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Abstract
Context

If an animal community can be similar from a city to its outskirts, its rhythm of activity can be modified
by anthropogenic pressures. Passive acoustic monitoring techniques offer the opportunity to assess such
changes in birdsong along anthropization gradients.

Objectives

Disentangling the relative influence of anthropogenic pressures, landscape composition and the
composition of the bird community on the temporal structure of dawn chorus.

Methods

Birdsongs were recorded in France in 36 stations located along an anthropization gradient through
passive acoustic devices. The temporal structure of birdsongs was confronted to anthropogenic
pressures (artificial lights and traffic noise), landscape composition indices (landscape diversity, areas
covered by woodland and buildings) and characteristics of the bird community (abundance, species
richness and diversity) around each station.

Results

For a given species, birds tend to sing earlier and during shorter periods in areas densely built, submitted
to high levels of artificial lights, traffic noise, and in areas hosting the lowest conspecific abundances.
Highly built and lit areas lead to a community reassembly promoting late singing species and species
singing for short periods. Artificial lights and traffic noise promote a higher species temporal turnover and
a lower temporal nestedness of the dawn chorus at the community level.

Conclusions

In cities, birds tend to sing earlier, during shorter periods, and the different species sing in a succession
rather than in a polyphony. The full bird chorus, gathering almost all the species of a community singing
together in the same time seems to have disappeared from the most anthropized areas.

Introduction
The influence of human activities on birdsong has been widely studied and benefit from detailed reviews
(Marín-Gómez and MacGregor-Fors, 2021; Patricelli and Blickley 2006; Slabbekoorn 2013; Slabbekoorn
and Ripmeester 2008). However, there are still research avenues to be explored to better understand the
influence of humans on the timing of bird vocal activity.

Regarding the anthropogenic pressures, many studies have sought to understand how birdsongs may
differ between highly contrasted environments, mainly by comparing discrete habitats, such as cities
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versus countryside (Cyr et al. 2020; Fuller et al. 2007; Lowry et al. 2019; Redondo et al. 2013; Sánchez-
Gonzáles et al. 2020); cities versus forests (e.g., Ripmeester et al. 2010); or intra-urban versus peri-urban
forests (Marín-Gómez and MacGregor-Fors 2019). These studies revealed important differences in
birdsong between habitats such as difference of amplitude, frequency, song structure, nocturnal singing
rate, or singing onset in different species. However, they did not identify the respective roles of different
human pressures, while differences in a birdsong between two different habitats may be due to several
different anthropogenic factors. The few attempts to investigate birdsong response along anthropization
gradients (rather than comparing discrete habitats) mostly focused on a single or two factors (e.g., Nordt
and Klenke 2013). In addition to experimental ex situ studies that led to major advances (e.g., Brumm and
Todt (2002) showed in a pioneer way that common nightingales (Luscinia megarhynchos) sang louder in
the presence of anthropogenic noise), most of the in situ studies focusing on a single human pressure
deal with the impacts of noise (73 references listed in the Web of Knowledge on 09/01/2023 with the
following search terms: “bird”, “chorus”, “noise”), followed by ALAN (23 references listed in the Web of
Knowledge at the same date with the following search terms: “bird”, “chorus”, “ALAN” or “Artificial light*”)
on birdsong. Few studies investigated two factors such as noise and ALAN simultaneously (but see for
example Da Silva et al. 2014; Fuller et al. 2007; Hennigar et al. 2019; Marín-Gómez and MacGregor-Fors
2019; Stuart et al. 2019), and the relative importance of each factor is subject to debate (e.g., noise better
explains song timing in the European Robin (Erithacus rubecula) than ALAN according to Fuller et al.
2007, but Da Silva et al. 2014 found the opposite for five of the six species they studied). Therefore, to
our knowledge, hierarchizing the respective influence of a set of different anthropogenic pressures on
birdsong under natural conditions with in situ empirical studies remains challenging.

Looking at the model species, the majority of the studies focused on a single species or a small number
of species, although an increasing number of studies worked on more than 10 species (Alquezar et al.
2020; Gil et al. 2015; Hu and Cardoso 2010a; Luther 2009; Marín-Gómez and MacGregor-Fors 2019; Polak
et al. 2013; Rios-Chelen et al. 2012; Vincelette et al. 2020) and exceptionally more than 100 species in
macroecology studies (e.g., Cardoso et al. 2018; Cardoso et al. 2020; Francis 2015; Hu and Cardoso
2010b). Therefore, investigating the impacts of human pressures on different species remain little
explored.

From the perspective of the song variables studied, researchers proposed two families of approaches. A
batch of studies developed (e.g., Sueur et al. 2008) or used (e.g., Farina et al. 2015) acoustic indices at
the level of the bird community such as acoustic richness, diversity or complexity, promoting the concept
of “soundscape” (Grinfeder et al. 2022). As it was not their primary purpose, such studies did not
individualize the song response of the different species to human pressures. Another and much larger
batch of studies focused on particular song variables at the species level, among which song frequency
is by far the most studied. The pioneer study of Slabbekoorn and Peet (2003), demonstrating a change in
song frequency in the Great Tit (Parus major) related to anthropogenic noise, opened avenues on many
studies on the same species (e.g, Huffeldt et al. 2013), other tit species (Grace and Anderson 2015;
LaZerte et al. 2016; Lee and Park 2019; Oden et al. 2015; Proppe et al. 2012) and several others on the
White-Crowned Sparrow (Zonotrichia leucophrys) (Derryberry et al. 2016; Gentry et al. 2017; Luther and
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Derryberry 2012; Phillips et al. 2020). In addition to song frequency, other song parameters studied such
as song structure (e.g., Hanna et al. 2011) or time spent singing (Díaz et al. 2011) are far less studied
than song amplitude (e.g, Nemeth et al. 2013; Shiba et al. 2016; Templeton et al. 2016) and song timing
(e.g., Arroyo-Solís et al. 2013; Da Silva et al. 2014, 2015, 2016, 2017; Da Silva and Kempenaers 2017;
Dorado-Correa et al. 2016; Lee et al. 2017; Sánchez-Gonzáles et al. 2020). By and large, under noise
pollution, birds tend to sing louder (Brumm 2004; Brumm and Todt 2002; Derryberry et al. 2017; Lowry et
al. 2012; Nemeth et al. 2013; Sementili-Cardoso et al. 2021); at higher frequencies (Job et al. 2016;
Proppe et al. 2012; Slabbekkorn and Peet, 2003); they may change their song structure (Hamao et al.
2011; Hanna et al. 2011); and tend to change their time of singing (Alquezar et al. 2020; Arroyo-Solís et al.
2013; Lee et al. 2017; Sierro et al. 2017). In the presence of ALAN, birds mainly tend to sing earlier (Da
Silva et al. 2014, 2015, 2016, 2017; Miller 2006; although Lee et al. 2017 found the opposite). Few studies
tested the influence of human pressures on different song parameters together, what is a current
challenge (see for example Sierro et al. (2017) testing the impact of aircraft noise on chorus timing, song
frequency, song structure and time spent singing in European Blackbird (Turdus merula)).

If we focus on the timing of birdsong, almost all the studies related to the impacts of ALAN on birdsong
investigated the hour of the first, or of the first and last songs of a species (Da Silva et al. 2014, 2015,
2016, 2017; Da Silva and Kempenaers 2017; Dorado-Correa et al. 2016; Kempenaers et al. 2010; Marín-
Gómez et al. 2020; Miller 2006; Nordt and Klenke 2013) or the part of nocturnal versus diurnal song
activity (Fuller et al. 2007). If we consider that the chorus is a time wave that increases rapidly before
sunrise and then gradually decreases, then such indices of chorus start and end time or day/night rhythm
of singing can be considered quite partial to study it accurately. For example, two species may start or
stop singing at the same time but not have the same singing rhythm during the whole chorus.

Regarding these gaps, through an empirical approach, the objective of our study is to hierarchize the
respective influences of different landscape, biotic and anthropogenic factors on the timing of bird
chorus of different bird species along an urban to rural anthropization gradient. The timing of the chorus
will be studied for several species individually and at the scale of the whole community as well as
according to different timing parameters.

Methods

Study site and sampling design
We recorded birdsongs in 36 stations following a regular sampling of three lines of 12 stations ranging
from the city of Saint-Nazaire (SE of the study site) to the countryside (NW of the study area - Fig. 1). The
exact location of each station was determined by several criteria: (i) a minimum spacing of 400 meters
between two stations (as 300 m is a distance avoiding dependence between sampling site in
ornithological field surveys – Ralph et al. 1993); (ii) the presence of a wooded area (to sample a
homogeneous bird community); (iii) the access possibility to the sites.

Song sampling and treatment
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In each station, we placed and programmed an AudioMoth (Open Acoustic Devices) to record sounds
continuously from midnight to noon every day from May 5 to May 13, 2022. The selected sample rate
was 24 kHz. Each AudioMoth was powered by three AA batteries and their maximum memory is 32 GB.
We recorded all tracks in WAV format. To protect them from the weather, we placed them in Ziploc bags, a
cost-effective solution with an acceptable impact on sound measurement regarding our study objectives
(see for example Law et al. 2021). The sound levels measured by the Audiomoth fleet were evaluated in a
controlled laboratory environment. The tests were conducted at a distance of 5 meters from a white noise
source (loudspeaker) emitting a sound level measured at 68 dB(A) with a class 1 sound level meter very
close to the Audiomoth microphones. The standard deviation between the sound levels recorded by the
sensors was found to be 1.53 dB(A), a low value compared to the variances observed across a range of
measurement locations encompassing diverse environments, ranging from rural to urban areas.

We selected only one day to have recordings made at the same time and under identical weather
conditions. May 9, 2022 was chosen because: (i) it was a weekday (a Monday) with normal human
activity; (ii) and weather conditions were mild enough to make bird recordings possible (no wind, no rain).
In addition, by this date, all migratory birds, including the latest, had already arrived in the study area.

For each station, we listened to the recordings in the laboratory with an EPOS Sennheiser Adapt 360
headset. The number of individuals of each species heard singing was noted on time steps of one minute
every 10 minutes from midnight to noon (i.e. 73 one-minute segments for each station, for a total
listening time of 2,628 minutes). Only passeriformes, cuculiformes and columbiformes were retained,
thus excluding the rare other species (e.g., waders, ducks, gulls, owls). We excluded bird calls and
considered only bird songs. We only included calls for 4 species: 3 species for which songs are absent or
rare (Eurasian magpie (Pica pica), carrion crow (Corvus corone), western jackdaw (Coloeus monedula)
and 1 species for which songs are difficult to distinguish from calls when a group is vocalizing (house
sparrow (Passer domesticus)). All species names were actualized following Gill et al. (2023).

Song variables
We calculated six song variables (Table 1).

These six indices were calculated at three different scales. (1) At the station-species scale (e.g., the first
song hour of the European Robin at station #28). (2) At the species scale, to be able to rank the species in
relation to each other. In this case, each of the 6 indices was averaged by species for all stations
combined (e.g., the average of the first song hour of the European Robin on all the stations where the
species was recorded). (3) At the community level (we consider a community as the pool of species on a
given station), we calculated community weighted mean (CWM) indices (Table 1, second column). A
CWM index corresponds to one of the 6 species indices (Table 1, first column) within the community
weighted by the respective species abundance. For example, in a community composed of one individual
of the species “x” with a song index of 10, and two individuals of the species “y” with a song index of 20,
the CWM will be (1 x 10 + 2 x 20) / (1 + 2) = 16.67. CWMs have been largely used in the literature to
characterize temporal or spatial change in bird communities (see for example Devictor et al. 2008; Godet
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et al. 2011). Here, it provides a simple metric to characterize each bird community based on one of six
song indices. For example, a community with a high CMI (see Table 1) is dominated by species that sing
late, and a community with a high CNI (see Table 1) is dominated by species that sing at night.

Table 1
Song variable used as dependent variables.

Full name
(abbreviate
name)

Related
community
weighted
mean index
(abbreviate)

Definition Units Meaning

First song
hour index
(FIRST)

Community
first song hour
index (CFI)

Hour of the first song. Minutes
after
midnight

The value
increases as
the singing
time gets
later.

Peak song
hour index
(PEAK)

Community
peak song
hour index
(CPI)

Hour when the maximum number of
individuals sing. If this maximum is
reached several times, the earliest
time is kept.

Minutes
after
midnight

The value
increases as
the singing
time gets
later.

Mean song
hour index
(MEAN)

Community
mean song
hour index
(CMI)

Average singing hour. Minutes
after
midnight

The value
increases as
the singing
time gets
later

Median
song hour
index
(MED)

Community
median song
index (CmI)

Median singing hour. Minutes
after
midnight

The value
increases as
the singing
time gets
later.

Rate of
nocturnal
singing
index
(NOC)

Community
rate of
nocturnal
singing index
(CNI)

% of 1-minute time steps where the
species sings before sunrise (6:41
am on May 2022 in the study area)

Percentage The value
increases as
the
proportion of
nighttime
singing
increases

Duration
of the
song index
(DUR)

Community
duration of the
song index
(CDI)

Number of 1-minute time steps
when the species sings.

0 to 73 The value
increases as
the duration
of the song
increases

Finally, we calculated two beta diversity indices, namely a temporal song turnover and a temporal song
nestedness of birdsongs in each station. The temporal turnover of a given station indicates a
replacement of the song of each species over time whereas temporal nestedness indicates a loss/gain of
the song of each species over time. Following Baselga (2010), we used the Simpson dissimilarity index
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(βsim) to estimate the temporal turnover (Lennon et al. 2001; Simpson, 1943) and the index developed by
Baselga (2010) (βnes), to estimate the temporal nestedness.

Eye size of the species
For reasons detailed in discussion, bird species with larger eyes are known tend to sing earlier (Thomas et
al. 2002). To test if we also found this relation in our study, we tested the correlation between the eye size
and the 6 song variables listed before with simple linear models. Eye sizes were taken from Thomas et al.
(2002) and we corrected this variable by the respective body masses of the species (also from Thomas et
al. 2002), taking the residuals of a linear model between eye size and body mass.

Environmental factors
Three families of environmental factors were calculated.

Landscape factors. Within a radius of 300 meters around each AudioMoth, we calculated the landscape
diversity (based on a Shannon index – Shannon (1948)); the area of wooded areas (in ha); and the area
occupied by buildings (in square meters). The two first indices were computed from a vector data based
on the land-use available for all the administrative department in 2016 (BD-MOS 44 -
https://observatoire.loire-atlantique.fr/44/les-cartes/l-occupation-des-sols-en-loire-atlantique/r_8326) and
the third one was extracted from a vector database produced by the IGN (BD-TOPO®) in 2018.

Traffic noise. In this study, we are employing the L50 indicator to translate the sound levels. This indicator
is linked to the noise level surpassed for 50% of the measurement time, expressed in dB. This indicator
holds the advantage of being resilient to sound events and providing a relatively accurate representation
of the overall sound level (Can et al. 2016). Given the spatial gradient sampling in this study, and with
traffic noise being the primary sound source in urban and suburban environments, we can state that in
our dataset this indicator exhibits a high correlation with traffic noise levels.

Artificial lights. Two different indices were used to assess the level of artificial lights at night. The first
index in the number of street lights in a 300 meters radius around each AudioMoth (extracted from a
vector database of the energy syndicate “Territoire d’énergie Loire-Atlantique”). The second is the level of
ALAN in a 300 meters radius around each AudioMoth extracted from the VIIRS Stray Light Corrected
Nighttime Day/Night Band Composites for the month of April 2022.

Biological factors
For each station, we calculated the bird abundance (total number of individuals of all the species
detected), bird species richness (total number of species of all the species detected), bird species diversity
(Shannon Index of all the individuals of all the species detected – Shannon, 1948), the TFSD (which
captures the amplitude and tonal temporal changes, at a frequency around 4kHz, and is associated with
the density of bird song phrases (Aumond et al. 2017)). For the analyses at the species level, we also
calculated the number of individuals of conspecifics (i.e. the number of individuals of the same species).
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Statistical analysis
We performed a Principal Component Analysis (PCA) on the values of the six song indices of all the
recorded species (37 species) to sort the species according to their song characteristics.

At the species level, we selected the 20 species that have been recorded in at least 10 of the 36 stations to
hierarchize the influence of the 11 factors on their 6 song indices. For each of these 20 species, and for
each song index, we considered the song index as a dependent variable and the 11 factors as
independent variables. Hierarchical partitioning of variance (based on R²) was used to determine the
proportion of variance of each song index explained by each factor (Chevan and Sutherland 1991; Mac
Nally 2000). This method enables the identification of variables whose independent correlation with the
dependent variable is large, in contrast to variables that have little independent effect but a high
correlation with the dependent variable resulting from joint correlation with other independent variables.
Factors were then identified that independently explained a larger proportion of variance than could be
explained by chance, by comparing the observed value of the independent contribution to the explained
variance I to a population of Is from 1000 randomizations of the data matrix. Significance was accepted
at the upper 95% confidence limit (Z-score of 1.65; Mac Nally, 2000; Walsh et al. 2004). Note that because
the partitioning of variance does not require non-correlated factors, we include all the factors (See
Appendix S1.1 for a correlation plot of all the factors).

Hierarchical partitionings of variances were also used to test the influence of the factors on (1) the total
species abundance, species richness and species diversity; (2) the different community weighted mean
indices (CFI, CPI, CMI, CmI, CNI, CDI); (3) β temporal song turnover and β temporal song nestedness. To
avoid any circularity, because the values of abundance, species richness, species diversity but also β
turnover and β nestedness are directly linked to the abundances and numbers of the species present, we
exclude the 4 biological factors for these dependent variables.

Results

Species-specific approach
Among the 37 species recorded (Appendix S1.2). Each species was recorded on average in 13 stations
(Appendix S1.3) with mean abundances per species and per station ranging from 0 to 5 individuals
(Appendix S1.4.).

From midnight to noon, the number of singing individuals sharply increases from 5 a.m., reaches a peak
at 6:31 a.m. (i.e. 10 minutes before sunrise), then slowly decreases until noon (Fig. 2-A).

Species can be sorted from early singers (e.g., common nightingale (L. megarhynchos), song thrush
(Turdus philomelos) and common blackbird (T. merula)) to late singers (e.g., Eurasian nuthatch (Sitta
europaea), garden warbler (Sylvia borin) or common cuckoo (Cuculus canorus)) according to the first
hour of their song (FIRST), the peak hour of their song (PEAK), the mean hour of their song (MEAN), the
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median hour of their song (MED), as well as their night song rate (NIGHT) (Fig. 2-B). Species can also be
sorted from short-time to long-time singers according to their song duration (DUR) (Fig. 2-B). For detailed
values of every indices for every species, see Appendix S1.5 to S1.9.

Note that the five song timing indices (FIRST, PEAK, MEAN, MED, NIGHT) of the different species are
correlated (R²>0.7 for all pairs, Appendix S1.11). Song duration (DUR) is the index the less correlated with
the 5 other song timing indices.

Species with larger eye sizes are species with the earliest song (linear models between PEAK and eye
size: F1,22=5.36, p = 0.03, R²=0.20; between MEAN and eye size: F1,22=5.56, p = 0.03, R²=0.20; and between
MED and eye size: F1,22=6.78, p = 0.02, R²=0.24) and species that sing more at night (linear model
between NIGHT and eye size: F1,22=10.51, p = 0.004, R²=0.32 – see Appendix S2 for detailed results).

Intra-specific approach
In this section, we only used the 20 species that have been recorded in at least 10 stations (see Appendix
S1.3.).

The song indices of 17 species are linked to at least one of the landscape metrics (Fig. 3). As built area
increases, six species tend to sing earlier, four sing more at night, five sing during shorter period (only two
sing during longer periods). As landscape diversity increases, species react in contrasting ways: three
sing earlier, two later, one sing less during night, four song during longer period and two during shorter
periods. As wooded area increases, two species sing later, one earlier, one less at night, one more at night
and three sing during longer period.

Birds tend to sing earlier, more at night, and during shorter period in areas submitted to high artificial
lights (ALAN or number of street lights) and traffic noise (Fig. 3). With increasing levels of anthropogenic
lights, nine species sing earlier, five species sing for shorter periods (only 1 species sings during longer
period). With increasing levels of traffic noise, six species sing earlier, four species sing for shorter periods
(only one species sings during longer period).

With increasing abundances, species richness, species diversity, and TFSD in the community, more
species tend to sing later, less at night, and during longer periods, but few species have opposite
relationships (Fig. 3). Almost all the species (16) sing during longer periods when the abundance of
conspecifics are high. With increasing abundances of all the species pooled together, six species sing
later and three sing earlier, one single species sings more at night, and five species sing during longer
periods. Eurasian wren (Troglodytes troglodytes) is the only species with contrasting relations (Fig. 3).
With increasing levels of species richness, four species sing earlier and four sing later, one species sings
more at night, two sing less an night, one sing during shorter periods and only one during longer periods.
With increasing levels of species diversity, six species sing later, two sing earlier, three sing less at night,
two sing during shorter periods and one during longer periods. With increasing levels of TFSD, three
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species sing later, one earlier, two sing less at night, five during longer periods, only one species sings
during shorter periods.

Community approach
The total abundance and species richness are not significantly linked with any landscape nor
anthropogenic indices but species diversity is significantly lower, first with increasing artificial lights, then
with increasing built areas, and finally with the number of street lights (Table 2).

First (CFI), peak (CPI), mean (CMI) and median song community (CmI) indices are significantly higher first
with increasing number of street lights, then with increasing levels of ALAN and built areas, whereas
nocturnal song community index (CNI) and duration song community index (CDI) are significantly lower
(Table 2). In other words, in areas dominated by high levels of built areas and high number of artificial
lights, bird communities tend to be more dominated by late singing species, by species singing less at
night and species singing during shorter periods. The other factors have lower parts of explained variance
(Table 2).

Temporal turnover significantly increases whereas temporal nestedness significantly decreases with
increasing landscape diversity, street light numbers and traffic noise (Table 2).

For an illustrative purpose, a graphical representation of the temporal structure of all the stations are
displayed in Appendix S3.

Discussion

An old story: each species has his own song timing and
large-eyed species sing earlier
In this study, we used several metrics to measure the song timing of different species, going beyond
measurements of the time of first song of each species per station. Using this diversity of metrics, we
were able to classify species by song time and duration. Our approach is above all a refinement to reveal
that each species has its own song timing, as already shown several years ago (e.g., Allard 1930; Allen
1913). However, the robustness of our classification is confirmed by comparing our results with other
studies. From unpublished data from Lluisia, Aubin and Sueur, Gil and Llusia (2020), found a similar
sorting of the 11 species shared in their study and our study (Linear model based on the time ranks of the
first song of the species of the two datasets: F1,9=22.56, R²=0.71, p = 0.001 – Appendix S4).

In agreement with Thomas et al. (2002), the second point is that large-eyed species tend to sing earlier
than others. Eye-size is a good proxy of the visual capacity at low intensity (Thomas et al. 2002). Large-
eyed species can start singing early as soon as they can see enough to detect potential rivals or predators
(Thomas et al. 2002). Another explanation would be that birds sing until they can see enough to forage.
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Birds that have high visual capacity can start to forage early, and thus sing before this time, what has
been demonstrated by an experimental approach on great tits (P. major) by Kalcenick (1979).

A broadening of knowledge: individuals of the same species adjust their song timing to their environment

Beyond the species-specific approach, we found that for most bird species studied, individuals of the
same species adjust their song timing to their environment. Most of the previous studies focuses on one
or a small set of species. Our study demonstrate that different species may have similar responses to
environmental conditions. In general, individuals sing earlier and for shorter periods of time in the most
anthropized areas, especially in areas subject to artificial lights and, to a lesser extent, traffic noise, and
which are the most densely built-up. Conversely, birds sing longer where the abundances of their
conspecifics are high. These results reveal on a larger number of species what has been partly suggested
or demonstrated in the literature.

Beyond the song timing onset, one of the novelties of our approach is to investigate several song timing
indices, including song duration. For comparison purposes with other studies, if the "song duration" factor
is set aside, we found that 9 species among 20 sang earlier in the more artificially lit areas. Although the
importance of artificial lights seems not important in birdsong timing on tropical areas (e.g., Dorado-
Correa et al. 2016; Marín-Gómez et al. 2019, but see Marín-Gómez 2022), many studies documented
results similar to ours in temperate areas. Miller (2006) already found that american robin (Turdus
migratorius) sing earlier in lit areas. More precisely, like in our study, other authors found that the same
species, namely European robin (E. rubecula), common blackbird (T. merula) (Da Silva et al. 2014;
Kempenaers et al. 2010,) as well as song thrush (T. philomelos) (Kempenaers et al. 2010) sing earlier with
increasing artificial light levels. We also found no response of 11 species among 20, among which
common chaffinch (Fringilla coelebs) as showed by Kempenaers et al. (2010) and Da Silva et al. (2014).
Contrary to Kempenaers et al. (2010) and Da Silva et al. (2014) we did not find that Eurasian blue tit
(Cyanistes caeruleus) and great tit (P. major) sing earlier with increasing light level. If we add song
duration in the song indices, 5 species sing during shorter period, and only one sing during longer period
in lit areas. Species that are the most responsive to lights are early singers (e.g., European robin (E.
rubecula), common blackbird (T. merula), song thrush (T. philomelos), as already demonstrated by
Kempenaers et al. (2010) but also Da Silva et al. (2014). The greater response of early singers has been
explained by the fact that these species are more sensitive to light than late singers (McNeil et al. 2005;
Thomas et al. 2002).

We also found that 6 species sing earlier and 4 during shorter periods in noisy areas. Birds are thought to
avoid rush hour of high traffic noise and thus sing earlier (Arroyo-Solís et al. 2013; Dorado-Correa et al.
2016; Nordt and Klenke 2013). The relative effects of lights compared to noise is still debated in the
literature. Fuller et al. (2007) found that daytime noise better explains nocturnal singing of European
robin (E. rubecula) than light pollution, and Nordt and Klenke (2013) had difficult to fully separate the
effects of both factors. According to Dorado-Correa et al. (2016), in tropical area, noise but no light has
effect on song timing. On the other hand, several studies demonstrated that artificial light better explain
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song timing than noise (Da Silva et al. 2014; Lee et al. 2017; Marín-Gómez 2022). Our results suggest that
light has greater impacts than noise on birdsong timing: for almost each song timing variable and each
species, we found that light better explains song timing than noise, and 3 species react to light but not to
noise.

Among the landscape indices, built area is the factor that best explains song indices. With increasing
level of built area 7 species sing earlier and 5 song during shorter periods. Only two species known to be
highly synanthropic (Eurasian collared dove (Streptopelia decaocto) and house sparrow (P. domesticus) –
see Guetté et al. 2017) sing during longer period in increasing level of built area. Similar results were
obtained by Marini et al. (2017) who found that mountain chickadees (Poecile gambeli) sing earlier in
cities than in rural areas and Sanchez-Gonzáles et al. (2020) who found that urbanization level
(estimated by percentages of built structures and green area), but neither light nor noise, explain earlier
start of song in the vermilion flycatcher (Pyrocephalus obscurus). The difference between urban and rural
areas in the song timing may be explained in different ways. The most probable explanation is the effect
of the urban heat island (temperatures are higher in built areas). Birds are known to sing earlier in warmer
than in colder environments, the later requiring high energy costs (Ward and Slater 2005). Therefore, in
colder areas (like in rural areas) birds will start to sing later than in urban areas. The lower song duration
in highly built areas can also be explain by a lower quality of urban ecosystems due to a lower food
resource: the longer birds spend foraging, the less time they have to sing. van Oort and Otter (2005) and
van Oort et al. (2006) found for example that black-capped chickadees (Poecile atricapillus) tend to have
lower song outputs in young forest than in old forest, due to food limitation in the former.

The abundance of conspecific is, by far, the factor that best explain the song duration: 16 species among
20 sing during longer period with increasing abundance of conspecifics. Although it is impossible to
distinguish the different individuals along the recordings, we can only hypothesize that either each
individual tends to sing during a longer period or that individuals take turns to song. In dusky flycatchers
(Empidonax oberholseri), Stehelin and Lein (2014) found that singing rates were higher on the day of
playback than on the day before playback, suggesting that bird sing more when stimulated by
conspecific songs. In eastern kingbirds (Tyrannus tyrannus), Sexton et al. (2007) also demonstrated that
songs are longer with increasing number of neighbors.

If we focus on the influence of abundance of conspecific on the 5 other song timing indices (i.e. song
duration set apart), we found that 7 species tend to sing later, only one sing earlier, and two sing earlier or
later according to the song index used. However, we hypothesize that the increase in mean song hour,
median song hour, and decrease in nocturnal song rate are driven by the important increase in song
duration. When focusing on the song onset itself, as revealed by the first song hour (FIRST), two species
sing earlier when abundance of the conspecific increases (Eurasian blackcap (Sylvia atricapilla) and
common chaffinch (F. coelebs)). The increase in the number of neighbors is known to promote earlier
songs in many species (e.g., Stehelin and Lein 2014; Stuart et al. 2019), and is even identified as more
important than lights and noise by Stuart et al. (2019).
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In other words, with the increase of conspecific abundances, most of the species sing during longer
period, two species start to sing earlier, and the others have later mean and median song hours as well as
lower night song rate, what is probably driven by the fact that their songs are spread over the whole
morning (i.e. increase in song duration).

A new step in knowledge: anthropization changes song
timing of bird communities
At the community level, we found that built areas and artificial lights tend to decrease species diversity.
Understanding which species and according to what life history traits is filtered by anthropogenic factors
was not our purpose, and has been already well studied (see for example Croci et al. 2008). However, to
our knowledge, the inclusion of song timing parameters among these traits remains understudied. We
found that anthropized areas, and mostly lit and built area promote communities dominated by late
singing species and species singing during short periods.

To our knowledge, the only study that has attempted to understand how the temporal structure of
birdsong varies at the scale of a community, by taking into account the temporal place occupied by each
species, is that proposed by Marín-Gómez et al. (2020). In their pioneer study, they proposed, first
theoretically, that the temporal patterns of the dawn chorus of a community can follow a random
structure (i.e., the different bird species sing randomly in time), modular (i.e., each species sing one after
the one – what we called “beta temporal turnover” in our study) or nested structure (i.e., the song of each
species is added to the previous one over time – what we called “beta nestedness turnover” in our study).
Through an empirical study, they demonstrated that peri-urban and intra-urban bird communities
followed a modular pattern but that only the peri-urban had a clear sequential temporal structure. By
studying a very different bird community (there are almost no species in common between their study
and ours) in a very different area (temperate versus tropical), different sampling methods, and different
metrics used to quantify the temporal structure of the dawn chorus, we surprisingly come with
comparable conclusions. The temporal structure of the dawn chorus in peri and intra-urban, that
corresponds to high to moderate level of anthropization, follows a beta temporal turnover, whereas in
rural areas (not studied in Marín-Gómez et al. (2020)) the structure follows a nestedness turnover. We
may interpret our result as an alteration of the temporal structure of the dawn chorus by the
anthropization. Beyond this evidence, the consequences of this change for the ecology and the
communication of birds at the interspecific level remain to be explored.

Conclusions
To conclude, to our knowledge, this study is one of the first to document the impact of anthropization on
the temporal structure of birdsong at the intraspecific, the inter-specific and the community levels in a
temperate area. The different facets of anthropization influence bird chorus in a similar way: artificial
lights and built areas decrease bird species diversity and promote late-singing and short-singing species.
For a given species the individuals living in lit, noisy, and built areas tend to sing earlier and during shorter
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periods. We also found that the abundance of conspecific, that could also be driven by the level of
anthropization, has a strong effect on the song timing and particularly song duration of almost all the
species: bird sing during shorter period where conspecific abundances are low. Finally, lit and noisier
areas have a more important temporal song turnover with species singing one after the other rather than
adding up over time (Fig. 4).
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Figure 1

Study area and sampling design.
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Figure 2

(A) Song chronology of all the species in every station. Bars represent the abundance of singing
individuals with different colors for each species. The time of sunrise was 6:41 am. (B) First factorial plan
of the Principal Component Analysis (PCA) on the 6 song indices (in bold - FIRST: first song hour; PEAK:
peak song hour; MEAN: mean song hour; MED: median song hour; NIGHT: night song rate; DUR: song
duration) for the 37 species (in italics). See Appendix S1.1 for species names abbreviations.
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Figure 3

Relationships between the 6 song indices (first, peak, mean and median song hour; nocturnal song rate;
song duration) and the 11 factors (in light grey: landscape indices; in medium-grey: anthropogenic noise
and light; in dark-grey: biological factors) for the 20 species sampled in at least 10 stations. Values
indicate the percentage of explained variance in a song index for each of the 11 factors independently
(i.e. the total is equal to 100% for a given species and a given song index) obtained through hierarchical
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partitioning of variance. White cells indicate non-significant relationships; light to dark-blue negative and
significant relationships; yellow to red positive and significant relationships. For first, peak, mean and
median hours a negative relation (in blue) means that the increase in the values of a factor is linked with
earlier hours; a positive relation (from yellow to red) with later hours. For song duration, a negative
relation (in blue) means that the increase in the values of a factor is linked with a shorter song period; a
positive relation (from yellow to red) with a longer song period. On the right part of the figure: number of
species for each dependent variable and each factor (in blue: number of species with a negative and
significant relation; in red: number of species with a positive and significant relation).

Figure 4

Graphical synthesis of the main results.
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