 8,401
[ 14 , 18 ] 16.0 926 24,034 654,148 186 4,982 129,408 183 4,894 125,796

Total 2,509 87,882 1,733,243 605 22,261 421,339 559 21,701 381,542

Table 2: Number of texts, sentences and tokens for each age range in the train, validation and test sets. Age ranges
are sorted according to their lower bound first. The sign – is used when no data is available.



Overall, most approaches vary according to the meaning behind the notion of interval. On the one
hand, one can assume that an interval [x, y] is exact, that is all children whose age is in this interval
will understand the text. Besides, uncertainty can be taken into account to reflect the fact that the real
(reference) range/value is unknown and the only available information is that this is somewhere within
[x, y]. As previously discussed, this uncertainty assumption seems particularly reasonable for our data
since their underlying annotation process by the authors and editors is not perfectly understood.

Below, the section presents several approaches and their most relevant metrics10. Finally, these metrics
are compared and discussed on a study case.

5.1 Usual vector metrics

Considering ranges as 2D vectors r⃗ =

(
a
b

)
and h⃗ =

(
c
d

)
, usual metrics are the L1 and L2 distances

(“absolute Error” and “root squared error”), that is:

L1(⃗h− r⃗) =| c− a | + | d− b | , (1)

and L2(⃗h− r⃗) =
√

(c− a)2 + (d− b)2 . (2)

Intuitively, one could argue that it is better when the hypothesis interval is included in the reference
one, rather than the contrary. This can taken into consideration by measuring the angle θ between the

vector h⃗− r⃗ =

(
c− a
d− b

)
and ı⃗ =

(
1
−1

)
11. Mathematically, this is computed as:

cos(θ) = cos ( h⃗− r⃗ , ı⃗ ) =

{
1 if r⃗ = h⃗ ,

c−a−d+b√
2L2 (⃗h−r⃗)

otherwise . (3)

L2 and cos(θ) can then be linearly interpolated as follows to provide a new metric:

θ-L2(r⃗, h⃗) = L2(⃗h− r⃗) + α(1− cos(θ)) , (4)

where α is an empirically tunable weight, and 1− cos(θ) ranges in [0, 2].
The main drawback of all these metrics is that the lower and upper bounds of the intervals are processed

independently, whereas it is clear that they are not independent.

5.2 Jaccard distance

Jaccard distance, which is usually applied on sets, can be extended to intervals and can be used to evaluate
age ranges. The definition is as follows:

J([a, b], [c, d]) = 1− ∥ [a, b] ∩ [c, d] ∥
∥ [a, b] ∪ [c, d] ∥

, (5)

where ∥.∥ denotes the norm of an interval. The resulting measure ranges in [0, 1] where 0 means that the 2
intervals do not overlap at all, whereas 1 is returned if they are equal.

The Jaccard distance is debatable for various reasons. First, it does not consider the size of the gap when
the intervals do not overlap. Second, J is symmetric, whereas the intuition would argue for a prevalence
of the reference interval r over the hypothesized one h. Finally, J(r, h) normalizes the error according
to the size of the intervals. Hence, big errors on large intervals are equivalent to small errors on small
intervals. This last argument can be overwhelmed by scaling J according the size of the intervals, for
instance, using the average interval size:

Jyear([a, b], [c, d]) =
| b− a | + | d− c |

2
× J([a, b], [c, d]) . (6)

10Several other variants have been studied but are not reported here since they do not bring interesting theoretical or
experimental results.

11An illustration of this principle is provided in Appendix A.



Figure 2: Evolution of the local error e and the resulting global error IE (filled areas below bold lines) for prototypical
situations of the reference (r) and hypothesis (h) ranges.

5.3 Mean-based metrics
Assuming that the bounds of a given age range are somewhat uncertain, one may argue that the interval
should be reduced to its center/mean value. When applying this principle on both intervals, this defines a
mean-to-mean error, denoted as follows:

µEa,b(c, d) =| µ(a, b)− µ(c, d) | , (7)

where µ(x, y) is the mean of x and y. While this measure may look oversimplistic, we believe that it is
interesting because it is easily interpretable.

This metric can be relaxed further by considering that a recommendation is acceptable (i.e., no error) as
soon as the mean of the hypothesis interval lies in the reference interval. This is defined as the Bound
Error (BE):

BEa,b(c, d) =


0 if µ(c, d) ∈ [a, b] ,
a− µ(c, d) if µ(c, d) < a ,
µ(c, d)− b if µ(c, d) > b .

(8)

5.4 Integral of local errors
In a last approach, the error between two age ranges can be seen as the sum of a local errors e(x) for age x
over the recommendation domain [0, 18]. In practice, this domain can be reduced to the smallest segment
which both includes the reference and hypothesis intervals because there is no error to be counted outside
of it. Hence, we define the Integral Error (IE) as:

IEa,b(c, d) =

∫ max(b,d)

min(a,c)
ea,b,c,d(x) dx . (9)

IE is interesting since it enables a large panel of logics through the definition of different functions e.
A straightforward definition for e(x) consists in measuring the distance btween x and r, the distance

between x and h, and to sum the two distances. The distance between x and a given interval [s, t] is null
if x ∈ [s, t], and the absolute distance to the closest bound otherwise. This can be written as follows:

ea,b,c,d(x) =



0 if x ∈ [a, b] and x ∈ [c, d] ,

min(| x− c |, | x− d |) if x ∈ [a, b] and x /∈ [c, d] ,

min(| x− a |, | x− b |) if x /∈ [a, b] and x ∈ [c, d] ,

min(| x− c |, | x− d |) + min(| x− a |, | x− b |)
if x /∈ [a, b] and x /∈ [c, d] .

(10)

After integrating and applying square root to express the result as “years” (instead of “squared years”),
this brings to the following Symmetric Integral Error (Sym-IE):

Sym-IEa,b(c, d) =

√
(a− c)2 + (d− b)2

2
=

L2(⃗h− r⃗)√
2

. (11)



Figure 2 illustrates the behavior of e(x) (solid line) and Sym-IE (hatched area) on different cases.
The frame of local errors can be easily extended. For instance, Sym-IE can be generalized by weighting

differently the local error due to r and due to h with a factor β ∈ [0, 1]:

ea,b,c,d(x) =



0 if x ∈ [a, b] and x ∈ [c, d] ,

βmin(| x− c |, | x− d |) if x ∈ [a, b] and x /∈ [c, d] ,

(1− β)min(| x− a |, | x− b |) if x /∈ [a, b] and x ∈ [c, d] ,

βmin(| x− c |, | x− d |) + (1− β)min(| x− a |, | x− b |)
if x /∈ [a, b] and x /∈ [c, d] ,

(12)

A global error, called β-IE, is then defined as:

β-IEa,b(c, d) =

√
β × (max(0, c− a)2 +max(0, b− d)2)
+(1− β)× (max(0, a− c)2 +max(0, d− b)2)

. (13)

The setting β = 0.5 corresponds to Sym-IE, while β < 0.5 gives more importance to fitting the reference
interval than the hypothesis.

Other extensions could be imagined, which we believe makes this approach better than the previous
ones on a theoretical point of view. For instance, one could integrate the fact that errors on early ages are
more impacting than those on higher ages, since the cognitive development of children slows down as
they grow up.

5.5 Study case and discussion
Among all the previously defined metrics, a good metric would behave in the same way as a human would
intuitively do. This means that, given a reference age range, a good metric would rank a set of hypothesis
ranges in the same order as a human. To do so, we designed a set of n = 20 hypothesis intervals (hi,
1 ≤ i ≤ n) with respect to a reference r = [8, 12], and ranked them in an oracle way. These hypotheses
reflect typical situations that one would want the metric to distinguish appropriately. Given a metric d, all
hypotheses hi can sorted in the ascending order considering d(r, hi), and associated to their rank ρd(i).
Then, the quality of d is measured by comparing the ranking ρd with the oracle ranking ρ∗ using the
average Spearman’s footrule distance S with the oracle ranking (Spearman, 1904) (the lower the better):

S(ρ∗, ρd) =
1

n

n∑
i=1

| ρ∗(i)− ρd(i) | . (14)

Table 3 shows the rankings for each metric12 along with the resulting value for S. The metrics under
investigation are compared to what would do a random metric (i.e., d(r, hi) is a random positive real
number)13. Values of the parameters α = 0.5 and β = 1

3 for the parametric metrics are those leading to
the best results for S.14

Overall, it appears that the values for S are very varied. Some metrics lead to high values. For J , this is
consistent with the drawbacks previously highlighted. For BE, it appears that this comes from the fact
that many hypotheses cannot be (purposely) distinguished. As shown in the tables, a linear interpolation
with µE can easily alleviate, even for very small values of α. The same phenomenon is observed with
Asym-IE. At the opposite, the best metrics reach very low values, which denote a strong correlation with
the human judgement (β-IE and θ-L2).

Even if the hypothesis ranges used in this experiment do not perfectly fit the expected distribution
of the hypotheses on the real data, we believe that this study provides a valuable basis to rank the

12The corresponding values for d(r, hi) are provided in Appendix A.
13Let one note that the expected Spearman’s footrule distance S for this random metric is an empirical approximation since no

analytical form for the expectation of Spearman’s footrule distance S is known in the litterature.
14Eventhough this would be a methodological issue for some experiments, we judged that this optimization process is

acceptable since the objective is not to provide the best parameters but to understand the way that the metrics behave.



Table 3: Ranks given by the different metrics for various hypothesis intervals [c, d] according to the reference
interval [a, b] = [8, 12]. The rank difference with the Oracle is given in parenthesis (∆), and Spearman’s footrule
distances S against the Oracle are given by the last row.

models experimented in this paper. As such, the results will be provided in terms of β-IEβ=0.4, θ-
L2,β=0.4. Additionnally, the results will be reported in terms of µE (error between the means) because
this is easily interpretable and corresponds to the situation where only one number is expected from age
recommendation, instead of a range.

6 Age Recommendation Experiments

We considers age recommendation (prediction of a target age) as a regression task. This section details
the different approaches and machine learning models for age prediction from a text/sentence, and shows
the experimental results.

6.1 Experiment Protocols

The age recommendation approaches studied here are (a) OneShot text-level (by considering a text as a
whole), (b) sentence-level, and (c) aggregation text-level. In aggregation approach, the sentence-level
recommendations are aggregated to make a text-level global recommendation. Moreover, in each approach,
a text/sentence is represented with a vector of several features (as real numbers). This paper studies
mainly two kinds of features: word embedding features and linguistic expert features. For the embedding
features, we use two pretrained embeddings, FastText and CamemBERT. FastText is a CBOW-based
word embeddings (dimension of 300) which is pre-trained on French Wikipedia using fastText (Grave
et al., 2018). Unlike FastText, CamemBERT (Martin et al., 2020) is a BERT-based contextual embeddings
(dimension of 768), trained on the French subcorpus of a multilingual corpus named OSCAR. However,



Feature Category # Features
Lexicon 5
Graphemes 6
Morphosyntax 7
Verbal Tenses 24
Person/Number 5
Syntactic Dependencies 8
Logical Connectors 16
Phonetics 9
Sentiments 27
Overall 107

Table 4: Linguistic expert features of 9 categories inherited from the related study

Data Representation with Features Expression

Sentence
1. Avg. of token/word-vectors from FastText SFT = Vtoken(FastText)

2. Avg. of token/word-vectors from CamemBERT SCB = Vtoken(CamemBERT )

3. Sentence-level linguistic expert features SExpert

Text
1. Avg. of sentence-vectors from FastText TFT = SFT

2. Sequence of sentence-vectors from CamemBERT TCB = {S1
CB , S

2
CB , ..., S

N
CB}

3. Avg. of sentence-level linguistic expert features TExpert = SExpert

Table 5: Different representations of a sentence and a text to train an age-recommendation model

the linguistic expert features are a set of 107 features of 9 categories adapted from the literature of related
studies. Table 4 presents the 9 categories with their feature counts15.

With the word embeddings and linguistic expert features, different representations of a sentence and a
text are detailed in Table 5. Several regression models are trained with these representations of features
to predict the target age from a text/sentence. Here we study the following regression models for age
recommendation.

6.1.1 Regression Models
CamemBERT, a French language model relies on a RoBERTa architecture (Liu et al., 2019), which
includes positional encoding and multi-head masking with attention mechanism to learn the language
representation. It bidirectionally learns contextual relations from words in all positions unlike the
sequential learning in RNN architecture. A pretrained CamemBERT provides also the contextual vector
of a word or sentence (mean of the word-vectors in a sentence). CamemBERT offers performing single-
output regression task. For age-range recommendation, given a sentence as input, two CamemBERT
models are employed to recommend the lower bound and upper bound separately.

A RNN model e.g., GRU (Cho et al., 2014) are able to learn one-way long-term dependencies of a sequence.
Such a model is highly relevant to text-based recommendations as a text holds the necessary properties of
sequence. Although CamemBERT allows regression on long texts (maximum 512 tokens), many texts
in our dataset are much larger than this limit. Therefore, for OneShot text-level age recommendation,
this paper uses a GRU network fed with TCB . We studied RNN models also for the sentence-level age
recommendation but the results were not so good to report here.

A Feed-forward is a multilayer perceptron network with an input layer, hidden layer(s), and an output
layer. With less parameters, it is comparatively a lighter deep learning architecture than the advanced
ones e.g., BERT, transformers etc. In age recommendation task, the Feed-forward model is fed with the
feature-vectors of size N representing a text/sentence, and directly outputs the two bounds of an age-range.

A Random Forest is an ensemble learning model to perform classification or regression task which

15Appendix B describes the feature categories in detail.



Figure 3: Overview of the text-level and sentence-level age recommendation models

Figure 4: Text-level age recommendation by aggregating sentence-level recommendations

combines multiple decision trees to make the final prediction. A Random Forest reduces the overfitting
and gets rid of the limitations of a decision tree algorithm. It offers explainability of the recommendations.
We employ Random Forest regressor to directly predict the lower bound and upper bound of an age-range
like the RNN and Feed-forward ones.

Combinations of the different features and regression models The regression models are fed with
different types of features regarding either age recommendation from text or sentence. Figure 3 shows
the overview of different regression models and their associated inputs. A model that takes embedding
features and expert features as input is named as an independent model. In contrast, we name a model
as dependent model when the model’s input is the output of another model (in particular, GRU and
CamemBERT), concatenated with the expert-features. Thus Feed-forward and Random Forest act as both
independent and dependent models based on the input. However, the GRU (for text-level recommendation)
and CamemBERT (for sentence-level recommendation) models are used only as the independent models.

grade level = 0.39

(
total words

total sentences

)
+ 11.8

(
total syllables

total words

)
− 15.59 (15)



Model Text Level Prediction Sentence Level Prediction

Feed-forward hidden_layers = 6, hidden_units = 200,
activation = ReLU, epoch = 500

hidden_layers = 6, hidden_units = 200,
activation = ReLU, epoch = 500

Random Forest nb_estimators = 100, criterion = ’gini’,
nb_leaf_node = ∞

nb_estimators = 100, criterion = ’gini’,
nb_leaf_node = ∞

GRU
units = 128,
activation = tanh, batch_size = 128,
drop_out = 0.20, epoch = 50

Not Used

CamemBERT Not Used max_sentence_len = 100, lr = 1e-5,
batch_size = 32, epoch = 3

Table 6: Hyper-parameters used in different models for fine-tuning purpose

Sentence aggregation, Grade-level, and Naive approach We also study aggregation models to recom-

mend the age for a text from its sentence level recommendations as shown in Figure 4. This study explores
different aggregation approaches e.g., mean, median, and RNN but finds mean aggregation as the most

robust and reliable. Therefore, this paper reports only the mean aggregation, [a, b] =
∑N

i=1[ai, bi]
N , where

[ai, bi]s are recommended ages at the sentence level, and N is the number of sentences in a text. This
paper further uses Flesch-Kincaid grade-level score (Kincaid et al., 1975) which computes a grade-level
(Eq. 15) for an input text. It is a very simple model but widely studied baseline in text-readability analysis.
For a text, to derive the recommended age from Flesch-Kincaid score, we use a base-age of 5.5, and add it
to the grade-level. Thus, for example, regarding a text, if the grade-level is 4.5, the recommended age
becomes 4.5 + 5.5 = 10 years. As Flesch-Kincaid score returns a single grade-level, this paper considers
the derived recommended age as a mean-age (µ), and it is comparable with the recommendations of other
models by µ-score only. Finally we use a Naive model, for any text or sentence as input, it outputs the
mean values of age-ranges ([9.86, 13.78] for text-level and [9.73, 13.26] for sentence-level) computed
from the training dataset. This naive approach helps us to justify the other models, either they learn well
from the data or not.

6.1.2 Training and Parameter Tuning
The age recommendation models are built on the train dataset. Further, to confirm the stability, each
model is fine-tuned with several hyper-parameters on the validation dataset. Table 6 details the different
hyper-parameters calibrated in the models.

6.2 Age Recommendation Scores
Here we present the scores obtained from the different age recommendation models. Basically these
scores refer to the errors made by the different recommendation models. To confirm the stability of the
age recommendation models, this section reports the µ-score of each model on both validation and test
datasets. However, the θ-L2 and β-IE scores of each model are presented for test dataset only.

6.2.1 OneShot text-level recommendation
In OneShot text-level age recommendation, we train GRU, Feed-forward and Random Forest models with
the different types of features as shown in Fig. 3(a). Table 7 shows the µE scores of different models on
the validation and test datasets. All the models except Flesch-Kincaid significantly outperform the Naive
approach. Flesch-Kincaid method gets the worst µE score and it is not very surprising as this method is
very simple. The Naive approach obtains better score than Flesch-Kincaid method because the age-range
of a large portion of the dataset is approximately same as the Naive approach computes. However, as an
independent model, GRU with TCB features results the best scores for the three genres Encyclopedia (E),
Newspaper (N) and Fiction (F) on both validation and test datasets. With TFT features, the Feed-forward
model performs the second best. Moreover, Random Forest performs better than the Feed-forward model
when both are fed with TExpert features. Interestingly, as a dependent model, Random Forest with the
combination of GRU recommended min_age, max_age, and TExpert features obtains a little better score
than the GRU model. Also in terms of the proposed metrics, θ-L2 and β-IE, GRU with TCB features
outperforms other models as shown in Table 8. These results signify the effectiveness of TCB for OneShot



Validation Test
Model/Features E N F All E N F All
Naive 2.80 2.94 3.78 3.25 3.24 2.94 3.12 3.10
Flesch-Kincaid 6.22 4.97 5.88 5.76 6.92 4.61 4.78 5.23
GRU/TCB 1.42 0.30 1.97 1.39 1.18 0.35 1.40 0.98
Feed-forward/TFT 1.70 1.10 2.61 1.96 1.72 1.01 1.79 1.52
Feed-forward/TExpert 2.31 1.95 2.71 2.42 2.15 1.90 2.51 2.22
Random Forest/TFT 2.08 1.33 2.84 2.23 1.80 1.21 2.19 1.78
Random Forest/TExpert 2.04 1.40 2.42 2.06 1.70 1.35 2.18 1.78
Feed-forward/(GRU_pred.+TExpert)* 1.72 0.79 2.26 1.72 1.42 0.85 1.70 1.34
Random Forest/(GRU_pred.+TExpert)* 1.33 0.23 1.95 1.34 1.05 0.26 1.37 0.91

Table 7: OneShot text-level µE scores (* indicates dependent model)

θ-L2 β-IE
Model/Features E N F All E N F All
Naive 5.07 4.69 5.13 4.98 3.21 2.90 3.31 3.16
GRU/TCB 2.09 1.05 2.66 1.96 1.17 0.39 1.47 1.02
Feed-forward/TFT 2.95 1.96 3.13 2.70 1.71 1.03 1.84 1.55
Feed-forward/TExpert 3.58 3.29 4.21 3.75 2.16 1.95 2.63 2.28
Random Forest/TFT 3.04 2.21 3.70 3.06 1.80 1.25 2.23 1.81
Random Forest/TExpert 2.90 2.40 3.73 3.07 1.70 1.37 2.25 1.81
Feed-forward/(GRU_pred.+TExpert)* 2.52 1.76 3.06 2.48 1.42 0.90 1.8 1.40
Random Forest/(GRU_pred.+TExpert)* 1.71 0.60 2.50 1.66 1.04 0.28 1.43 0.94

Table 8: OneShot text-level θ-L2 and β-IE scores on test dataset (* indicates dependent model)

Validation Test
Model/Features E N F All E N F All
Naive 2.67 2.61 2.94 2.82 3.26 2.63 2.20 2.50
CamemBERT/- 1.93 1.3 2.21 2.00 2.02 1.28 1.94 1.83
Feed-forward/SFT 2.31 1.65 2.86 2.53 2.41 1.61 2.38 2.24
Feed-forward/SExpert 2.75 2.60 2.94 2.84 2.75 2.51 2.68 2.66
Feed-forward/(SFT⊕SExpert) 2.19 1.60 2.87 2.49 2.31 1.55 2.39 2.21
Random Forest/SFT 2.42 2.15 2.43 2.39 2.68 2.02 2.01 2.15
Random Forest/SExpert 2.41 2.23 2.41 2.39 2.62 2.17 2.04 2.19
Feed-forward/(CamemBERT_pred.⊕SExpert)* 2.08 1.38 2.71 2.34 2.08 1.34 2.33 2.09
Random Forest/(CamemBERT_pred.⊕SExpert)* 1.97 1.22 2.42 2.12 2.00 1.18 1.98 1.83

Table 9: Sentence level µE scores (* indicates dependent model)

text-level age recommendation. It is as expected because CamemBERT holds the contextual information
of the words in a sentence, and such information helps a neural network model to extract useful hidden
features.

6.2.2 Sentence-level recommendations
For the sentence level experiments, we employ a pretrained CamemBERT as a regression model by
fine-tuning it with our training data. CamemBERT does not allow multi-value regression. Therefore, this
paper trains two CamemBERT models separately to recommend the lower bound (minimum age) and the
upper bound (maximum age) of an age range for sentence level age recommendation. Later the mean age
is derived from the recommended bounds. However, Feed-forward and Random Forest models are trained
to directly recommend the age range like the OneShot age recommendation.

Table 9 details the sentence level µE scores for the three genres on the validation and test datasets.
In this case, Feed-forward with SExpert features performs worst having a µE score higher than the



θ-L2 β-IE
Model/Features E N F All E N F All
Naive 5.11 4.28 3.83 4.18 3.22 2.59 2.35 2.58
CamemBERT/- 3.49 2.44 3.41 3.25 2.13 1.38 2.03 1.93
Feed-forward/SFT 3.95 2.81 4.00 3.77 2.40 1.66 2.47 2.30
Feed-forward/SExpert 4.42 4.11 4.46 4.39 2.73 2.54 2.79 2.73
Feed-forward/(SFT⊕SExpert) 3.80 2.72 4.01 3.72 2.31 1.60 2.48 2.28
Random Forest/SFT 4.29 3.47 3.48 3.65 2.66 2.08 2.09 2.20
Random Forest/SExpert 4.22 3.67 3.56 3.72 2.62 2.21 2.14 2.25
Feed-forward/(CamemBERT_pred.⊕SExpert)* 3.42 2.42 3.93 3.54 2.08 1.39 2.42 2.16
Random Forest/(CamemBERT_pred.⊕SExpert)* 3.28 2.16 3.41 3.15 1.99 1.25 2.05 1.89

Table 10: Sentence-level θ-L2 and β-IE scores on test dataset (* indicates dependent model)

Validation Test
Model/Features E N F All E N F All
Naive 2.80 2.94 3.78 3.25 3.24 2.94 3.12 3.10
CamemBERT/- 1.86 1.12 1.94 1.72 1.92 1.16 1.73 1.59
Feed-forward/SFT 2.11 1.33 2.48 2.09 2.21 1.36 1.91 1.80
Feed-forward/SExpert 2.31 2.12 2.83 2.50 2.46 2.08 2.41 2.32
Feed-forward/(SFT⊕SExpert) 2.01 1.29 2.47 2.04 2.12 1.30 1.93 1.76
Random Forest/SFT 2.45 2.14 2.84 2.55 2.67 2.07 2.42 2.37
Random Forest/SExpert 2.44 2.23 2.93 2.60 2.60 2.21 2.53 2.44

Table 11: Text level µE scores by Mean-aggregation

Naive approach. All other models perform better than the Naive one. The CamemBERT model with
its contextual word embeddings achieves the best scores for each genre on both datasets. Interestingly,
on Feed-forward model, SFT features perform better than the SExpert features. The SFT and SExpert

features jointly improves a little over SExpert features but seems not significant. Like the OneShot
text-level, Random Forest with SExpert features gets better score than the Feed-forward one. However,
as dependent models (CamemBERT recommended min-age and max-age, concatenated with SExpert

features), the Feed-forward and Random Forest do not improve the scores over the CamemBERT.
We also observe the θ-L2 β-IE scores (Table 10) for the sentence level age recommendation on the test

dataset and notice the coherency of the performances by different models as seen for µE scores. These
scores show that CamemBERT model significantly outperforms the other models without requiring any
explicit feature engineering. However, it is not surprising that the sentence level scores are worse than the
OneShot text-level scores as the training sentences are not annotated by the experts rather it is done based
on the text annotations which leads to inaccurate sentence annotation.

6.2.3 From sentences to text-level recommendations
The sentence level scores still look very decent and it motivates us to explore aggregation of sentence
level recommendations to make a text-level global recommendation. Here we study the mean aggregation
which derives the mean value from the recommended ages of the sentences in a text.

As shown in Table 11, by significantly outperforming the Naive approach, the mean-aggregation
(especially for the CamemBERT model) gives very good µE scores to recommend age for a text.
CamemBERT obtains µE scores of 1.72 and 1.59 on the validation and test datasets which are 0.33 and
0.61 points worse than the best (GRU/TCB) OneShot model. Although, Feed-forward performs better than
Random Forest, both get some good scores on the validation and test datasets. Like the OneShot text-level
and sentence-level, here again we notice that on the Feed-forward model, SFT features performs better
than the SExpert features. Jointly the SFT and SExpert features gets insignificantly a little better score
over SFT features alone. Similar behaviour is noticed with the θ-L2 and β-IE scores on the test dataset
as shown in Table 12.



θ-L2 β-IE
Model/Features E N F All E N F All
Naive 5.07 4.69 5.13 4.98 3.21 2.90 3.31 3.16
CamemBERT/- 3.27 2.18 3.07 2.83 1.97 1.21 1.78 1.64
Feed-forward/SFT 3.61 2.42 3.35 3.10 2.19 1.37 1.96 1.82
Feed-forward/Expert 3.97 3.48 4.08 3.86 2.42 2.06 2.49 2.34
Feed-forward/(SFT⊕SExpert) 3.49 2.33 3.37 3.05 2.10 1.31 1.98 1.78
Random Forest/SFT 4.26 3.46 4.08 3.92 2.63 2.04 2.48 2.38
Random Forest/SExpert 4.17 3.65 4.28 4.05 2.56 2.18 2.63 2.46

Table 12: Text level θ-L2 and β-IE scores by mean-aggregation on test dataset

Sentence Level Prediction Text Level Prediction
Model µE θ-L2 β-IE Model µE θ-L2 β-IE
Naive 5.02 7.70 5.14 Naive 4.55 7.11 4.74

CamemBERT/- 3.43 5.54 3.21
Mean Aggr. (CamemBERT/-) 2.95 4.83 2.76
OneShot (GRU/TCB) 1.47 2.72 1.43

Expert 1 3.28 5.23 3.27 Expert 1 2.60 4.23 2.60
Expert 2 3.25 5.28 3.33 Expert 2 3.50 5.76 3.63
Expert 3 3.18 5.28 3.26 Expert 3 2.72 4.47 2.70
Expert mean 2.90 4.76 2.93 Expert mean 2.95 4.81 2.95

Table 13: Age prediction scores (µE, θ-L2 and β-IE) for the expert annotated 80 sentences and 24 texts from the
test set.

Overall, the scores by mean-aggregation are very promising and this aggregation method provides
significant insights on the age-recommendation particularly for the authors view-point. This approach can
be very effective for an author to incrementally verify a text, either it is suitable for a target age.

6.2.4 Comparison of recommendations per age and age-range
Up to now, [GRU/TCB, Feed-forward/TFT] and [CamemBERT/-, Feed-forward/SFT] are the best perform-
ing two pairs of models for the OneShot text-level and sentence-level age recommendation. Here we
compare their recommendation performances for each age and age-range.

Fig. 5 shows the µE scores per age (a and b), and per age-range (c and d) at the text level (a and c)
and sentence level (b and d) on test set. Almost in all cases (except text level scores per age-range), the
GRU/TCB (text level) and CamemBERT/- (sentence level) outperform the Feed-forward/SFT (text level)
and Feed-forward/SFT (sentence level) models.

For OneShot text-level age recommendation, GRU/TCB performs better for recommending ages of 8 to
12 years (older children) and 14 to 18 years (adults). For other ages, the two models perform quite similar.
However, in sentence level age recommendation, CamemBERT/- gets much better scores for child-ages
than adult-ages. Overall, CamemBERT has outstanding contributions in age recommendation task.

6.3 Comparison with Experts

This section compares the recommendations from our best models with those of three psycho-linguist
experts on sentences and texts. To do so, the experts were requested to annotate 20 texts from the test set
and 80 sentences randomly selected from these 20 texts. The different models are applied on the same
sentences and texts. Table 13 compares µE, θ-L2 and β-IE scores measured for the Naive approach,
CamemBERT and GRU models, every expert, and when averaging the expert’s recommendations.

The CamemBERT and GRU models significantly outperform the Naive approach for the sentence-level
and text-level age recommendation. However, CamemBERT/- model gets high µE, θ-L2 and β-IE
scores at the sentence level but still performs quite similar to the individual experts. At the text level,
CamemBERT/- with mean-aggregation obtains the same µE as that of the expert-mean. As an OneShot
model, using sentence-vectors from CamemBERT, GRU/TCB significantly outperforms the experts. These



Figure 5: Per age (a and b), and per age-range (c and d) µE scores at the OneShot text level (a and c) and sentence
level (b and d) on test set

Sentence Actual Age
Range / Mean

CamemBERT
Range / Mean µE θ-L2 β-IE

1. Yum, here is a Mosquito! [4, 8] / 6.0 [4.73, 7.39] / 6.06 0.06 0.95 0.55
2. This afternoon, Tremolo was to
play at a funeral. [8, 11] / 9.5 [8.98, 11.27] / 10.13 0.63 1.27 0.60

3. If we wait later, it is more complicated. [12, 14] / 13.0 [7.80, 12.04] / 9.92 3.08 5.30 3.62
4. By then, you will have had time
to comfort a little girl who has already
shed tears on her fault.

[14, 18] / 16.0 [7.35, 11.50] / 9.43 6.57 9.80 6.60

Table 14: Examples of age recommendation by the CamemBERT/- model for some expert-annotated sentences.
Here the sentences are translated in English while the French version is available in Table 20, Appendix C.

results indicate that the models built on CamemBERT perform better than human annotators. Table 14
presents some sentence level age recommendations where the sentences are annotated by experts. The
CamemBERT/- model gives very good recommendation for the first two sentences while it fails very
badly for the last two instances.

7 Feature Analysis for Explainability

Overall the age recommendation models obtain very decent scores. Although the Expert feature set (with
any regressor) does not achieve the best score, it allows us to analyze which linguistic properties have
higher contributions in age recommendation. As an opening of explainability of the age prediction models,
this section explores feature ranking by different approaches. Before detail analysis, Table 15 describes



Feature Name Description
SentenceLength Number of words in a sentence.
WordLengthStd Std. deviation of the length of each word in a sentence.

LemmaDiversity Number of different lemmas in a sentence.
StopwordsProportion Proportion of stop words to the total number of words in a sentence.

PhonemeNumberSentence Number of phonemes in the sentence (phonetic length).
PhonemeDiversitySentence Number of different phonemes in a sentence.

PhonemeNumberAvg Average number of phonemes per word.
PhonemeNumberStd Std. deviation of the number of phonemes per word.

PhonemeProbStd Std. deviation of the average probability of the phonemes in a sentence.
PhonemeDiversityStd Std. deviation of the number of different phonemes in each word.

PolarityScore Polarity score of a sentence [-1, 1].

Table 15: Description of some the linguistic expert features

Figure 6: Correlation between expert feature and real age, and expert feature and predicted age

Real Age Predicted Age

Features Text Sentence Avg.* Text
(GRU/TCB)

Sentence
(CamemBERT/-) Avg.

PhonemeNumberAvg 0.56 / 2 0.25 / 1 0.40 / 1 0.48 / 3 0.27 / 1 0.38 / 2
PhonemeNumberStd 0.58 / 1 0.22 / 2 0.40 / 2 0.52 / 1 0.26 / 2 0.39 / 1
WordLengthStd 0.54 / 3 0.19 / 7 0.37 / 3 0.50 / 2 0.25 / 4 0.38 / 3
LemmaDiversity 0.50 / 4 0.22 / 4 0.36 / 4 0.48 / 6 0.24 / 5 0.36 / 5
SentenceLength 0.49 / 5 0.22 / 3 0.36 / 5 0.48 / 4 0.25 / 3 0.37 / 4

PhonemeNumberSentence -0.34 / 2 -0.15 / 1 -0.25 / 1 -0.31 / 3 -0.16 / 1 -0.24 / 2
PhonemeDiversitySentence -0.34 / 3 -0.15 / 2 -0.25 / 2 -0.31 / 4 -0.16 / 2 -0.24 / 3
PhonemeProbStd -0.37 / 1 -0.10 / 4 -0.24 / 3 -0.39 / 1 -0.15 / 3 -0.27 / 1
PhonemesDiversityStd -0.32 / 6 -0.14 / 3 -0.23 / 4 -0.25 / 6 -0.15 / 4 -0.20 / 4
StopWordsProportion -0.33 / 5 -0.08 / 5 -0.20 / 5 -0.31 / 5 -0.09 / 6 -0.20 / 5

Table 16: Correlation (correlation score / feature rank) of Expert features to the real and predicted mean-ages at the
text and sentence levels

some linguistic expert features which are presented in this section16.

7.1 Correlation Between Feature and Age

At this point, we are interested to measure the correlation (Pearson correlation coefficient) between the
features and ages (on test set) to identify the most contributory features.

16Appendix B describes all the expert features.



Sentence Level Text Level
Feature Score Feature Score
PhonemeNumberAvg 0.1021 PhonemeNumberAvg 0.1596
PhonemeNumberStd 0.0383 SentenceLength 0.1425
SentenceLength 0.0368 PhonemeNumberStd 0.0847
PhonemeProbStd 0.0132 PhonemeProbStd 0.0245
StopWordsProportion 0.0130 PolarityScore 0.0213

Table 17: Top 5 Expert features (with rank-scores) by permutation feature ranking at the sentence and text levels

Features Sentence Text
Expert 2.66 2.22
Expert - Phonetics 2.77 / +0.11 2.33 / +0.11
Expert - Dependencies 2.71 / +0.05 2.27 / +0.05
Expert - Morphosyntax 2.71 / +0.05 2.26 / +0.04
Expert - Lexicon 2.69 / +0.03 2.29 / +0.07
Expert - Sentiments 2.69 / +0.03 2.18 / -0.04
Expert - Person/Number 2.68 / +0.02 2.16 / -0.06
Expert - Connectors 2.67 / +0.01 2.21 / -0.01
Expert - VerbalTenses 2.66 / +0.00 2.19 / -0.03
Expert - Graphemes 2.65 / -0.01 2.18 / -0.04

Table 18: Ablation test (µE / ∆) of the Expert features with Feed-forward model at the sentence and text levels

First, correlation is measured between each expert-feature and the real ages at the sentence and
text levels, and then done similar with the predicted ages from two models, GRU/TCB (text level) and
CamemBERT/- (sentence level) as shown in Fig. 6. We hypothesize that the top ranked correlated features
will be similar for the real age and recommended age for a good age recommendation model. Table 16
shows the top 5 positively correlated (upper part) and top 5 negatively correlated (bottom part) features
for text level and sentence level predictions. Each correlation score is presented with its rank among the
features. For example, in second column (Real Age/Text), the correlation score for PhonemeNumberStd
(0.58 / 1) is 0.58 with the rank of 1. From this table, it is very clear that the top ranked positively and
negatively correlated features are common in all settings although their ranks displace a little. From
the correlation based feature ranking, one can notice that among different types of features the phonetic
features obtains the best rank scores.

7.2 Permutation Feature Ranking

The idea of permutation feature ranking is to randomly shuffle an individual feature value to break the
relationship between the feature and the target value. Thus it measures the drop of performance due to
discarding the feature, and finally ranks the features. Here we do it for the expert features (TExpert and
SExpert) at the sentence level and text level on the test set by employing Random Forest regressor, a built-in
library in scikit-learn.

Table 17 enlists the top 5 features for different feature combinations at the sentence and text levels. For
ranking on the Expert features, most of the top ranked features are related to Phonetics. Moreover, the
SentenceLength and StopWordsProportion are found very important features for age recommendation at
the sentence and text levels. These features are also seen in the list of top ranked features by correlation
based feature ranking in Table 16.

7.3 Ablation Test

Finally we do an ablation test with different categories of the Expert features on the test set. The idea of
ablation test is like the permutation feature ranking where an individual feature is shuffled and its impact
on the performance is measured. Here ablation test is done with the Feed-forward model, but instead of
shuffling a single feature, all the features of same category are discarded.

Table 18 presents the µE scores of the ablation test where almost all the feature categories except
VerbalTenses and Graphemes show positive impacts at sentence level. Interestingly, the Phonetics,



Dependencies, Morphosyntax and Lexicon features have positive impacts at both sentence and text levels.
All the feature ranking approaches studied in this paper find the phonetics features the most common and
contributory in any settings. Although these feature categories individually do not have very high impact,
they altogether perform quite well in age recommendation task.

8 Conclusion and Future Work

To recommend adequate texts to the children of different ages, this paper presented a detail work on age
prediction from texts/sentences. This study discussed several aspects about the definition of target age,
evaluation metrics, and explored various machine learning models for age recommendation. Almost all
the models perform very decently while particularly two models built on top of CamemBERT achieve
the best scores, even by outperforming the human experts. The results at the text level are very good and
suggest the use of the best model for real applications. On sentences, the error rates are higher, probably
due to less reliable references (derived from the texts). Our preliminary study on the explainability of
age recommendation models finds that the linguistic phonetic features are most prominent regarding the
different difficulty levels of the texts/sentences. The dependency, morphosyntax and lexicon features also
show their importance in some extents.

As an explainability task, to explain text-difficulty for different child-ages, this paper looks forward to
identifying the potential words and phrases locally (instead of global context) which impact the difficulty
levels in a text/sentence. In future, we also aim to work on text simplification (by paraphrasing) to offer a
better reading experience to the children.
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Appendix

A Details of the Evaluation Metrics

A.1 Combining distance and angle

As depicted in Figure 7, different hypotheses can lead to a same error, whereas one may expect to
distinguish them. Especially when introducing the uncertainty of the reference interval, one may consider
that inner errors are less severe than outer ones. For instance, based on the reference [8, 12], h3 = [10, 10]
is a better recommendation than h1 = [6, 14]. Considering the cosine of the angle θ between of the vector

h⃗− r⃗ =

(
c− a
d− b

)
and the inner direction ı⃗ =

(
1
−1

)
alleviates this situation. The vector ı⃗ symbolizes

the fact that it is fine if the hypothesized lower bound is greater than the one of the reference, or if the
hypothesized upper bound is lower than the one of the reference. An ideal value for θ is 0 (cosine is 1)
while the worst situation is θ = π or −π (cosine is −1).

https: //www.ranks.nl/stopwords/french
https://doi.org/10.3115/1219840.1219905
https://doi.org/10.3115/1219840.1219905
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Figure 7: Examples of 4 ranges with equal L2 errors.

Table 19: Values returned by the metrics for various hypothesis intervals [c, d] according to the reference interval
[a, b] = [8, 12].

A.2 Error values for each metric

Table 19 reports the error given by various metrics over the set of 20 samples considered in Section 5.5,
sorted according to their ascending Oracle rank.



B Expert Features

The state of the art leads us to consider a list of 38 linguistic aspects for age recommendation task. As
detailed below, these aspects are gathered in 9 categories, totaling a feature vector of 107 real values for
each input text/sentences.

1. Lexical information (5 features)

• Mean and standard deviation of log probability of the words in French. Log probabilities have
been derived from the language model for French for the speech recognition, trained on types
of various types.

• Diversity of lemmas.
• Mean and standard deviation over the frequencies of the words.

2. Graphy/typography (6 features)

• Mean and standard deviation over the graphical confusability score of the words. To do so, we
consider a graphical confusion score c(x, y) between two graphemes x and y. Then, given a word
w = [w1, w2...wN ], the confusability score if computed as the cumulative confusion between
each pair of consecutive graphemes in the word, that is:

∑N−1
i=1 c(wi, wi+1). In practice, the

confusion score c is taken from (Geyer, 1977).
• Mean and standard deviation over of the length of the words.
• Ratio of characters (including punctuation marks) against the number of words.
• Ratio of punctuation marks against the number of words.

3. Morphosyntax (7 features)

• Proportion of the following grammatical classes: verbs, state verbs, names, adjectives, clitics,
temporal adverbs. Part of speech tags are generated using Bonsai (Candito et al., 2010).

• Proportion of stop words in a list of 114 words from (Ranks, 2019).

4. Verbal tenses (24 features)

• Number of different verbal tenses
• Proportions of 7 so-called simple tenses: present, past simple, future, imperfect, subjunctive

present, conditional present, infinitive.
• Proportions of 7 composed tenses: compound past (passé composé), past past (passé antérieur),

future past (futur antérieur), more than perfect (plus que parfait), subjunctive past, past condi-
tional, past infinitive.

• Number of different temporal systems: past, present, future.
• Proportions of conjugated verbs for each of the 3 temporal systems: past, present, future.
• Proportion of compound tenses.
• Proportion of simple tenses.
• Proportion of each mode: infinitive, indicative, subjunctive.

5. Genders and numbers (5 features)

• Proportion of conjugated verbs in the first person.
• Proportion of conjugated verbs in the second person.
• Proportion of conjugated verbs in the third person.
• Proportion of conjugated verbs in the singular form.
• Proportion of conjugated verbs in the plural form.

6. Syntactic dependencies (8 features)



• Number of words per sentence.
• Average distances (word count) between a word and its dependencies. Dependency parsing is

achieved using Bonsai (Candito et al., 2010).
• Maximum distances (word count) between a word and its dependencies.
• Mean and standard deviation of dependencies per word (words that points to a given word).
• Mean and standard deviation of the distances between each word and the words to which it

points.
• Depth of the dependency tree.

7. Logical connectors (16 features)

• Proportion of logical connectors for each of the following types: addition; time; goal; cause;
comparison; concession; conclusion; condition; consequence; enumeration; explanation; illus-
tration; justification; opposition; restriction; exclusion. Since the way to gather connectors in
categories, varies across papers, the categorization used is a consensus of all of them.

8. Phonetics (9 features)

• Number of phonemes in the sentence, as generated using the grapheme-to-phoneme convertor
of eSpeak (Duddington, Jonathan, 2014).

• Number of different phonemes in the sentence.
• Frequency of the phonemes over the whole sentence.
• Mean and variance of the phonetic ordinariness scores of the words. The ordinariness score

is computed as the average probability of appearance of each phoneme in French, as given
in (Gromer and Weiss, 1990).

• Mean and variance of the word-based diversity of the phonemes.
• Mean and variance of the number of phonemes per word.

9. Sentiments/emotions (27 features)

• Score of subjectivity as used in the sentiment classifier TextBlob (Loria, 2018).
• Score of polarity (still using TextBlob).
• Proportion of words identified as trigger for a predefined set of 25 emotions: neutral, admiration,

love, appeasement, daring, anger, behavior, guilt, disgust, displeasure, desire, embarrassment,
empathy, pride, impassibility, inhumanity, jealousy, joy, contempt, unspecified, pride, fear,
resentment, surprise, sadness.

This list is a refinement of the EMOTAIX dictionary (Piolat and Bannour, 2009).

C Results

Sentence Actual Age
Range / Mean

CamemBERT
Range / Mean µE θ-L2 β-IE

1. Miam, voilà un moucheron! [4, 8] / 6.0 [4.73, 7.39] / 6.06 0.06 0.95 0.55
2. Cet après-midi-là, Trémolo devait
jouer à un enterrement. [8, 11] / 9.5 [8.98, 11.27] / 10.13 0.62 1.27 0.60

3. Si on attend plus tard, c’est plus
compliqué. [12, 14] / 13.0 [7.80, 12.04] / 9.92 3.08 5.30 3.62

4. D’ici là, vous aurez eu le temps de
rassurer une petite fille qui a déjà
versé des larmes sur sa faute.

[14, 18] / 16.0 [7.35, 11.50] / 9.43 6.57 9.80 6.60

Table 20: Examples of age recommendation by the CamemBERT/- model for some expert-annotated sentences in
French.


