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The purpose of this paper is to investigate the effects of molecular mixing on the evolution of a8

reactive Rayleigh-Taylor turbulent mixing zone. In this regard, we derive algebraic relations showing9

that an increase in the mixing level leads to a slowing down of the growth of the mixing zone width.10

We also show the existence of a maximum displacement velocity of the mixing zone center. These11

predictions are assessed using both DNS and LES.12

I. INTRODUCTION13

The Rayleigh-Taylor instability occurs when two fluids initially separated by an interface are submitted to an14

acceleration pointing from the denser fluid to the less dense one [1–5]. In this configuration, the small perturbations15

seeding the initial interface are amplified and eventually develop into a turbulent mixing zone. At late times, this zone16

reaches a self-similar regime such that its width increases as the square of time. The prefactor αnr of this quadratic17

evolution is a key parameter of Rayleigh-Taylor turbulence and has been the object of numerous studies [6–17] (note18

that the subscript “nr” in αnr stands for non-reactive). Among these studies, several point out that αnr is connected19

to the level of molecular mixing reached in the flow [7–12]. Indeed, the less mixing there is, the more potential energy20

is available and the faster the growth of the mixing zone should be. As a result, αnr is expected to increase as the21

level of mixing decreases. This intuitive idea was given a quantitative formulation in Refs. [11, 12]. In these two22

works, αnr was shown to be a decreasing function of the global mixing parameter Θ, a ratio equal to 0 when the flow23

is fully segregated and to 1 when it is fully mixed.24

In the present work, we consider a Rayleigh-Taylor mixing zone in which chemical or fusion reactions take place25

[18–34]. Our purpose is to understand whether the level of molecular mixing influences the self-similar evolution of26

this reactive layer, as it does for a non-reactive one. This question is of importance for several applications, such as,27

for instance, type Ia supernovae [27–34]. In the latter context, several authors have proposed idealized configurations28

of Rayleigh-Taylor unstable flames in order to better understand the physical mechanisms at work in these flows.29

One of the simplest possible setting, studied for instance in [30–34], consists in a statistically planar flame with a30

small density contrast that propagates upward in a gravity field. The flame is piloted by a single isothermal reaction31

and consumes heavy reactants initially placed on top of light products. At late times, this unstable flame becomes32

turbulent and its brush can equivalently be viewed as a turbulent mixing zone driven by the interplay between the33

Rayleigh-Taylor instability and combustion. It is this idealized flow that we will hereafter examine and refer to as34

reactive Rayleigh-Taylor turbulence.35

The numerical and theoretical studies of [30–33] have put forward several key features of reactive Rayleigh-Taylor36

turbulence. First, a self-similar regime is reached at late times, such that the width of the mixing zone grows37

quadratically with time. This is similar to the non-reactive case, except that the prefactor α of this quadratic growth38

is not necessarily equal to the non-reactive prefactor αnr. Another difference with the non-reactive case is that the39

center of the mixing zone is not stagnant: it moves towards the reactants as they are being consumed. At late times,40

the distance traveled by the center is again proportional to the square of time with a prefactor β different from α and41

αnr. A last key feature highlighted in [30] is that reactions take place in thin flame fronts that separate pockets of42

pure fluids. The typical size of these fronts increases with time but at a much slower rate than the size of the mixing43

zone. As a result, the proportion of the volume occupied by mixed regions decreases and the flow becomes more and44

more segregated : the mixing parameter Θ tends to 0. This is strikingly different from the non-reactive case where45

high levels of mixing are generally observed with Θ reaching non-zero asymptotic values as high as 0.8 [16].46

This last property raises an apparent conundrum concerning the objective of this paper. Indeed, for the non-reactive47

case, we mentioned that the growth rate of the mixing zone αnr is connected to the level of mixing measured by the48

∗ Also at École Centrale de Lyon, MFAE, LMFA, F-69134 Écully, France
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value of the mixing parameter Θ [11, 12]. But for the reactive case, the existence of such a dependency appears49

elusive: the level of mixing vanishes and Θ decreases to 0 whatever the value of the growth rate α. The asymptotic50

values of α and Θ are consequently independent and, at first sight, it seems that the connection between α and the51

level of mixing is lost. However, if Θ always tends to 0, it does so in a self-similar fashion, proportionally to the52

inverse of time and to a non-dimensional parameter γ [30]. Hence, at a given time and for a given reaction rate, a53

higher γ implies a higher level of mixing. In other words, the mixedness of a self-similar reactive Rayleigh-Taylor flow54

is measured by the non-zero constant γ and not by the vanishing value of Θ. With this understanding, looking for55

a dependency of α on the level of mixing remains as legitimate in reactive Rayleigh-Taylor turbulence as it is in the56

non-reactive case [7–12], provided one substitutes γ to Θ as a measure of the level of mixing. Furthermore, if the57

growth rate α depends on γ, one may also wonder if it is also the case for the coefficient β measuring the displacement58

of the mixing zone center.59

Thus, the main question we would like to examine in this work can be rephrased as follows : do the growth and60

displacement rates, α and β, of a self-similar reactive Rayleigh-Taylor mixing zone exhibit any dependency on the61

degree of mixing of the flow as measured by the constant γ ? To answer this question, we turn our attention to62

non-reactive Rayleigh-Taylor turbulence and to the αnr −Θ relation derived in [11, 12]. Two broad assumptions are63

required to obtain this relation and none of them is specifically tied to the non-reacting character of the flow. Hence,64

in this work, we propose to start from the very same assumptions as in [11, 12] and to follow their consequences65

but this time in a reactive setting. More precisely, we assume that an eigenmode of the buoyancy production term66

is dominant over the other ones and that second order moments are known functions of the mean concentration.67

Equipped with these hypotheses, we are then able to explore how α, β and γ are related.68

The remaining of this paper unfolds as follows. In Sec. II, a general description of reactive Rayleigh-Taylor69

turbulence, along with its governing equations, is given. Then, in Sec. III, the two assumptions mentioned above are70

detailed and relationships between α, β and γ are derived. Finally, in Sec. IV, direct numerical simulations (DNS)71

and large-eddy simulations (LES) are performed. The resolution of these simulations is high enough to attain a state72

close to self-similarity. Hence, the validity of the results derived in Sec. III can be assessed with these simulations.73

II. GENERAL DESCRIPTION OF REACTIVE RAYLEIGH-TAYLOR TURBULENCE74

In the introduction, we gave a brief definition of reactive Rayleigh-Taylor turbulence and outlined some of its75

properties. The aim of this section is to provide further details on this idealized configuration. More precisely, we76

hereafter present the governing equations of reactive Rayleigh-Taylor turbulence, describe its self-similar regime and77

draw comparisons with the non-reactive case.78

A. Governing equations and global flow parameters79

We consider two incompressible fluids that mix and react, while being submitted to a destabilizing gravity field80

pointing in the direction x3. We assume that the Atwood number of the mixing zone – defined as At = (ρh−ρl)/(ρh+81

ρl), with ρh,l the densities of the “heavy” and “light” fluids – is small compared to one. Besides, for the sake of82

simplicity, we restrict our attention to the case where the heavy fluid reacts with the light fluid to give even more83

light fluid. This reaction is auto-catalytic and can be described by adding a Fischer-Kolmogorov-Petrovsky-Piskunov84

(F-KPP) source term to the evolution of the concentration of the light fluid. Auto-catalytic reactions, and their85

interaction with the Rayleigh-Taylor instability, play an important role in many industrial applications ([18–23] ).86

The system studied here is consequently directly relevant to these situations. Beyond this aspect, single-step auto-87

catalytic reactions can also be viewed as toy models for both premixed and non-premixed combustion (see [30] for88

a discussion on this aspect). This property has been used to gain insights into the behaviour of RT unstable flames89

and in particular those appearing in SNIa progenitors [27–34]. However, it should be emphasized that a single-step90

reaction which involves only one scalar cannot describe a configuration where the progress of the reaction is decoupled91

from the advancement of mixing. At least two scalars would be required in that case. This situation may occur in92

a wide variety of contexts including some inertial confinement fusion experiments [25, 26, 35]. The study of such93

configurations is beyond the scope of this work. Note that this limitation is not linked to the particular dependency94

of the F-KPP source term on the concentration field. The results obtained in this article can be adapted to more95

complex dependencies, as explained in App. C.96

Within this framework, the evolution of the velocity and concentration fields is governed by the following reactive97

Boussinesq equations:98
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∂tc+ uk∂kc = νc∂
2
kkc+

1

τ
c(1− c) (1a)

∂tui + uk∂kui = −∂ip+ ν∂2
kkui + 2Atgcδi3 , (1b)

∂kuk = 0 , (1c)

with u the velocity field, c the concentration of the light products, g the gravity, p the reduced pressure, ν and νc the99

viscosity and diffusion coefficients and τ the characteristic time of the reaction. In the absence of a turbulent velocity100

field (u = 0), a laminar flame propagates with a typical velocity slam and length δlam defined by:101

slam = 2
√

νc/τ and δlam = 8
√
νcτ . (2)

To complete Sys. (1), initial conditions must be provided. Here, we assume that the light and heavy fluids are initially102

separated by an interface centered around the position x3 = 0 and deformed by a perturbation of height h(x1, x2).103

With Atg > 0, the flow is Rayleigh-Taylor unstable provided c = 1 for x3 < h and c = 0 for x3 > h:104

c(x, t = 0) = Heaviside(h(x1, x2)− x3) . (3)

This corresponds to having heavy reactants initially placed above light products. As a result of this convention, the105

flame propagates towards positive x3 and the gradient of the mean concentration is negative.106

L

Heavy reactants

Light products

g

L

L

Xc

Xc

FIG. 1. Typical evolution of a reactive Rayleigh–Taylor flow. Volume rendering of the concentration field c of simulation D2
(see Tab. I) at times t = 0.8, t = 1.9 and t = 2.9. The rendering is done for 0.01 < c < 0.99. Red corresponds to c = 0.99
(light products) and blue to c = 0.01 (heavy reactants).

A typical evolution of a reactive Rayleigh–Taylor flow obeying Sys. (1) and starting from initial condition (3) is107

shown in Fig. 1. This figure displays the volume rendering of the concentration field extracted at three different times108

for simulation D2 that will be detailed in Sec. IV. As we can see, not only does the width L of the mixing zone109

increase, but its center Xc is also displaced as reactants are consumed. Another important feature of this mixing zone110

is its high degree of segregation. This can be seen in Fig. 1 by the overwhelming presence of the red and blue colors111

which correspond to zones of almost pure fluids.112

These three features – width, displacement and mixing level – can be measured using the following diagnostics:113

L = 6

∫
c(1− c)dx3 , Xc =

∫ (
c− c(0)

)
dx3 and Θ =

∫
c(1− c)dx3∫
c(1− c)dx3

, (4)

where · denotes the ensemble mean and where c(0)(x3) = c(x3, t = 0) is the initial value of c. The parameter Θ114

is called mixing ratio or mixing parameter. Its value falls within the interval [0, 1], Θ = 0 corresponding to a fully115

segregated flow and Θ = 1 to a fully mixed one. Note that the mixing zone width L is defined up to a multiplicative116

constant, here chosen equal to 6. Different values can be found in the literature and the choice made here could117

appear to be arbitrary. However, this is not the case. The reason for selecting a prefactor equal to 6 is linked to the118

assumptions detailed in section III. They lead to a unique unambiguous value of the prefactor, as explained in App.119

A.120
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B. Self-similarity and combustion regime121

At late times, Chertkov et al. [30] showed that a reactive Rayleigh–Taylor flow obeying Sys. (1) reaches a self-similar122

state such that:123

L(t) = 2αAtgt
2 , Xc(t) = 2βAtgt

2 and Θ(t) = γ
τ

t
, (5)

where α, β and γ are three dimensionless constants. Another way of specifying this self-similar regime is by defining124

dynamic estimates of the coefficients α, β and γ. More precisely, let us introduce the following quantities:125

αL(t) =
L̇(t)

8Atg τL(t)
, βL(t) =

Ẋc(t)

8Atg τL(t)
and γL(t) = 2Θ(t)

τL(t)

τ
, (6)

where the notation ḟ(t) = dtf(t) is used as a shorthand for the time derivative of a function f depending uniquely126

on t and where τL is the time associated with the growth of the mixing zone width L:127

τL(t) =
L(t)

L̇(t)
. (7)

Then, the self-similar regime expressed by Eq. (5) can equivalently be defined by:128

for t → ∞ , αL(t) = α , βL(t) = β and γL(t) = γ . (8)

Note that the definition of αL is identical to the one used classically in non-reactive Rayleigh–Taylor flows. It is129

however more commonly written in the form αL = (L̇)2/(8AtgL).130

Two aspects of the self-similar regime given by Eq. (5) (or equivalently Eq. (8)) are worth highlighting. The first131

one is that Atg and t are the only dimensional parameters appearing in the expressions of L and Xc. This implicitly132

means that buoyancy forces are the primary mechanism driving the growth and displacement of the mixing zone.133

Nonetheless, the influence of reactions must not be ruled out: they can still have an impact on L and Xc through the134

values of the constants α and β.135

The second remarkable point is that Θ tends to 0, that is, the flow becomes more and more segregated with time. In136

[30], this behaviour was associated with the emergence of a thickened-wrinkled flame combustion regime [36]. As its137

name indicates, this regime corresponds to reaction zones that are broadened by the smallest scales of the turbulent138

spectrum, while also being wrinkled by the largest ones. Chertkov et al. [30] showed that, in reactive Rayleigh–Taylor139

turbulence, the broadening of the reaction zones is slower than the growth of the mixing zone width. Hence, the140

volume they occupy becomes smaller and smaller compared to the volume occupied by the burnt and unburnt fluids.141

This results in Θ tending to 0.142

It should be emphasized that the tendency towards the thickened-wrinkled regime is a direct consequence of the143

self-similar evolution expressed by Eq. (5). More precisely, the thickened-wrinkled flame regime is defined by high144

values of two non-dimensional numbers, the Damköhler and Karlovitz numbers, which compare the reaction time145

τ to the characteristic times τt and τη of the largest and smallest structures of the turbulent field. These two146

numbers are defined as Da = τt/τ and Ka = τ/τη. During the self-similar phase, with Atg and t the only dimensional147

parameters involved, we necessarily have τt ∝ t. Furthermore, assuming a Kolmogorov turbulent spectrum, we have148

τη ∝ τtRe
−1/2 ∝ t1/2, with Re the turbulent Reynolds number. Therefore, once the self-similar phase is reached, Da149

and Ka grow with time and eventually become very large: the thickened-wrinkled flame regime is reached.150

This property can be illustrated using a Borghi diagram, which allows to visualize the different combustion regimes151

in a velocity-length scale phase space. Figure 2 shows such a Borghi diagram in which the typical turbulent velocity152

υ′ and length scale ℓt at the center of the mixing zone and for different times are reported for simulations D1, D2,153

D3, D4 detailed in Sec. IV. Once self-similarity is reached, we have υ′ ∝ t and ℓt ∝ t2 so that υ′ ∝ ℓ
1/2
t . In other154

words, a self-similar evolution of these quantities appears in the Borghi diagram as a curve with a logarithmic slope155

1/2. This property is indeed observed for simulations D1, D2, D3, D4 in Fig. 2. It can also be observed in this figure156

that a 1/2-slope curve always ends up within the boundaries of the thickened-wrinkled flame region as time increases.157

This region is indeed delimited by the two curves Da = 1 and Ka = 1, which respectively have logarithmic slopes of 1158

and 1/3.159160

C. Comparison with non-reactive Rayleigh–Taylor turbulence161

Without reaction, the self-similar state of Rayleigh–Taylor turbulence is characterised by the following relations:162
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FIG. 2. Borghi diagram for simulations D1 (red), D2 (green), D3 (blue) and D4 (purple) (see Tab. I for simulation names).
The curve shown for each simulation is obtained by plotting [ℓt(t)/δlam, v′(t)/slam] for different times t. The turbulent velocity
v′ corresponds to the square root of the turbulent kinetic energy taken at the center of the mixing zone. The integral scale ℓt
is computed by integrating the turbulent velocity spectrum divided by the wave number and normalized by the kinetic energy.
The definitions of the laminar flame speed and width are given in Eq. (2).

Non-reactive case: L = 2αnrAtgt
2 , Xc = 0 and Θ = Θ∞ , (9)

where αnr and Θ∞ are dimensionless constants.163

The comparison between Eqs. (5) and (9) reveals several differences between reactive and non-reactive Rayleigh–164

Taylor turbulence. First, even though the growth of the mixing zone is quadratic in time in both cases, the growth165

constants α and αnr of the two flows are not necessarily the same. Second, the center of the mixing zone does not166

move in the absence of reaction. And finally, without reactions, the mixing parameter Θ tends to a non-zero constant167

Θ∞. Simulations [4] suggest that Θ∞ is close to 0.8, which corresponds to a well-mixed flow. This is in stark contrast168

with the reactive case for which the mixture becomes almost fully segregated. This last point, more than any other,169

sets apart the reactive and non-reactive versions of the Rayleigh–Taylor instability.170

Indeed, mixing plays an important role in understanding the behaviour of Rayleigh–Taylor turbulence. As explained171

in the introduction, a lesser level of molecular mixing implies that more potential energy is available and can be172

converted into kinetic energy, which, in turn, can contribute to the growth of the mixing zone. This simple and173

intuitive reasoning connects the growth of the mixing zone to the level of mixing. It does not depend on whether174

reactions are present or not and, if verified, should apply equally well to non-reactive and reactive Rayleigh–Taylor175

turbulence.176

For non-reactive Rayleigh–Taylor turbulence, this connection has been corroborated and translated in the form of177

a relation between the dynamic evaluation αL of the growth coefficient (Eq. (6)) and the mixing parameter Θ [11, 12]:178

αL(t) =
(dcc(1−Θ(t)))

2

1 + dcc(1−Θ(t))
. (10)

At large times, we have αL(t) → αnr and Θ(t) → Θ∞ so that the asymptotic version of Eq. (10) is :179

αnr =
(dcc(1−Θ∞))

2

1 + dcc(1−Θ∞)
. (11)

In formula (10) and (11), dcc ∈ [0, 1] is an anisotropy coefficient which measures whether turbulent structures are180

flat or elongated. It is equal to π/4 in the isotropic case and to 1 for fully elongated structures. A value of 0.7 to181

0.8 is generally observed in non-reactive Rayleigh–Taylor simulations [11, 12]. In [11], dcc is approximated by dcc =182
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FIG. 3. Comparison between reactive (Sim. D2) and non-reactive (Sim. NR) Rayleigh–Taylor turbulence (see Tab. I for
simulation names). Growth coefficient αL as a function of the mixing parameter Θ for an interval of time such that L/Ldom

varies between 0.02 and 0.3 for Sim. D2 and between 0.05 and 0.3 for Sim. NR. The opacity of the symbols increases with time.
The two black curves are obtained by setting dcc = 1 and dcc = 2/3 in Eq. (10). The gray region they delimit corresponds to the
(αL −Θ) domain identified in [11] as encompassing most simulation and experimental results of non-reactive Rayleigh–Taylor
turbulence.

∫
Ecc(k) sin

2 θdk/
∫
Ecc(k)dk where Ecc is the concentration spectrum, k the wave number and θ = arccos(k3/k) the183

angle between k and x3. In [12], a more complex formula involving eigenmode spectra is used.184

Equation (10) is assessed in Fig. 3 using the non-reactive Rayleigh–Taylor simulations described in Sec. IV. It can185

be seen that the simulation results align with the predicted curve defined by Eq. (10) with dcc = 0.7. In addition to186

these non-reactive data, Fig. 3 also displays results for the reactive simulation D2 described in Sec. IV. As expected187

from Eqs. (5) and (9), the (αL,Θ) trajectories of the reactive and non-reactive cases are blatantly different and formula188

(10) clearly does not apply to reactive Rayleigh–Taylor turbulence. In the reactive case, an almost horizontal line is189

obtained: αL reaches an asymptotic value, while Θ still decreases with time. This horizontal line is an illustration of190

the fact that no univocal relation between αL and Θ can be drawn in the reactive case.191

At first sight, this observation may appear to contradict the existence of a connection between growth rate and192

mixing levels in the reactive case. However, it only shows that this connection does not take the form of a αL − Θ193

relationship. Given the properties (5) of the reactive self-similar state, αL and its asymptotic value α still appear as194

proper parameters for estimating the growth of the mixing zone. However, the fact that Θ tends to 0 means that this195

parameter is not fit for comparing mixing levels. Instead, it is the prefactor γ of the decay law of Θ that now plays196

this role: at a given non-dimensional time t/τ , different values of γ imply different degrees of mixing.197

Thus, for reactive Rayleigh–Taylor turbulence, the link between growth rate and mixing should not be looked for in198

the form of a relation between α and Θ but rather between α and γ, or equivalently between αL and γL, the dynamic199

estimates of α and γ (Eq. (6). The same remark also applies to β and βL. To derive these relations, several hypotheses200

are required. They are detailed in the next section, along with their consequences.201

III. RELATIONSHIPS BETWEEN α, β AND γ202

A. Overview of the derivation203

1. Main steps of the derivation204

The derivation presented in this section hinges around one central quantity : the mean concentration c. The latter205
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evolves according to the following equation, obtained by averaging Eq. (1a) :206

∂tc+ ∂3u′
3c

′ = νc∂
2
33c+

1

τ
c(1− c) , (12)

with X ′ = X −X the fluctuation of a given quantity X. The reason why c plays such an important role is because207

the knowledge of its self-similar properties allows to formulate two independent equations linking α, β and γ. It thus208

brings an answer to the problem raised in the preceding section, namely finding how the growth and displacement209

rates of the mixing zone, α and β, depend on the mixing level measured by γ.210

The first of these two equations is obtained rather straightforwardly. By integrating Eq. (12) over x3, the following211

equation for Xc is derived:212

Ẋc =
ΘL

6τ
, (13)

where we used the definitions of Xc, Θ and L (Eq. (4)) and the fact that the molecular and turbulent concentration213

fluxes are null outside the mixing zone. Injecting the self-similar evolution of Xc, Θ and L (Eq. (5)) into this equation,214

we then find that:215

β =
γ

12
α . (14)

As for the second relation, its starting point rests on the following observation: once self-similarity is reached, the mean216

concentration profile depends only the dimensionless coordinate x3/L and on non-dimensional self-similar parameters.217

These include α, β and γ but are not limited to them. This property can be expressed as:218

Self-similar regime : c(t, x3) ≡ cs

(
x3

L(t)
;α, γ,p

)
, (15)

where p = (p1, p2, · · · ) stands for the ensemble of the self-similar parameters other than α and γ. The parameter β is219

not included due to its explicit dependency on α and γ (Eq. (14)). When injecting this expression into the definition220

(4) of L, i.e into L = 6
∫
c(1− c)dx3, and when replacing the integration variable by y = x3/L, we derive that:221

I(α, γ,p) = 1 (16a)

with I(α, γ,p) = 6

∫
cs (y;α, γ,p)

(
1− cs

(
y;α, γ,p

) )
dy . (16b)

Thus, an integral equation is obtained, which links α, γ and the other self-similar parameters p together. When222

solved, this equation allows to express α as a function of γ and p:223

α ≡ αs(γ,p) . (17)

Formally, this solution would answer the main question raised in our paper.224

2. Main assumptions225

To sum up, Eq. (17) is the main relation we aim to derive. To this end the value of I(α, γ,p) must first be226

found. And for this, it is necessary to determine the self-similar profile cs of c. This may only be accomplished by227

introducing simplifying assumptions. In this regard, it is instructive to consider the non-reactive case and the way228

Eqs. (10) and (11) were obtained in [11, 12]. In these references, two main hypotheses were necessary to arrive at229

these predictions. The first one is that buoyancy production plays a dominant role at energetic scales and the second230

that the spatial profile of the mean concentration c is linear within the mixing zone. In [11], it was also explained how231

this second hypothesis is fully equivalent to specifying that the spatial profiles of the variance and flux of concentration232

are proportional to c(1− c).233

Concerning the reactive case, we already noted in Sec. II B that buoyancy forces are the main mechanism driving the234

growth and displacement of the mixing zone, as implied by the dimensional parameters appearing in the self-similar235

laws (5). This suggests that the first hypothesis mentioned above should remain appropriate for analysing reactive236

Rayleigh–Taylor turbulence. As for the second hypothesis, its alternative formulation based on second order moments237

can be viewed as a truncation of their spatial profiles in terms of Legendre polynomials. Its principle is consequently238

not restricted to the non-reactive case and its implications can also be explored in a reactive context.239

Thus, despite the intrinsic differences between reactive and non-reactive Rayleigh–Taylor flows, the study of the240

way growth rate and mixing are linked can be approached using the same general assumptions. These assumptions,241

however, have very different consequences in each context. This is what we detail in the remaining of this section.242
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B. First assumption: truncated Legendre polynomial expansion243

1. Legendre expansion244

First of all, let us recast the evolution equation of c by using the self-similar coordinate y = x3/L, already introduced245

in the definition of I(α, γ,p). We obtain:246

τL∂tc− y∂yc+ ∂y

(
u′
3c

′/VL

)
=

1

Sc · ReL
∂2
yyc+ DaL c(1− c) (18)

with VL = L̇ , Sc =
ν

νc
, ReL =

LVL

ν
and DaL =

τL
τ

. (19)

We recall that τL = L/VL has already been introduced in Eq. (7) in order to define αL, βL and γL. Three non-247

dimensional numbers appear in Eq. (18): the Schmidt number Sc, the Reynolds number ReL and the Damköhler248

number DaL. The latter two are based on the width L and on the velocity VL = L̇ and are different from the turbulent249

Reynolds and Damköhler numbers, Re and Da, which were introduced in Sec. II.250

By itself, Eq. (18) is not sufficient to make any statement about the shape of c. Two unknown correlations, the251

flux of concentration u′
3c

′ and its variance c′2 = c(1− c)− c(1− c), are indeed involved in Eq. (18). In order to deal252

with these correlations, we note that, within the bounds of the mixing zone, the mean concentration c(t, y) varies253

monotonically as a function of y. Hence, within these bounds, i.e for 0 < c(t, y) < 1, we may invert the dependency254

of c(t, y) on y and write that y is a function of c:255

for 0 < c < 1 , y ≡ f(t, c) . (20)

Plugging this dependency into the two unknown correlations, we obtain that:256

for 0 < c < 1 ,
u′
3c

′

VL
= F (t, c) and c(1− c) = V (t, c) . (21)

With u′
3c

′ a function of c, the turbulent transport term of Eq. (18) can be recast in the form of an advection term,257

with an advection velocity equal to F ′(t, c) = ∂cF (t, c). Then, in order for the edges of the mixing zone to move at258

a non-zero finite velocity, F ′ must tend to a non-zero finite value when c → 0 and c → 1. As a result, F must be259

proportional to c for c → 0 and to 1 − c for c → 1. Furthermore, the Schwartz inequality implies that c(1− c) is260

smaller than c(1 − c). Hence, it goes to 0 at most like c for c → 0 and like 1 − c for c → 1. A general expansion261

satisfying these boundary conditions can be written using associated Legendre polynomials of order 2:262

F (t, c) = c(1− c)
[
F0(t) + F1(t)P̃1(c) + · · ·+ Fn(t)P̃n(c) + · · ·

]
, (22a)

V (t, c) = c(1− c)
[
V0(t) + V1(t)P̃1(c) + · · ·+ Vn(t)P̃n(c) + · · ·

]
, (22b)

where P̃n is a modified associated Legendre polynomial of second order and degree n :263

P̃n(x) =

√
(2n+ 5)n!

30(n+ 4)!

P
(2)
n+2(2x− 1)

x(1− x)
, (23)

with P
(2)
n+2 the actual associated Legendre polynomial of second order and degree n+ 2.264

2. Truncation of the Legendre expansion265

Expansion (22) does not involve any approximation and injecting it as such in Eq. (18) would not allow to make266

any progress in our derivation: a simplification is needed. This is where we introduce the first of the two major267

hypotheses mentioned at the beginning of this section. Namely, we assume that the main order of these developments268

is much larger than the remaining terms:269

for i ≥ 1 , Fi ≪ F0 and Vi ≪ V0 . (24)
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As a result, we propose to approximate the profile of u′
3c

′ and c(1− c) by keeping the sole contribution of the main270

order. Reintroducing y as the dependent variable, this allows to write that:271

u′
3c

′

VL
(t, y) = c(t, y) (1− c(t, y))F0(t) and c(1− c)(t, y) = c(t, y) (1− c(t, y))V0(t) . (25)

The coefficient V0 can be determined by integrating c(1− c) over y. Given the definition of Θ in Eq. (4), we272

straightforwardly find that:273

V0(t) = Θ(t) . (26)

As for F0, its expression will be the object of the next section. For the time being, this coefficient can be put aside274

by introducing a new non-dimensional coordinate z defined by:275

z =
y

2F0
=

1

2F0

x3

L
. (27)

3. Self-similar profile of c276

We now inject the truncated Legendre expansion (25) into the evolution equation (18) of c and use the new277

coordinate z. But instead of handling directly the equation giving c as a function of z, we consider the corresponding278

equation giving z as a function of c. As before, this operation is possible because we restrict our attention to the279

domain c(1− c) ̸= 0 where c is a strictly monotonous function of z. So, for 0 < c < 1, we derive that z(t, c) evolves as:280

τL∂tz +
γL
2

c(1− c) ∂cz = −
(
z
(
1 + τLḞ0/F0

)
+ c− 1

2

)
+

1

4F 2
0 Sc · ReL

(∂cz)
−2∂2

c cz . (28)

In the self-similar regime, the following relations hold:281

∂tz(t, c) = 0 , Ḟ0 = 0 , ReL → ∞ and γL = γ . (29)

As a result, in the self-similar regime, Eq. (28) simplifies to:282

dz

dc
= − 2

γ

z + c− 1
2

c(1− c)
. (30)

The solution of this equation is:283

zs(c; γ) =
1

2
− 2c

2 + γ
2F1 (1, 1; 2 + 2/γ; c) , (31)

where 2F1(a1, a2; b1;x) is the Gauss hypergeometric function with parameters a1, a2, b1 and variable x. By inverting284

this expression, we eventually obtain cs, the self-similar profile of c, as a function of z and γ :285

cs(z; γ) = z−1
s (z; γ) . (32)

In the general case, finding the inverse z−1
s of zs cannot be done analytically and requires numerical means. Nonethe-286

less, several remarkable properties of cs can still be put forward. In particular, the range over which cs is strictly287

different from 0 and 1 extends symmetrically with respect to z = 0, from z = −1/2 to z = +1/2. However, between288

these symmetric bounds, the self-similar profile of c can be strongly asymmetric, depending on the value of γ. To289

illustrate this point, we may consider two asymptotic limits : γ → 0 and γ → ∞. For γ → 0, the hypergeometric290

function 2F1 (1, 1; 2 + 2/γ; c) appearing in Eq. (31) tends to 1 so that the self-similar profile of c becomes linear and291

symmetric with respect to z = 0:292

for γ → 0 , cs =
1

2
− z . (33)

By contrast, when γ → ∞, 2F1 (1, 1; 2 + 2/γ; c) tends to −(ln(1− c))/c. As a result, we have:293

for γ → ∞ , cs = 1− e−
γ
4 (1−2z) . (34)

Thus, for large γ, cs is close to a step: it is almost equal to 1 over most of the interval [−1/2, 1/2] and goes to 0 over294

a small sub-interval located close to z = 1/2.295
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4. The length scales of cs and their ratio296

Fig. 4(a) shows how cs transitions from a linear to a step-like profile with increasing γ. Because of this behaviour,297

a single length scale is not sufficient to characterize the profile of cs. Indeed, as γ increases, the size of the domain298

where cs is strictly different from 0 and 1 disconnects from the size of the fast varying front of cs : the ratio between299

the latter and the former goes to 0.300

More precisely, the support of cs extends from −1/2 to 1/2 in terms of the non-dimensional variable z = x3/(2F0L).301

In dimensional units, this means that the total extent of the concentration profile is:302

H = 2F0L . (35)

Besides, the definition (4) of L entails that the latter scale only measures the part of the domain where cs is significantly303

different from 0 and 1. In other words, L gives a measure of the fast varying front of cs. The ratio between L and H304

can be evaluated by simply changing the integration variable from x3 to z in the definition (4) of L. By doing so, we305

derive that:306

L

H
= G(γ) = 6

∫ 1/2

−1/2

cs(z; γ)(1− cs(z; γ))dz . (36)

Changing again the integration variable, this time from z to c = cs(z; γ), we obtain that307

G(γ) = 6

∫ 1

0

c(1− c)

∣∣∣∣
dzs
dc

∣∣∣∣ (c)dc =
12

γ

∫ 1

0

zs(c; γ)dc , (37)

where, in the second equality, we used the definition (30) of dzs/dc and the fact that
∫ 1

0
(c − 1/2)dc = 0. Finally,308

injecting the hypergeometric expression (31) of zs into this equation, we reach the following result:309

G(γ) = 6

γ

(
1− 4

γ

(
1− 2

γ
Ψ(1)

(
1 +

2

γ

)))
, (38)

where Ψ(1)(x) = d2 ln Γ(x)
dx2 is the trigamma function.310
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(a) Self-similar profile of c as a function of z for different values of
γ.
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(b) Variation of G = L/H as a function of γ.

FIG. 4. Self-similar profile of c and associated length scale ratio.
311

312

The function G is displayed in Fig. 4(b). It is strictly decreasing and has values in the interval [0, 1]. It verifies:313

G(0) = 1 and for γ ≫ 1 , G(γ) = 6/γ .

Thus, the two length scales L and H only coincide for small values of γ. For large values of γ, L becomes much314

smaller than H: a fast-varying front is formed with a size of order γ−1 relative to the total extent of the mixing zone.315
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An important point is that H not only gives the size of the domain where c ∈]0, 1[. It also gives the minimum316

extent of the region where the turbulent kinetic energy is not null. Otherwise, u′
3c

′ could not be proportional to317

c(1 − c). As a result, for large γ, the size L of the front where c varies rapidly becomes much smaller than the size318

occupied by the turbulent field itself. Besides, for large γ, buoyancy production concentrates within the front, which319

has large mean concentration gradients, and becomes almost null outside of it. Hence, turbulence can be thought to320

be generated within the front and then left to decay and diffuse outside of it as the front advances.321

C. Second assumption: predominance of the enhanced buoyancy eigenmode322

With Eq. (32), we have succeeded in deriving an expression for the self-similar profile cs of the mean concentration c.323

This result is a step forward in our search for the value of I(α, γ,p) that will eventually enable us to link α and γ.324

However, Eq. (32) alone is not sufficient to fulfill this objective. The reason is that, in Eq. (32), cs is expressed as325

a function of the non-dimensional variable z, and not of the variable y appearing in the definition (16b) of I. With326

y = z/(2F0), this difference means that F0 appears as an unknown parameter when combining Eqs. (32) and (16b).327

To overcome this issue and derive a closed expression for F0, an additional assumption is required. The description328

of this hypothesis and of its consequences is the subject of this subsection.329

1. Predominance of the growing mode330

To begin with, let us recall that F0 is the coefficient of the main order of the Legendre expansion (22) of the331

concentration flux u′
3c

′. Given our first approximation and the possibility to truncate this expansion, F0 can also be332

recast as a function of the integral of u′
3c

′. Integrating Eq. (25) over y, we find that:333

F0 =
6
〈
u′
3c

′
〉

VL
with

〈
·
〉
=

∫
· dy =

1

L

∫
· dx3 . (39)

So to find F0, we need to evaluate the spatial average of the concentration flux
〈
u′
3c

′
〉
.334

In non-reactive Rayleigh–Taylor turbulence [12, 17], this quantity is modelled by considering that the dynamics of335

the mixing zone at energetic scales is driven by buoyancy production. For reactive turbulence, we follow the same336

path. Even though reactions strongly modify the state of the mixture by creating pockets of light and heavy fluids,337

we assume that the growth of the mixing zone is determined by the way these pockets of pure fluids move relatively to338

one another under the action of buoyancy forces. As already noted, this assumption is coherent with the self-similar339

scalings (5) of L and Xc which only depend on Atg and t.340

This phenomenological description about the role played by buoyancy production is translated in quantitative341

terms as follows. In Boussinesq Rayleigh–Taylor turbulence, whether reactive or not, buoyancy production takes342

the form of a linear system acting on u′ and c′. Setting aside the spatial variations of ∂3c, this system possesses343

three homogenized eigenmodes, a+, a0 and a−. Among these modes, only a+ is associated with a positive eigenvalue344

and is consequently enhanced by buoyancy production. The other two are either inhibited (a−) or neutral (a0). In345

non-reactive Rayleigh–Taylor turbulence [12, 17], this enhanced mode is found to be highly dominant over the other346

ones for large and energetic scales. Our assumption –the second major assumption of this work– is that it is also the347

case for reactive Rayleigh–Taylor turbulence. In particular, we assume that the variance of the enhanced mode is348

large compared to the correlations involving the other modes:349

〈
a2+
〉
≫
〈
apaq

〉
with p, q ∈ {0,−} . (40)

2. Relation between F0 and α350

Now, the velocity and concentration fields u′ and c′ can be expressed as linear combinations of a+, a− and a0 in351

spectral space. This linear dependency extends to turbulent spectra and, from there, to second order correlations.352

Following [12], we can write that:353

〈
u′
3c

′
〉

VL
= Mpq

〈
apaq

〉
and

〈
c′2
〉
= Npq

〈
apaq

〉
, (41)

where p, q ∈ {+,−, 0} and where Mpq and Npq are matrices which depend on αL and on the angular properties354
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of the spectra of the eigenmodes [12]. Using assumption (40) and retaining only the dominant term, we can then355

approximate these expressions by:356

〈
u′
3c

′
〉

VL
= M++

〈
a2+
〉

and
〈
c′2
〉
= N++

〈
a2+
〉

. (42)

Combining these two equalities and using the relation
〈
c′2
〉
= (1−Θ)/6, we thus find that:357

〈
u′
3c

′
〉

VL
=

1

6

M++

N++
(1−Θ) . (43)

In [12], the multiplicative factor in front of 1−Θ was determined and found to be equal to:358

M++

N++
=

dcc

αL +
√
4αL + α2

L

, (44)

where dcc ∈ [0, 1] is the exact same parameter as the one appearing in Eqs. (10) and (11). Let us recall that359

dcc characterizes the directional anisotropy of the spectrum of a+ and tells whether turbulent structures are flat or360

elongated.361

Combining Eqs. (39), (43) and (44) we eventually arrive at the following expression for F0:362

F0 =
dcc

αL +
√

4αL + α2
L

(1−Θ) . (45)

This expression only assumes the predominance of the growing mode and is not restricted to the self-similar regime363

of the flow. Whenever this regime is reached, we have αL → α and Θ → 0, so that:364

Self-similar regime : F0 =
dcc

α+
√
4α+ α2

. (46)

Note that Eq. (45) is valid for both reactive and non-reactive Rayleigh–Taylor turbulence. However, its asymptotic365

self-similar expression (46) differs in both cases because the limits of α and Θ are not the same.366

D. Main results367

1. Asymptotic relation between α and γ368

So far, we have derived an expression for the self-similar profile of c as well as an expression for the concentration369

flux prefactor F0. With the help of these two intermediate results, we are now ready to express the integral I that370

serves as a basis for relating α and γ.371

To start with, we make the change of variable z = y/(2F0) in the definition (16b) of I and inject the value (32) of372

cs. This yields:373

I(α, γ,p) = 12F0

∫ 1/2

−1/2

cs(z; γ)(1− cs(z; γ))dz . (47)

Next, we replace the value of F0 by its expression (46) and the value of the integral over z by the definition (36) of374

the length-scale ratio G = L/H. With these substitutions, we are able to express I as:375

I(α, γ,p) = 2dcc

α+
√
4α+ α2

G(γ) , (48)

where G is the known function of γ given by Eq. (38) and shown in Fig. 4(b).376

Thus, we have derived an expression for I that only involves α, γ and the same additional parameter dcc that377

appears in the non-reactive relationships (10) and (11). All that remains to do is to solve Eq. (16a), it is to say I = 1.378

This operation yields:379

α =

(
dccG(γ)

)2

1 + dccG(γ)
. (49)
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Because G is a decreasing function of γ, so is α. As shown in Fig. 5, the smaller γ is, the higher α is. And since small380

values of γ correspond to less mixing, the main conclusion that can be drawn from Eq. (49) is that the growth of the381

mixing zone is faster when the mixture is more heterogeneous. In other words, Eq. (49) confirms the intuitive link382

between growth rate and mixing that was mentioned in the introduction and that served as the main motivation for383

this work.384

Another point worth mentioning is that α also depends on the anisotropy factor dcc and increases with it. So, just385

as in non-reactive Rayleigh–Taylor turbulence, elongated structures are associated with a faster growth of the mixing386

zone.387
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FIG. 5. Variations of α and β as a function of γ for dcc = 0.55.

2. Dynamic relation between αL, γL and Θ388

Figure 3 shows an important feature of reactive Rayleigh–Taylor flows: the nearly horizontal line observed in389

the (αL,Θ) graph indicates that the convergence of Θ towards its zero asymptotic value is much slower than the390

convergence of αL towards α. Therefore, rather than a strict asymptotic state where Θ is equal to 0, it may be useful391

to account for an intermediate state where Θ is small but different from 0.392

In this regard, most of the results derived so far can be used to analyse this intermediate state. In particular, the393

value of F0 given by Eq. (45) does not depend on whether the asymptotic regime is reached or not. It remains valid394

even with non-zero values of Θ. The same remark applies to the truncation of the Legendre polynomial expansion395

of Sec. III B and by extension to Eq. (28). The only question that we need to answer is how does a finite value of396

Θ affect the self-similar profile cs deduced from Eq. (28). Without further constraints to guide us, we propose to397

settle for the simplest possible solution. Namely, we assume that z(t, c) and F0 remain stationary so that Eq. (30)398

still applies. Then, cs keeps its expression (32), save for one modification: the asymptotic parameter γ in Eq. (32)399

must be replaced by the instantaneous value of the parameter appearing in Eq. (28) as a prefactor of c(1 − c), it is400

to say by γL, the dynamic estimate of γ introduced in Eq. (6). Thus, replacing Eq. (46) by Eq. (45) and γ by γL, we401

deduce the following dynamic estimate of αL:402

αL =

(
dcc(1−Θ)G(γL)

)2

1 + dcc(1−Θ)G(γL)
. (50)

The most striking property of Eq. (50) is that, even though it was derived in a reactive setting, its validity extends403

to non-reactive Rayleigh–Taylor flows. Indeed, the absence of reaction corresponds to the limit τ → ∞ and therefore404

to γL = 0. As a result, since G(0) = 1, we find that:405

for τ → ∞ , αL =

(
dcc(1−Θ)

)2

1 + dcc(1−Θ)
. (51)
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This formula is identical to Eq. (10) which was derived in [11, 12] for non-reactive Rayleigh–Taylor turbulence. Let406

us also mention that with γL = 0, the profile cs(z, γL) given by Eq. (32) is linear, just like it was assumed in [11, 12].407

Thus, the reactive/non-reactive coincidence in the limit τ → ∞ not only applies to the end result (Eq. (50)) but also408

to the main assumptions that lead to it.409

3. Displacement rate β410

At the beginning of the derivation, in Sec. III A 1, we explained how the integration of Eq. (12) leads to Eq. (14),411

i.e. to β = γα/12. Combining this relation with the expression (49) of α yields the following expression of β:412

β =
γ

12

(
dccG(γ)

)2

1 + dccG(γ)
. (52)

The most salient feature of this expression is that β is not a monotonous function of γ. It is equal to 0 for γ = 0 and413

decays as 3d2cc/γ for large γ. In between the two limits, β goes through a maximum. For dcc on the order of 1, this414

maximum is reached for γ = γmax ≈ 6 and its value verifies :415

βmax ≈ dcc
12

(dcc +
3

10
) . (53)

For dcc = 0.55, a value observed in the simulation detailed in Sec. IV, we find that βmax ≈ 0.04, a value obtained for416

γmax ≈ 6.5. These properties are illustrated in Fig. 5.417

From a physical point of view, the reason why β attains a maximum can be understood as follows. The quantity418

Xc =
∫ (

c−c(0)
)
dx3 not only traces the displacement of the center of the mixing zone. It also corresponds to the total419

volume of reactant which has been burnt since initial time. Hence, β can also be seen as a measure of the increase of420

the consumption rate of reactants by the mixing zone. As shown by Eq. (13), this consumption rate is proportional421

to two factors. The first one is the width of the flame brush (L in Eq. (13)), the other the proportion of burning422

fluids found within this brush (Θ in Eq. (13)). These two factors vary in opposite directions with the level of mixing423

γ: L is proportional to α and decreases with γ while, by definition, Θ increases with γ.424

To sum up, the dependency of β on the mixing level γ is controlled by two factors with opposing effects. The425

maximum predicted by Eq. (52) corresponds to the optimal consumption rate that can be achieved under these426

antagonizing conditions. Given the double interpretation of Xc, this maximum also corresponds to the largest ac-427

celeration that the center of the mixing zone can achieve. The fact that such a maximal value exists may be of428

importance for some applications. For instance, the transition from deflagration to detonation of Rayleigh–Taylor429

driven flames in type Ia supernovae is possibly influenced by the speed at which these flames travel [31].430

To conclude on the displacement rate, we have hitherto discussed its asymptotic value β. A dynamic estimate βL431

of this coefficient was introduced in Eq. (6), based on the same time scale τL as the one appearing in the definitions432

of αL and γL. Because of this choice, Eq. (13) can be written in a strictly equivalent form linking αL, βL and γL:433

βL =
γL
12

αL =
γL
12

(
dcc(1−Θ)G(γL)

)2

1 + dcc(1−Θ)G(γL)
. (54)

Just as Eq. (50) for αL, this prediction is valid in both reactive and non-reactive turbulence. In the latter case, we434

recover the trivial result:435

for τ → ∞ , βL = 0 . (55)

IV. SIMULATIONS436

A. Simulation setting and initial conditions437

In order to verify the validity of the results derived in the previous section, four direct numerical simulations (DNS)438

and four implicit large eddy simulations (ILES) are carried out. The reason for performing ILES in addition to439

DNS is that the former allows to attain higher effective Reynolds numbers. This gives more leeway for exploring the440

thickened-wrinkled flame regime (see Fig. 2) and for attaining a state close to self-similarity. Another reason is that we441

are mostly interested in the evolution of the large-scale features of the flows and do not need a detailed knowledge on442

the evolution of small dissipative scales. These scales are of course captured by DNS. Thus, the comparison between443
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the two approaches allows to verify that the role played by these scales is not crucial for the issues at stake in this444

work and that no physical bias is introduced by using a numerical dissipation instead of a physical one.445

The DNS and ILES are performed with two different codes. The DNS are done with Stratospec which is a446

spectral code solving the reactive Boussinesq equations (1). The computationnal grid is a rectangular domain with447

regular spacing and dimensions Ldom × Ldom × 2Ldom with Ldom = 2π. The simulations all have 20482 × 4096 cells448

[37].449

The ILES are performed with Triclade which is a Finite-Volume solver of the compressible multimaterial Navier–450

Stokes equation [38, 39]. The computational grid is subdivided in three adjacent domains. The central domain is451

regular and has 10242×1280 cells. Its dimensions are Ldom×Ldom×1.25Ldom with Ldom = 1. The other domains have452

a geometric progression in the inhomogeneous direction. Note that, even if the code is compressible, the simulations453

remains in the Boussinesq limit. The Atwood number at the interface is small (At = 0.025) and the turbulent Mach454

number also remains small at all times.455

For both types of simulation, a random perturbation h corrugates the interface between the two fluids. The456

prescribed spectrum for the perturbation takes the form :457

P (k) = h2
2( s2 )

s+1
2

Γ
(
s+1
2

) λ0

2π

(
kλ0

2π

)s

e−
s
2 (

kλ0
2π )

2

, (56)

where h2 is the variance of the perturbation height, λ0 the peak length scale of the perturbation spectrum and s the458

infrared exponent of the spectrum. The following parameters are set for the simulations:459

DNS : s = 6 ,
λ0

Ldom
= 2.5 · 10−2 ,

√
h2

Ldom
= 1.3 · 10−3 ,

LES : s = 6 ,
λ0

Ldom
= 6 · 10−3 ,

√
h2

Ldom
= 3 · 10−3 .

The typical time of growth associated with this perturbation spectrum is given by :460

TRT =

√
λ0

2πAtg
, (57)

This time can be compared against the reactive timescale τ , thus leading to the definition of a dimensionless parameter461

called initial Damköhler number Da0 :462

Da0 =
TRT

τ
=

√
λ0

2πAtgτ2
. (58)

For each simulation, the initial Damköhler number is modified by changing the reaction timescale τ while keeping463

other parameters unchanged. The value of Da0 for each simulation is given in table I.464

TABLE I. Initial Damköhler number Da0 of simulations.

DNS LES
Simulation name NR D1 D2 D3 D4 L1 L2 L3 L4

Da0 0 0.8 1.6 2.5 3.3 1.0 1.6 2.1 2.6

465

466

The initial Damköhler number Da0 is not expected to play a significant role in the self-similar regime. However,467

Da0 plays a crucial role during the transient evolution of the flow. In particular, the value of Da0 is the main factor468

that determines the delay after which the thickened-wrinkled flame regime and the self-similar regime can be reached.469

In this respect, two limits can be put forward. If Da0 ≫ 1, the reaction is much faster than the Rayleigh–Taylor470

instability. The laminar flame front is corrugated by the Rayleigh–Taylor instability and transitions from a flamelet471

to a thickened-wrinkled flame. On the other hand, when Da0 ≪ 1, the reaction is very slow compared to the Rayleigh–472

Taylor instability. As a consequence, there may be a significant time during which the reaction does not affect the473

evolution of the mixing zone. In that case, the flow goes transiently through the thickened flame regime before474

reaching the thickened-wrinkled flame regime. Examples of these different transients can be observed in Fig. 2.475

Note that simulation NR has a Damköhler number equal to 0: the reaction time is infinite so that the simulation is476

non-reactive. This simulation is used as a reference against which the remaining reactive simulations can be compared.477
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B. Flow characteristics478
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(a) Mixing zone width
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FIG. 6. Mixing zone width L, flame displacement Xc and mixing parameter for simulations NR (Da0 = 0), D2 (Da0 = 1.6) and
L3 (Da0 = 2.1). The fitted values are defined by Eq. (59) with parameters given by Eq. (60).

The main predictions of this work concern three quantities: the width of the mixing zone L, the displacement of480

its center Xc and the mixing parameter Θ (see Eq. (4)). Figure 6 illustrates how these three quantities behave for481

the DNS D2 (Da0 = 1.6) and the LES L3 (Da0 = 2.1). As a reference, the non-reactive simulation NR (Da0 = 0) is482

also plotted in this figure. As can be seen, after a short transient, the width L and displacement Xc grow almost483

quadratically in time for both reactive simulations, while the mixing parameter decays almost as the inverse of time.484

This is confirmed by comparing their evolution with fits of the form :485

Lfit(t) =
(√

2αfitAtg(t− ts) +
√
L(ts)

)2
, Xc,fit(t) =

(√
2βfitAtg(t− ts) +

√
Xc(ts)

)2
(59)

and Θfit(t) =
γfitτ

t− ts + γfitτ/Θ(ts)
,

where αfit, βfit and γfit are adjustable parameters and where ts is a time marking the onset of self-similarity. Choosing486

ts
√
Atg/Ldom = 1, a best fit of the DNS with Da0 = 1.6 is obtained by setting :487

αfit ≈ 0.037 , βfit ≈ 0.031 and γfit ≈ 11 . (60)

With these values, a close agreement is observed between the actual and fitted evolutions of L, Xc and Θ. This is488

consistent with the expected self-similar behaviour predicted in Eq. (5). While not shown here, a similar agreement489

is obtained for the LES with Da0 = 2.1, as well as for the remaining reactive reactions, with values of αfit, βfit and γfit490

close to those given here.491

It is worth stressing that the value γfit ≈ 11, when reported in Eq. (49) and Fig. 5, leads to values of α and β close492

to the fitted ones. This coherency gives a first hint as to the validity of Eq. (49). It should also be emphasized that493

the estimate αfit is larger than the value αnr = 0.02 usually measured in non-reacting Rayleigh–Taylor simulations494

[4, 5, 7]. This property will be confirmed below by looking at the time evolution of αL (see Fig. 12). Note also that495

the quadratic time evolution of L appears more clearly for the two reactive cases than the non-reactive one in Fig.496

6(a). For the latter, a longer transient is present. Figure 6(c) also shows that in the non-reactive case, Θ tends to497

a constant approximately equal to 0.8. As mentioned in the introduction and in Sec. II C, this is one of the major498

differences distinguishing reactive and non-reactive Rayleigh–Taylor turbulence.499

This major difference is also illustrated in Fig. 7 which displays vertical cuts of the concentration and vorticity500

fields for the reactive DNS D2 (Da0 = 1.6) and the non-reactive DNS NR (Da0 = 0) at a time such that L/Ldom = 0.7.501

The concentration field displayed for the reactive simulation shows a domain mostly filled by pure fluids: the red502

and blue colors are predominant. By contrast, the non-reactive cut essentially shows intermediate colors within the503

mixing zone suggesting a high level of mixing.504

Figure 7 also shows another property of reactive Rayleigh–Taylor turbulence worth mentioning. First, looking at505

the two cuts on the left of this figure, one can see that, in the Boussinesq limit, a non-reactive Rayleigh–Taylor506
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Xc

Non-reactive Reactive

FIG. 7. Vertical slices of the concentration field and of the longitudinal vorticity magnitude logω2
x for the reactive DNS D2

(Da0 = 1.6) and the non-reactive DNS NR (Da0 = 0) at a time such that L/Ldom = 0.7. The non-reactive DNS is shown on the
left-half and the reactive DNS on the right-half of the figure. In each half, vorticity is shown on the left and concentration on
the right. For the concentration field, red corresponds to c = 1 (light products) and blue to c = 0 (heavy reactants). For the
vorticity field, a brighter color means a higher intensity.

mixing zone develops symmetrically with respect to the position of the initial interface separating the two fluids.507

Besides, the extent of the vorticity field roughly coincides with that of the concentration field. By contrast, the508

concentration and vorticity fields of the reactive case are highly asymmetrical : with respect to the layer center, their509

extension is greater in the direction of light products than in the direction of heavy reactants. Furthermore, one can510

note that the vorticity field extends below the mixing region down to the position of the initial interface and even511

somewhat below. To understand the origin of this observation, the interplay between vorticity production and flame512

displacement has to be considered. At any time, the flame is the locus of the strongest concentration gradients and513

hence of the strongest density gradients in the present Boussinesq flow. Due to the baroclinic torque, it means that514

most of the instantaneous vorticity production occurs inside the reacting zone. Then, the deposited vorticity remains515

attached to the fluid, and more precisely to the products, whereas the flame propagates toward the reactants. This516

is different from the non-reacting case, where density gradients and vorticity are both carried by the fluid, leading to517

persistent amplification at the same place. By contrast, in the reacting case, the vorticity deposited at any time at518

the instantaneous flame location decays later in the light products whereas the baroclinic production zone propagates519

upward toward the reactants. Would no vortex dynamics be at work, the vorticity field would be confined between520

the initial and the final position of the flame front. In the right half of Fig. 7, it would correspond to the red region521

of products above the dashed line. However, this trailing field is not passive and turbulent motions may entrain some522

fluid with its vortical content below the initial flame location as seen in Fig. 7. This is also seen in Fig. 1 which shows523

a volume rendering of the concentration field.524525

C. Verification of the assumptions526

To derive the results presented in Sec. IIID, we made two major assumptions. First, we assumed that the flux527

and variance of the concentration can be approximated by a truncated Legendre approximation. Second, we assumed528

that the growing mode of the buoyancy production term is large compared to the other ones and is dominant in the529

expressions of the concentration flux and variance. The relevance of these two assumptions is assessed below.530

Besides, we also check whether the anisotropy coefficient dcc remains constant and close to the same value in the531

different simulations. This condition is not a requirement for the derivation of Eqs. (49)-(50) and (52)-(54). However,532

if it is not verified, dcc cannot be regarded as a fixed parameter and some additional considerations would be needed533

to make full sense of Eqs. (49)-(50) and (52)-(54).534
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1. Spatial profiles of the flux and variance of concentration535
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(a) Legendre polynomial coefficients Fn (solid lines) and Vn (dashed

lines) of u′
3c

′ and c(1− c) (Eq. (22).)
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FIG. 8. Dependency of the spatial profiles of u′
3c

′ and c(1− c) on the mean concentration c. Results taken from simulation
D4, at the time for which L/Ldom = 0.2 for (b).

The first pivotal hypothesis made in this work is expressed by Eq. (25). It consists in assuming that the correlations536

u′
3c

′ and c(1− c) = c(1 − c) − c′2 are proportional to c(1 − c) and to a time-dependent constant. This assumption537

can be understood as the result of the truncation of the Legendre polynomial expansion (22) and may be justified538

provided the higher-order coefficients of this expansion are much smaller than its zero-th order (Eq. (24)).539

To verify these elements, we plot in Fig. 8(a) the first three Legendre polynomial coefficients of u′
3c

′ and c(1− c)540

for simulation D4 as a function of time. These coefficients are computed according to the formulas:541

Fn(t) =

∫ 1

0

u′
3c

′

4max (u′
3c

′)
c(1− c)P̃n(c)dc and Vn(t) =

∫ 1

0

c(1− c)

4max (c(1− c))
c(1− c)P̃n(c)dc . (61)

The first observation is that F0 and V0 are indeed much larger than their respective higher order coefficients Fi and542

Vi with i ∈ {1, 2, 3}. This is coherent with Eq. (24) and with the possibility of truncating expansion (22). A second543

observation worth mentioning is that the first 3 coefficients of the expansion vary little in time. This implies that544

almost from the start of the simulation, way before the self-similar turbulent regime has begun, the profiles of u′
3c

′ and545

c(1− c) expressed as a function of c have already almost settled to their asymptotic shapes. The larger fluctuations546

observed for F3 and V3 might be assigned to the statistical fluctuations that inevitably deform correlation profiles.547

To provide a more direct verification of Eq. (25), we display in figure 8(b) the correlations u′
3c

′ and c(1− c)548

normalized by their maxima as a function of c. These profiles are shown for simulation D4 at the time for which549

L/Ldom = 0.2. For u′
3c

′, a close agreement is observed with the parabola 4c(1 − c), as expected from Eq. (25).550

However, for c(1− c), a non-negligible asymmetry of the normalized shape is observed. Its peak is indeed reached for551

c ≈ 0.35 instead of 0.5. This asymmetry comes from the coefficient V1 of the Legendre expansion and, even though552

it appears significant, its effects on the results presented so far are not. To check it, the derivation of Sec. III has553

been performed again keeping the contribution of V1. While this modified derivation is not detailed here, we found554

no important changes to the self-similar concentration profile cs nor to the eventual dependency of α and β on γ,555

provided V1/V0 remains small as is the case in our simulations. In particular, with the ratio V1/V0 displayed in Fig.556

8(a), the formula accounting for V0 and V1 only differ by a few percents from Eqs. (49) and (52) which only account557

for V0 .558

Thus, as whole, the results displayed in Figs. 8(a) and 8(b) appear compatible with the assumption given in Sec.559

III B.560
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2. Predominance of the growing mode561

The second major hypothesis of this work is described in Sec. III C and consists in assuming that, among the three562

eigenmodes of the homogenized linear buoyancy production term, the growing one, a+ is much larger than the other563

two a− and a0. This condition is expressed by Eq. (40).564

To verify this assumption, we begin by comparing the three-dimensional spectra A++, A00 and A−− of each of565

these modes. Figure 9(a) shows this comparison for simulation D4 at a time such that L/Ldom = 0.14. It can be seen566

that A++ is indeed much larger than A00 and A−− at large and energetic scales. A more direct verification of Eq.567

(40) is obtained by plotting the ratio
〈
a2+
〉
/
〈
ajaj

〉
as a function of time. This is done in Fig. 9(b) for simulations D2568

and L3. It can be seen that
〈
a2+
〉
throughout the simulations represents more than 75 % of the sum

〈
ajaj

〉
which569

measures the total energy, i.e. the sum of the kinetic and potential energies. Overall, the results displayed in Figs.570

9(a) and 9(b) are consistent with assumption (40).571
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(a) Spectra of the homogeneous eigenmodes a+, a− and a0 for
simulation D4 at a time such that L/Ldom = 0.14.
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FIG. 9. Illustration of the predominance of the growing eigenmode.

3. Anisotropy parameter dcc572

Even though it is not required for their derivations, we still interpreted and manipulated relations (49)-(50) and (52)-573

(54) with the implicit expectation that dcc attains a constant value independent from initial conditions. Otherwise,574

relations (49)-(50) and (52)-(54) would still be valid but unknown dependencies would remain hidden in the value of575

dcc. To verify that this is not the case, we invert relation (45) and express dcc as:576

dcc =
F0

1−Θ

(
αL +

√
4αL + α2

L

)
. (62)

This expression is plotted as function of time for the DNS and LES simulations in Fig. 10. It can be seen that577

dcc indeed reaches a constant value and that this value varies by less than 10% in the different simulations. More578

precisely, we observe that for L/Ldom > 0.2, we have:579

dcc ≈ 0.55± 10% . (63)
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FIG. 10. Evolution of dcc given by formula (62) as a function of L/Ldom for the DNS and LES simulations.

D. Main predictions580

1. Mean concentration profile581

Assumptions (25) and (40) lead to several predictions and in particular to the derivation of the analytic formula582

(32) giving the mean concentration profile as a function of the reduced coordinate z = x3/(2F0L). This expression583

is valid at asymptotically large times. However, for the simulations performed in this work, the transient preceding584

the self-similar regime induces an offset of the profiles that survives until the simulations end. This offset prevents a585

direct comparison of Eq. (32) with simulation results.586

To circumvent this difficulty, we propose to account for the transient part of the simulation in the expression of587

z. Namely, in the preceding subsection, we observed in Figs. 8(a) and 9(b) that assumptions (25) and (40) are valid588

almost from the start of the simulations. This means that the unstationary equation (28) giving the evolution of z as a589

function of time and c is also valid at these early times. As a result, the transient evolution of z can be computed from590

Eq. (28). This can be done by using the method of characteristics, assuming that the viscous terms are negligible.591

This yields:592

z(t∗, c) = zoff(t
∗, c) + Cz(t

∗)zcent(t
∗, c) (64a)

with zoff(t
∗, c) = zinit

(
ce−∆Γ(0,t∗)/2

1− c+ ce−∆Γ(0,t∗)/2

)
F0,init

F0(t∗)
e−t∗ , (64b)

zcent(t
∗, c) = − 1

2Cz(t∗)

∫ t∗

0

e−(t∗−s) F0(s)

F0(t∗)

ce−∆Γ(s,t∗)/2 − (1− c)

ce−∆Γ(s,t∗)/2 + (1− c)
ds , (64c)

Cz(t
∗) =

∫ t∗

0

e−(t∗−s) F0(s)

F0(t∗)
ds (64d)

and t∗ =

∫ t

0

dt′

τL(t′)
, ∆Γ(s, t∗) =

∫ t∗

s

γL(t
′)dt′ . (64e)

The different terms of these expressions can be computed using the values of F0 and γL extracted from the simulations.593

This allows to separate the contribution of the offset due to the initial condition, zoff, from the contribution converging594

to the self-similar solution (31) in a symmetric fashion at large times, zcent.595

Figure 11 shows the value of c as a function of zcent for simulation D3 at a time for which L/Ldom = 0.4. This596

simulation result is compared against the expression of cs given by Eq. (32) with γ = 9 set to the measured value of597

γL at L/Ldom = 0.4. A good agreement is observed between prediction and simulation. The most salient difference598

is observed at the foot of the concentration profile. In the simulation, a small overshoot extends beyond the limit599

z = 0.5, which is not predicted by Eq. (32). Similar observations are made at different times and also for the other600

simulations, whether they are DNS or LES.601
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To insist on the difference between the reactive and non-reactive cases, we also plotted in Fig. 11 the profile obtained602

for the non-reactive Rayleigh–Taylor simulation NR. It can be seen that the non-reactive profile remains mostly603

symmetric and varies almost linearly for zcent ∈ [−0.5, 0.5]. By contrast, the reactive profile is highly asymmetric and604

varies rapidly close to zcent = 0.5. Note that deviations from linearity appear close to the edges of the non-reactive605

zone.606
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FIG. 11. Mean concentration profile as a function of the reduced coordinate zcent (Eq. (64)). Comparison between the reactive
DNS D3, the non-reactive DNS NR and the analytical prediction Eq. (32) at a time such that L/Ldom = 0.4 . For the
non-reactive prediction, the value γ = 0 is used in Eq. (32) and for the reactive one, the value γ = 9 measured in the simulation
is used.

2. Growth and displacement rates, α and β607

In Sec. IIID we derived formulas relating the asymptotic parameters α, β and γ as well as formulas relating608

instantaneous estimates of these parameters denoted by αL, βL and γL. In simulations, only the latter quantities can609

be extracted so that the main predictions that can be checked are Eqs. (50) and (54).610

A first way of assessing these predictions is by injecting into the right-hand side of Eqs. (50) and (54) the instan-611

taneous values of dcc, Θ and γL computed in the simulations and by comparing the outcome against the values of612

αL and βL, also computed in the simulations by using their definitions (6). This comparison is shown in Fig. 12 for613

simulations D2 and L4. A good agreement is obtained between simulation and prediction. This agreement occurs614

early in the simulation, before the onset of the self-similar regime. This is coherent with the previous observations615

according to which assumptions (25) and (40) are verified at early times (see Fig. 8(a) and 9). Similar outcomes are616

observed for the remaining simulations. Another way of verifying Eqs. (50) and (54) is by focusing on the late times617618

of the simulations, when the flow is close to its self-similar state and still far from being confined. This “self-similar”619

interval of time is observed when 0.1 < L/Ldom < 0.4 for LES and when 0.2 < L/Ldom < 0.4 for DNS. For these620

intervals of time, dcc is approximately constant and equal to its asymptotic value of 0.55 (see Fig. 10 and Eq. (63)).621

Then, Eqs. (50) and (54) can be assessed by enforcing this constant value in their right-hand sides.622

However, even with this specification, Eqs. (50) and (54) remain hybrid relations that combine two different metrics623

of the mixing level : Θ and γL. And even though Θ tends to 0, its influence lingers. To cast this influence aside and624

isolate the dependency on γL, we therefore propose to introduce the following modified values of αL and βL:625

α⋆
L =

(sα/(1−Θ))
2

1 + sα/(1−Θ)
and β⋆

L =
(sβ/(1−Θ))2

γL/12 + sβ/(1−Θ)
(65)

with sα =
αL +

√
4αL + α2

L

2
and sβ =

βL +
√
γLβL/3 + β2

L

2
.

When Θ = 0, one has α⋆
L = αL and β⋆

L = βL so that the two sets of quantities carry the same asymptotic information.626

However, they differ at intermediate times when Θ ̸= 0. The interest of defining α⋆
L and β⋆

L is the following. Injecting627

Eqs. (50) and (54) into these expressions, we find the following prediction for the values of α⋆
L and β⋆

L :628
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FIG. 12. Time evolution of αL and βL for simulations D2 and L4. Comparison between the instantaneous estimates of αL and
βL (Eq. (6)) and their theoretical predictions (Eqs. (50) and (54)). Plain lines: simulations. Dashed lines: predictions.

α⋆
L =

(
dccG(γL)

)2

1 + dccG(γL)
and β⋆

L =
γL
12

(
dccG(γL)

)2

1 + dccG(γL)
. (66)

Thus, even when Θ ̸= 0, the predicted values of α⋆
L and β⋆

L only depend on γL. These predicted values can thus be629

compared more easily against simulation results.630

This comparison is shown in Fig. 13. Simulation results are displayed for the “self-similar” interval of time631

mentioned above and correspond to a direct evaluation of α⋆
L and β⋆

L as given by Eq. (65). The theoretical curve632

shown as a black line corresponds to Eq. (66) with dcc = 0.55. As can be seen, the simulation points align along the633

theoretical curve for values of γL ranging from 8 to 20, the largest differences being on the order of 15%. It is worth634

highlighting that, for this range of γL, α
⋆
L has ample variations spreading in between 0.015 and 0.06. By contrast, β⋆

L635

only varies between 0.027 and 0.042.636

Another point worth mentioning is that, as time increases, the simulation points, whether DNS or LES, converge637

towards a small region centered around :638

γ∞ ≈ 12 , α∞ ≈ 0.037 , β∞ ≈ 0.037 . (67)

These values are coherent with the fitted parameters (60).639

The reason why a convergence occurs towards these values cannot be answered by the analysis presented in this640

work. Nor can it be said whether this convergence is universal or not. Concerning this last point, we recall that641

the asymptotic value of αnr obtained in non-reactive Rayleigh–Taylor turbulence is predicted to be independent from642

large-scale initial conditions [17] : the latter are superseded by non-linear back-scattering processes and are eventually643

forgotten. To determine whether a similar conclusion applies for the reactive case, an analysis of the large-scale part644

of the turbulent spectra of concentration and velocity would be required.645

V. CONCLUSIONS646

In this work, we studied the relation between the mixing level and the growth of a reactive Rayleigh–Taylor mixing647

zone. We showed that with less mixing, the width of the mixing zone grows faster. This conclusion is qualitatively648

the same as the one obtained in the non-reactive case. We also showed that an optimal value of the mixing level649

exists that maximizes the displacement of the mixing zone center, also congruent with the consumption rate of the650

reactants. As a result, the flame speed cannot exceed a maximal value determined by the directional anisotropy of651

turbulent structures.652

Quantitative formula relating the growth and displacement rates, α and β, to the mixing level prefactor γ were653

derived. In doing so, we also obtained a prediction for the shape of the mean concentration profile. The latter is far654

from trivial: it is asymmetric and displays two distinct zones, a fast varying one close to reactants and a slow varying655
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FIG. 13. Variations of α⋆
L and β⋆

L defined by Eq. (65) as a function of γL. Comparison between simulations results (colored
points) and the theoretical prediction (66) with dcc = 0.55 (black lines). The simulation points are plotted at different times
such that 0.3 < H/Ldom < 0.75 for DNS and 0.2 < H/Ldom < 0.75 for LES. The timeline of the simulation is indicated by the
opacity of the symbols: the more opaque, the further in time.

trailing edge. All of these predictions were assessed using DNS and LES with a resolution high enough to reach states656

close to the self-similar regime but still unconfined.657

As a perspective, we note that, despite their intrinsic interest, the formula relating α, β and γ do not allow to658

determine a particular value of these coefficients. Some additional information is required. It could possibly be659

obtained by studying the very large scales of the flow, as was done in the non-reactive case [17]. This will be the660

object of a future work. As another perspective, we would like to stress that the dominant mode assumption used in661

this work not only impacts the concentration field but also the velocity field. Thus, additional relation can in principle662

be obtained to link some properties of the velocity field to the level of mixing. Some of these aspects are discussed in663

App. B. In particular, the value of the constant appearing in turbulent flame speed models is shown to depend on664

the mixing parameter prefactor γ.665
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Appendix A: About the definitions of α and L736

From the start of this study, we focused on the particular definition of L given by Eq. (4): L = 6
∫
c(1−c)dx3. This737

definition involves a numerical parameter, 6, and one may wonder why this specific value is important. This question738

is all the more pressing than α is directly proportional to this prefactor and that establishing a relation between α739

and γ would be pointless if α was defined up to an arbitrary multiplicative constant.740

What constrains α in our derivation is the eigenmode analysis detailed in this very section. For the definition of741

the eigenmodes a+, a− and a0 to be valid and for relations (44) and (45) to hold, the buoyancy production terms742

must emulate those of a homogeneous flow. In particular, we must have:743

〈
u′
3c

′∂3c
〉
= − 1

L

〈
u′
3c

′
〉

, (A1)
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with a similar relationship for c′2. So let us assume temporarily that L = δ
∫
c(1− c)dx3 with δ an unknown constant.744

Then, using the truncated Legendre expansion (25) of u′
3c

′ and knowing that ∂3c < 0, we find that:745

〈
u′
3c

′∂3c
〉
=

F0VL

L

∫
c(1− c)∂3cdx3 = −F0VL

L

∫ 1

0

c(1− c)dc = −F0VL

6L
, (A2a)

and
1

L

〈
u′
3c

′
〉
=

F0VL

L

∫
c(1− c)dx3

L
=

F0VL

δL
. (A2b)

Thus, to satisfy Eq. (A1), we must have δ = 6. This removes any ambiguity in the definitions of α and L used in this746

work: they are necessarily associated with the numerical prefactor 6 appearing in the definition (4) of L.747

Appendix B: Energy budget and flame speed748

In the main text, our analysis has focused almost entirely on the properties of the concentration field and of its749

mean value c. This restricted scope was indeed sufficient to achieve our main objective, i.e. deriving Eqs. (49)-(50)750

and (52)-(54) which link α and β to γ. Still, further interesting information can be gathered by looking at other751

quantities and in particular at the velocity field and at the turbulent kinetic energy.752

Expanding on the results of Ref. [12], the turbulent kinetic energy can be related to the growing mode and by753

extension to the mixing level γ, just as the concentration flux was in Sec. III C 1. This operation leads to two main754

outcomes. First, it allows to examine the energy budget and the dependency of its constitutive terms on γ. Several755

particular values of γ can thus be identified. Second, it allows to express the velocity of the flame center as a function756

of the turbulent velocity : a turbulent flame speed model can thus be formulated.757

1. Kinetic energy, potential energy and dissipation758

From Eq. (1b), we derive the following evolution equation for the kinetic energy k = 1
2uiui:759

∂tk + ∂3

(
1

2
u3uiui + u3p− ν∂3k

)
= 2Atgu3c− ε , (B1)

with ε = ν∂jui∂jui the dissipation rate of the kinetic energy. Integrating this equation over x3, the flux term vanishes760

and we are left with the following global energy budget :761

EK +DK = EP , (B2)

where EK is the total kinetic energy, EP is the potential energy released into the flow and DK is the energy dissipated762

into heat. These energies are hereafter defined per unit volume of the mixing zone :763

EK(t) =
1

H(t)

∫
k(t, x3)dx3 , DK(t) =

1

H(t)

∫ t

0

∫
ε(t′, x3)dx3dt

′

and EP (t) =
2Atg

H(t)

∫ t

0

∫
u3c(t

′, x3)dx3dt
′ , (B3)

where we recall that H = L/G > L measures the full extent of the turbulent mixing zone, which is larger than the764

front of size L where the mean concentration varies rapidly. The value of EP can be deduced from the previous results765

by substituting u3c with its assumed expression F0(L̇)c(1− c). In the self-similar regime, we find that:766

EP = (2Atgt)
2 × 1

24

(
dccG(γ)

)2

1 + dccG(γ)
. (B4)

As for the kinetic energy EK , it can be expressed by exploiting further the assumption already introduced in Sec.767

III C and according to which the unstable eigenmode of the Rayleigh–Taylor instability is much larger than the other768

ones. As shown in [12], this assumption allows to relate not only α but also the kinetic energy to the mixing level.769

Extending the results of [12] to the reactive context of this study, we find that, in the self-similar regime, EK is equal770

to:771



26

EK = (2Atgt)
2 × 1

12djj

(
dccG(γ)

)3
(
1 + dccG(γ)

)2 , (B5)

where djj ∈ [0, 1] is a parameter measuring the anisotropy of the turbulent structures, just as dcc does. As for the772

total dissipation DK , its expression can be deduced from the energy budget (B2):773

DK = (2Atgt)
2 × 1

24

(
dccG(γ)

)2

1 + dccG(γ)

(
1− 2

djj

dccG(γ)
1 + dccG(γ)

)
. (B6)

2. Maximum dissipation, equipartition of energy and realisability interval774

By linking α and β to γ, Eqs. (49)-(50) and (52)-(54) show that the knowledge of only one of these three parameters775

is sufficient to define the asymptotic self-similar state of a reactive Rayleigh–Taylor flow. Still, they do not provide776

any information on the value of this independent parameter. To this end, a study of the large scales of reactive777

Rayleigh–Taylor turbulence, similar to the one performed in [17], would most probably be required. A particular778

value of γ was nonetheless identified in the previous analysis: γmax ≈ 6 is the value of γ for which β reaches its779

maximum. This value is of course not constraining. However, it still offers a point of reference with which one may780

assess simulation results. In this regard, the energy budget (B2) allows to identify additional particular values of γ781

and to further map out the otherwise indiscriminate interval of γ which extends from 0 to ∞.782

Both EP and EK are decreasing functions of γ: for higher levels of mixing, less potential energy can be released783

into the flow and less kinetic energy can be generated. As for the dissipation DK , it is not necessarily monotonous.784

Whenever djj < 2− 4
2+3dcc+d2

cc
, a mild condition that is always satisfied when dcc >

√
17/2− 3/2 ≈ 0.56, DK reaches785

a maximum for γ = γD with:786

γD = G−1

(
1

2dcc

(√
1 +

16

2− djj
− 3

))
. (B7)

For the values of dcc and djj observed in the simulations detailed in Sec. IV, i.e. dcc ≈ djj ≈ 0.55, this maximum is787

located at γD = 9.4.788

Another point of interest corresponds to the value of γ where as much potential energy is converted into kinetic789

energy as it is dissipated into heat. This point is reached for EK/EP = 1/2, it is to say for:790

γequi = G−1

(
1

dcc

djj
4− djj

)
. (B8)

For dcc ≈ djj ≈ 0.55, this yields γequi ≈ 16. Below this value, the transfer of potential energy to EK is predominant791

while above it, it is the transfer to heat that is larger.792

Let us stress that the system we are considering is not at equilibrium and that there is no reason why it should793

settle to a maximum dissipative state. There is no reason either why an equipartition of energy transfer should exist.794

Nonetheless, it is still interesting to point out the existence of these two particular states. Their associated γ values,795

γD and γequi, can indeed serve as references for analysing simulations. In this regard, it is worth mentioning that,796

in the non-reactive case, the total dissipation as a function of Θ∞ reaches a maximum for Θ∞ ≈ 0.7 and that the797

equality between EK and DK is reached for Θ∞ = 0.8 (see Ref. [12]). In most simulations, the observed self-similar798

value of Θ is found to lie in between those two values. Given the proximity between the reactive and non-reactive799

cases which we have identified so far, one may wonder whether this observation also holds in the reactive case, i.e.800

whether the asymptotic value of γ lies in between γD and γequi. The DNS and LES performed in Sec. IV suggest801

that this is indeed the case : in Fig. 13, γ appear to converge to a value close to 12.802

803

A last point we would like to mention is that not all values of γ are allowed. Indeed, the kinetic energy EK cannot804

exceed the potential energy EP released into the flow. Or equivalently, the dissipation DK must always be positive.805

This condition may be verified for all γ provided dcc < djj/(2 − djj) < djj . However, the expressions of dcc and djj806

obtained in [12] (Eq. (9) in this reference) suggest that we should rather have djj ≤ dcc. In that case, a constraint807

applies on the value of γ. The latter must verify:808

γ > γlim with γlim = G−1

(
djj
dcc

1

2− djj

)
. (B9)

For dcc ≈ djj ≈ 0.55, we find that γlim = 3.8. Below this value, no asymptotic state based on the assumptions809

developed in this work is possible.810
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3. Dynamical estimate of kinetic energy, potential energy and dissipation811

The results presented so far in this appendix apply at very large times when the mixing rate Θ is asymptotically812

small. At intermediate times, when Θ is small but not negligible, a prediction of the kinetic energy, of the potential813

energy and of the dissipation rate can also be established by considering the dynamical estimates αL, γL and by814

assuming the predominance of the Rayleigh–Taylor unstable eigenmode, as discussed in Sec. III C. In addition to815

this central assumption, the anisotropy constants dcc and djj and the dynamic estimate γL are also assumed to reach816

a constant value at large times. Using the definition αL = (L̇)2/(8AtgL) along with Eqs. (36), (45), (50) and the817

relation that links the turbulent kinetic energy and concentration variance exposed in [12], one arrives at:818

EK =
1

48djjdccG(γL)
L̇2

1−Θ
, (B10)

EP =
1 + (1−Θ)dccG(γL)

96d2ccG(γL)2
L̇2

(1−Θ)2
. (B11)

As for the dissipation, it is deduced from Eqs. (B10) and (B11) thanks to the global energy budget (Eq. (B2)):819

DK =
djj + (1−Θ)dccG(γL)(djj − 2)

96djjd2ccG(γL)2
L̇2

(1−Θ)2
. (B12)

Overall Eqs. (B10), (B11) and (B12) involve Θ and γL, two quantities measuring the mixing level. Since our attention820

is focused on the dependency of EK , EP , DK on γL, we account for the persistent influence of Θ by introducing the821

following dimensionless version of EK , EP and DK :822

E⋆
K = (1−Θ)

EK

L̇2
, (B13)

E⋆
P = (1−Θ)2

EP

L̇2
, (B14)

D⋆
K = (1−Θ)2

DK

L̇2
. (B15)

Note that there remains an influence of Θ through higher order terms in E⋆
P , D

⋆
K . Even so, the main advantage of823

introducing E⋆
K , E⋆

P , D
⋆
K is that to the main order, they are given by824

E⋆
K =

1

48djjdccG(γL)
, (B16)

E⋆
P ≈ 1 + dccG(γL)

96d2ccG(γL)2
, (B17)

D⋆
K ≈ djj + dccG(γL)(djj − 2)

96djjd2ccG(γL)2
. (B18)

As can be seen, the prediction of E⋆
K , E⋆

P , D
⋆
K only involves γL. This makes it easier to check the consistency of825

Eqs. (B10), Eqs. (B11), Eqs. (B12) with simulations. Figure 14 illustrates the evolution of E⋆
K , E⋆

P and D⋆
K with826

γL during the ”self-similar” interval of time mentioned in Sec. IVD2. The black curves in Figs. 14(a), 14(b) and827

14(c) correspond respectively to the theoretical predictions Eqs. (B16), (B17) and (B18). The curves are drawn for828

dcc = 0.55 and djj = 0.52, which are the values found in simulations. Figure 14 shows that, for LES, the trajectories829

followed by the simulation points are aligned with the theoretical curves. Note also that the simulation points end up830

concentrating in a small area centered on the values:831

E⋆
K ≈ 0.2 , E⋆

P ≈ 0.3 , D⋆
K ≈ 0.1 . (B19)

with γL ≈ 12 as previously noted. Concerning the DNS, the agreement between simulation points and predictions832

can also be observed for the potential energy and total dissipation. Final values are roughly the same. However, a833

discrepancy between the evolution of kinetic energy and prediction can be noted for the case D3 and D4. A statistical834

effect might be at the origin of this discrepancy, but further investigation would be required to confirm this possible835

explanation. Note that, unlike the case D3 and D4, the case D2, shows a good agreement between the value of E⋆
K836

computed by Eqs. (B13) and its prediction Eqs. (B16). Overall, a reasonable agreement is observed between Eqs.837

(B16), (B17) and (B18) and the kinetic energy, potential energy and total dissipation observed in simulations.838839
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FIG. 14. Variations of E⋆
K , D⋆

K , E⋆
P , respectively defined by Eqs. (B13), (B15) and (B14) , as a function of γL. Comparison

between simulation results (colored points) and the theoretical predictions (B16), (B18) and (B17) with dcc = 0.55 and
djj = 0.52 (black lines). The simulation points are plotted at different times such that 0.3 < H/Ldom < 0.75 for DNS and
0.2 < H/Ldom < 0.75 for LES. The timeline of the simulation is indicated by the opacity of the symbols: the more opaque, the
further in time.

4. Flame speed840

The flame speed associated with the displacement of the mixing zone center is defined by:841

sc = Ẋc . (B20)

A turbulent velocity representative of the maximum value of the kinetic energy profile is:842

υ′ =
√〈

k
〉
=

√
H

L
EK . (B21)

Using Eqs. (5), (52) and (B5), we then deduce that, at asymptotic times when Θ can be neglected, we have:843

sc = Cfυ
′ with Cf =

√
djjdcc

3
γG(γ) . (B22)

Thus, the burning velocity sc scales linearly with the turbulent velocity υ′ in the self-similar regime. This is consistent844

with Damköhler’s theory [40].845

As can be seen, in Fig. 15, the prefactor Cf of this proportionality law increases with γ. Note also that the prefactor846

Cf is bounded by:847

Cf <
√
12djjdcc . (B23)

With dcc ≈ djj ≈ 0.55, this corresponds to a maximum value of approximately 2.848849

At intermediate times, when Θ is not yet negligible, Eq. (B22) still holds but Cf is modified. The dominant mode850

assumption (Eq. (40)) along with Eqs. (13)-(50) lead to:851

Cf (t) =

√
(1−Θ)djjdcc

3
γLG(γL) . (B24)

The dependency of this expression on Θ can be set apart by introducing a reduced version of the turbulent flame852

speed:853

s⋆c =
sc√
1−Θ

. (B25)

This reduced flame speed s∗c is predicted to be proportional to υ′, with a constant C⋆
f that depends on γL but not854

on Θ:855

s⋆c = C⋆
fυ

′ with C⋆
f =

√
djjdcc

3
γLG(γL) . (B26)
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FIG. 15. Evolution of Cf with γ for dcc = 0.55 and djj = 0.52.

Figure 16 shows the evolution of C⋆
f extracted from simulations using Eq. (B25) with respect to γL computed with856

Eq. (6). The black curve corresponds to the prediction Eq. (B26). The latter is plotted for dcc = 0.55 and djj = 0.52.857

The comparison between simulations and prediction is done for DNS, D2, D3, D4 and LES L2,L3, L4. As can be858

seen, the simulation points of D2, L2,L3, L4 all tends to the black curve. On the contrary, there remains a small859

deviation for simulation D3 and D4. This deviation is less than 15% of the value that would be obtained with Eq.860

(B26). To explain this deviation, there might be a statistical effect at play which is already manifest for the kinetic861

energy (see B 3). Even so, figure 16 seems to indicate that the result of Eq. (B26) agrees well with simulations. An862

another important remark that can be made is that the simulation points accumulate on a small region where the863

prefactor C⋆
f takes the value864

C⋆
f = 1.35 . (B27)
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FIG. 16. Variations of C⋆
f = s⋆c/υ

′, defined by Eq. (B25), as a function of γL. Comparison between simulation results (colored
points) and the theoretical prediction (B26) with dcc = 0.55 and djj = 0.52 (black lines). The simulation points are plotted at
different times such that 0.3 < H/Ldom < 0.75 for DNS and 0.2 < H/Ldom < 0.75 for LES. The timeline of the simulation is
indicated by the opacity of the symbols: the more opaque, the further in time.

866

867

To conclude the discussion on this topic, we would like to point out that the turbulent flame speed model determined868

for the self-similar regime Eq. (B22) can be recast in the form :869
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sc =
dccγG(γ)

6
√
1 + dccG(γ)

√
2AtgL ≈

√
0.138 · 2AtgL , (B28)

where the last approximation is obtained by replacing γ and dcc with their asymptotic values observed in simulations.870

This alternative formulation of Eq. (B22) is almost similar to the one proposed in Refs. [27, 32]. However, it should871

be noted that, in these references, the size Ldom of the domain is used instead of the size L of the mixing zone. This872

is possible because the configuration studied in these references is confined, as opposed to the one studied here.873

Appendix C: Source term modification874

In this appendix, we assume that the c(1 − c) dependency of the F-KPP reactive source term is replaced by a875

general function R(c) verifying:876

for c ∈]0, 1[ , R(c) > 0 and R(0) = R(1) = 0 . (C1)

In system (1), the evolution (1a) of the concentration field would then be replaced by:877

∂tc+ uk∂kc = νc∂
2
kkc+

1

τ
R(c) . (C2)

The core assumption of this appendix is that this substitution does not modify the main characteristics of the flow878

in the self-similar regime. In particular, we assume that L and Xc still grow as the square of time and that a879

thickened-wrinkled flame regime is reached, such that the flow becomes more and more segregated.880

To extend the results of this work to this situation, the idea is to introduce another measure of the mixing level.881

Instead of Θ, we define:882

Θ⋄(t) =

∫
R(x3, t)dx3∫

c(1− c)(x3, t)dx3
> 0 . (C3)

This quantity is positive but has an upper bound which is not necessarily equal to 1, as opposed to Θ. Nonetheless,883

like Θ, Θ⋄ tends to 0 when the mixture tends to a fully segregated state. In particular, it should verify the same884

self-similar asymptotic scaling as Θ, but with a different constant:885

self-similar regime : Θ⋄(t) = γ⋄ τ

t
. (C4)

The interest of introducing Θ⋄ is that all the steps of the derivation detailed in the main text can be repeated by886

simply replacing Θ with Θ⋄ and γ with γ⋄. Thus, the main predictions of this work, Eqs. (49) and (52), would887

become:888

α =

(
dccG(γ⋄)

)2

1 + dccG(γ⋄)
and β =

γ⋄

12

(
dccG(γ⋄)

)2

1 + dccG(γ⋄)
. (C5)

Their dynamic versions, Eqs.(50) and (54), would be transformed alike:889

αL =

(
dcc(1−Θ⋄)G(γ⋄

L )
)2

1 + dcc(1−Θ⋄)G(γ⋄
L )

and βL =
γ⋄
L

12

(
dcc(1−Θ⋄)G(γ⋄

L )
)2

1 + dcc(1−Θ⋄)G(γ⋄
L )

, (C6)

with γ⋄
L (t) = 2Θ⋄(t) τL(t)

τ .890

The comparison with the main text results can be pushed further by introducing an additional hypothesis. The891

probability density function (PDF) of a scalar bounded between 0 and 1 is usually well described by a β-PDF. We892

assume that this is the case for reactive Rayleigh–Taylor turbulence, that is to say, we assume that the PDF of c is:893

fβ(c) =
ca−1(1− c)b−1

B(a, b)
with a = c

c(1− c)

c′2
, b = (1−c)

c(1− c)

c′2
, B(a, b) =

∫ 1

0

ca−1(1−c)b−1dc . (C7)

The function B(a, b) is the β-function and is equal to Γ(a)Γ(b)/Γ(a + b), with Γ the extension of the factorial to894

positive reals. In the limit Θ ≪ 1 and with the assumption that c(1− c) varies like c(1 − c), the two parameters a895

and b tend to:896

for Θ ≪ 1 , a ≈ cΘ and b ≈ (1− c)Θ . (C8)
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As a result, the average of R can be expressed as:897

for Θ ≪ 1 , R =

∫ 1

0

R(c)fβ(c)dc ≈
R(c,Θ)

B(cΘ, (1− c)Θ)
with R(c,Θ) =

∫ 1

0

R(c)ca−1(1− c)b−1dc .

(C9)

For small values of Θ, the β-function B(a, b) diverges as:898

for Θ ≪ 1 , B(a, b) ≈ [c(1− c)Θ]
−1

. (C10)

By contrast, with R(0) = R(1) = 0, the integral R(c,Θ) tends to a finite value:899

for Θ ≪ 1 , R(c,Θ) ≈ R(c, 0) . (C11)

Therefore, injecting the above expression into the definition of Θ⋄, one deduces that900

for Θ ≪ 1 , R ≈ Θc(1− c)R(c, 0) , (C12)

and that901

for Θ ≪ 1 , Θ⋄ ≈ η⋄Θ with η⋄ =

∫
c(1− c)R(c, 0)dx3∫

c(1− c)dx3
. (C13)

Thus, Θ and Θ⋄ are proportional to one another, with a prefactor that depends on the shape R(c) of the source term902

and that can be determined analytically or numerically depending on the complexity of R(c). This proportionality903

relationship can be used to replace Θ⋄ and γ⋄ in Eqs. (C5) and (C6). One finds that:904

α =

(
dccG(η⋄γ)

)2

1 + dccG(η⋄γ)
and β =

η⋄γ

12

(
dccG(η⋄γ)

)2

1 + dccG(η⋄γ)
, (C14a)

αL =

(
dcc(1− η⋄Θ)G(η⋄γL)

)2

1 + dcc(1− η⋄Θ)G(η⋄γL)
and βL =

η⋄γL
12

(
dcc(1− η⋄Θ)G(η⋄γL)

)2

1 + dcc(1− η⋄Θ)G(η⋄γL)
. (C14b)

To illustrate how η⋄ depends on the shape of R, we may look at the particular case where R varies like:905

R(c) = cm(1− c)n . (C15)

Then, in the limit Θ ≪ 1, we have R = c(1− c)ΘB(m,n) so that η⋄ is equal to:906

η⋄ = B(m,n) . (C16)

With m and n decreasing below 1, the profile of R(c) becomes flatter than in the F-KPP case (m = n = 1) (ultimately,907

it tends to a step-like profile when m and n tend to 0). In that case, Eq. (C16) shows that η⋄ becomes larger than 1908

and increases as m and n decrease. For a given level of mixing measured by γ, α is then smaller than in the F-KPP909

case. By contrast, with m and n increasing above 1, the profile of R(c) becomes more peaked and η⋄ decreases. For910

a given level of mixing measured by γ, α is then higher than in the F-KPP case.911


