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Abstract—Recently, Anomalous Sound Detection (ASD) has
emerged as a promising method for road surveillance. However,
since the ratio of anomalous events is generally too small,
anomaly detection in general, and ASD in particular, are mainly
treated as one-class classification problems. Besides, a common
problem in road surveillance is the background noise, which
makes it difficult to train effective models based on normal sounds
only. Therefore, this work aims to experiment with the use of
graph signal processing (GSP) to improve ASD performance.
Thus, we propose a Graph-based One-Class SVM technique
(GOC-SVM) where the features extracted from audio signals are
firstly embedded on graphs, and then filtered through a graph
filterbank, before computing their joint Fourier transform mag-
nitude. Subsequently, they are fed into a one-class SVM classifier
trained on normal data only. Evaluation results show a threefold
advantage of using graph embedding and filtering for ASD:
(a) improving the anomaly detection results in comparison to
plain features, (b) outperforming the classical OC-SVM baseline,
(c) enhancing the performance of the proposed semi-supervised
GOC-SVM, so as to reach a comparable level of performance of
the fully-supervised binary classification SVM, yielding 0.91 of
Area-under-the-curve (AUC), 98% of overall accuracy, 99% and
88% of F1 score for normal and anomalous classes, respectively.
Such a performance proves the potential of using GSP to solve
the ASD problem in road traffic monitoring.

Index Terms—Sound event detection, anomaly detection, audio
surveillance, graph signal processing, joint Fourier transform,
one-class SVM.

I. INTRODUCTION

A. Anomalous sound detection (ASD)

Audio event detection offers novel options to improve
surveillance techniques in general, and road traffic monitor-
ing in particular. Even though video road surveillance has
attained a considerable accuracy [1], using audio data can still
outperform video in certain circumstances, mainly due to its
insensitivity towards luminosity conditions and its omnidirec-
tion [2]. However, some major problems of anomaly detection
in general and anomalous sound detection in particular are
still to be resolved. First, the scarcity of anomalous data, in
comparison to normal data, makes it difficult to find enough
anomalous samples for training [3]. Secondly, anomalous
event characterization is related to the type of the event, and
partly to the acoustic scene, which makes it difficult to find a
standard feature set to characterize anomalous audio events
[4]. Thirdly, audio event signals in real environments are
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generally mixed with background noise and/or other events,
which may be confusing while detecting the proper event [5].

B. Graph signal processing (GSP) and its application to audio
signals

The aforementioned issues make it difficult to reach high
performances using semi/weakly-supervised learning methods
for ASD. Therefore, novel solutions for ASD are still to
be proposed, such as the use of graph signal processing
(GSP). Recently, graphs have gained increasing interest for
their ability to model several types of data and complex
interactions among them, e.g., images and their pixels, users
on a social network and their connections, sensors and
their measurements. In all these cases, emitters and their
data/interactions can be modeled as nodes and edges, re-
spectively [6]. Considering the recent applications of GSP to
resolve anomaly/outlier/novelty detection problems in several
fields, such as social networks, computer traffic, financial
transactions [7], and also the proved efficiency of GSP to
provide an alternative signal description, mainly for image and
video [8], this work aims at prospecting the potential of GSP
to resolve the ASD problem.

C. Scope and contribution

Therefore, this paper describes a novel and experimental
work aiming at detecting anomalous sound events using GSP
combined with semi-supervised one-class support vector ma-
chines (OC-SVM). Thus, the novelty consists in experimenting
the application of GSP for signal embedding on graphs, to
extract significant features that will be used to train an OC-
SVM model on normal data only. To fulfill this goal, several
graph topologies are tested to achieve signal embeddings, such
as sensor, path, ring, fully-connected (FC) and nearest neigh-
bors (NN) graphs. Finally, benchmarking is carried out using
an ablation study scheme, based on the proposed workflow.

II. PRELIMINARIES

A. Anomaly detection

It is first necessary to define the notion of
anomaly/novelty/outlier. In [9], this is characterized using
(a) its scarcity, as anomalous/novel/outlier events occur
less frequently than normal events; (b) its characteristics,
as anomalous/novel/outlier events should have different
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Fig. 1: Examples of graph structures used for embedding the
audio clips: For each graph structure, the number of nodes
is equal to the number of features extracted from the audio
chunk

characteristics than normal events; (c) its meaning, as such
events should carry a specific and a different meaning
than normal events. Therefore, in most cases, conventional
classification techniques are not quite efficient to detect
anomalies/outliers, as anomalous patterns are too few, and
also too heterogeneous to form a separate and unique cluster.

B. Graph Signal

Consider a dataset with IV elements, for which some rela-
tional information about its data elements is known, such as
the examples given in Figures la and 1b. This information
can be represented by a graph G = (V,A), where V =
{vg,...,un—1} is the set of nodes and A is the weighted
adjacency matrix of the graph. Each dataset element corre-
sponds to a node v,, whereas each weight A, ,, of an edge
directed from v, to v, reflects the degree of relation of the
nt" node to the m!" one. Since data elements can be related
to each other differently, in general, G is a directed, weighted
graph. The set of indices of nodes connected to v,, is called the
neighborhood of v,, and denoted by NV,, = {m | 4,,,,, # 0}
[10].

Assuming, without a loss of generality, that dataset elements
are complex scalars, we define a graph signal as a map from
the set of nodes V into the set of complex numbers C:

s vV = C,
Up —  Sp-

(D

Notice that each signal is isomorphic to a complex-valued vec-
tor with IV elements. Hence, for simplicity of discussion, we
write graph signals as vectors s = (s, 51,...,5y_1)". Each
element s,, is indexed by node v, of a given representation
graph G = (V, A), as defined by (1). The space S of graph
signals in (1) is then identical to CV .

III. RELATED WORK

The two main strategies for ASD are static and dynamic
modeling. In the first case, signals are embedded in a repre-
sentation space and anomalies are detected either by distance
in the latent representation or by reconstruction error [5]. In
the second case, the temporal evolution is evaluated against

models of “background” [2]. Nevertheless, the two strategies
may be combined, using either fully-, semi-, or un-supervised
learning:

1. Fully-supervised learning — Several classifiers based on
recurrent/convolutional neural networks have been re-
cently proposed for ASD, both statically and dynamically,

g., [11], [12]. For instance, in [4], a novel method for
detecting road accidents through audio stream analysis is
proposed.

2. Semi-supervised learning— This method, mostly based
on one-class support vector machines (OC-SVM), is a
classical static anomaly detection tool, that has been
applied to anomalous sound event detection in [3], [4] .
Recently, in [13], the authors have proposed an ensemble
one-class SVM parallel to an MLP network to calculate
the anomaly score for audio events. Since OC-SVM is
used throughout this work, a comprehensive explanation
of the OC-SVM formulation is provided in [14].

3. Unsupervised learning — Several works leveraging
deep/variational autoencoders, in some cases using dy-
namic modeling, have been recently proposed for anoma-
lous sound event detection, e.g., [15]. In particular, the
proposal by Wei et al. [16] at DCASE 2020 challenge-
Task 2 is based on a reconstruction autoencoder to
calculate the anomaly score through metric learning.
Therefore, different types of autoencoders are tested, such
as deep autoencoders, variational autoencoders, etc.

Regarding GSP, up to our knowledge, it has not been applied

to ASD so far. However, it has efficiently been utilized for
anomaly detection in several areas, such as image and video
processing [10]. Besides, graph embedding has been proven to
provide a feature description that helps improve classification
results in several problems, such as social networks, computer
traffic, and financial transactions [7].

IV. METHODS

In this work, a novel GSP-based method for ASD is pro-
posed. The method is articulated on three main components,
namely feature extraction, graph embedding, and OC-SVM
classification. Moreover, it is compared to some previous
and novel benchmarking methods, also built on some of the
aforementioned components.

A. Proposed method: Graph signal embedding with One-class
SVM classification (GOC-SVM)

The main and novel idea behind this proposal is the use of
graphs to embed the input feature vectors before performing
one-class classification using OC-SVM. The reason motivating
such a choice is the noticed lower discrimination power of
the plain audio features, i.e., without graph embedding, in
the context of audio traffic data, where all signals, whether
normal or anomalous are corrupted by the background noise
[5]. The workflow of the proposed method is based on three
main components, namely Feature extraction, Graph signal
processing and One-class classification, as depicted in path
(b) in Figure 2):
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Fig. 2: Workflow of the presented methods: (a) OC-SVM without graph signal processing (Benchmark 1), (b) Graph signal
processing with One-Class SVM classification (GOC-SVM) (Proposed), (c) Graph signal processing with Binary SVM
classification (GBin-SVM) (Benchmark 2-Proposed)

1.2.

1.3.

2.2.

2.3.

1. Feature extraction- The basic features used in this method

are the Mel-Frequency Cepstral Coefficients (MFCC). It
should be noted that they have been selected among other
types of audio features for their proven performance in
ASD [4], [12], [15]. To extract the MFCC features, the
audio chunk is processed as follows:

1.1. Each audio clip of the database (of approximately 1

minute) is segmented into short chunks of 1 second so
that each chunk contains at most one anomalous event.
Hence each chunk is labeled as normal or anomalous.
For each chunk, the Mel-log spectrogram is calculated
using overlapping frames of 1024 points with 50%
overlap.

For each frame, a vector of 14 MFCC coefficients
representing MFCCO = log(energy) and MFCC(1)-
MFCC(13), are extracted from the Mel-log spectro-
gram. Thus, for each chunk, a matrix of dimension
Ny x 14 is obtained, where Ny is the number of frames
in the chunk. Then, this matrix is flattened into a 1-D
supervector.

2. Graph signal processing- This is the core component of

the proposed method, where graph structures are utilized
to embed the extracted features:

2.1. For each chunk, a graph is constructed, and the MFCC

supervector is embedded into it. It should be noted that,
for each chunk, the MFCC’s supervector is embedded
in the same type of graph (like Path, Ring, etc) used
for all other chunks. Thus, all chunks are embedded in
the same graph structure, using the same weight and
node parameters.

The embedded MFCC supervector is filtered through a
Simple Tight Frame filterbank. It is worth noting that
this step is optional, and is useful to assess the effect
of filtering on graph embedding.

For each filtered/unfiltered graph-embedded MFCC
supervector, the Joint Fourier Transform (JFT) is com-
puted, and its magnitude is returned. At this level, JET
is computed on the time-graph scale and is analogous

3.

to the classical STFT in the time-frequency domain.
However, JFT is useful to extract the eigenvalues of
the graph Laplacian and thus is intended to discover
some latent features [17].

One-class classification- This component is used to per-
form semi-supervised classification, as follows:

3.1. One-class SVM algorithm is used to train the obtained

3.2.

JFT magnitude values of the graph-embedded MFCC
vectors. Note that the One-class SVM is trained only
using the normal data.

Once One-class SVM training is finished, testing is
applied on a subset containing both normal and anoma-
lous data.

Several types of graph topologies were experimented, either
using a temporal structure, such as the Path and the Ring
graphs, or not, e.g., the Sensor and the Fully-connected graphs
[17]. Samples of such graphs are illustrated in Figure 1.

B. Benchmarking methods

To evaluate the results and the effectiveness of the proposed
method, two benchmarking methods are tested, using an
ablation-study scheme, where one component of the proposed
method is deleted or modified at a time. Thus, this strategy
produced the following benchmarks:

()

(b)
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benchmark 1- One-class SVM (OC-SVM): This is the
basic benchmark, already used in [3], [4], [13], where
only the feature extraction component and the OC-SVM
classifier are used, bypassing the GSP module (cf. path (a)
in Figure 2). Thus, the aim of this benchmark is to assess
the effectiveness of using/not using graph embedding in
semi-supervised ASD.

benchmark 2- Graph-based binary SVM (GBin-SVM):
This is a novel benchmarking method that includes all
the proposed components, i.e., feature extraction, graph
signal processing, and classification. However, it uses bi-
nary SVM instead of OC-SVM for classification (cf. path
(c) in Figure 2). Hence, this second benchmark aims at
assessing the contribution of using GSP to enhance semi-
supervised classification results, yielded by the proposed



GOC-SVM, in comparison to a fully-supervised classifier,
i.e., Binary SVM.

V. EXPERIMENTS AND RESULTS
A. Audio materials

To perform this work, a database of audio surveillance
on roads had to be selected. Among the available databases,
MIVIA [4] has been chosen for the following reasons: a)
Recordings were realized in a real road environment covering
the city center, highways, and country roads; b) the total
duration of the database is approximately one hour, divided
in 57 audio clips, which provides a sufficient amount of data;
c¢) the recorded sounds are labeled manually, indicating the
audio event and its onset and offset times; d) finally, and per-
haps most importantly, all audio signals, whether considered
normal or anomalous, contain similar levels of environmental
background noise.

B. Experiments

The audio clips are segmented into chunks of 1 sec, so that
for each chunk there is at most one anomalous event. Then, the
proposed GOC-SVM and the benchmark methods, OC-SVM
and GBin-SVM are applied as described in Section IV. The
experimental protocol is conducted by making several choices
regarding the following aspects:

1) Graph structures: Several graph structure types were
utilized, namely Sensor Network, Path, Ring,Fully-Connected
(FC) and Nearest Neighbors (NN) (cf. Figure 1). Each audio
chunk is embedded in the same graph structure as the other
ones and uses the same initial weight and node parameters. It
should be noted that these graph structures have been selected
for either their temporal structure, e.g., Path, Ring, or their
potential performance e.g., Sensor and FC.

2) Graph embedding vs. No-graph using One-class SVM
classification: One-class SVM is performed for both the plain
MEFCC coefficients (for the basic Benchmark 1, cf. path (a)
in Figure 2) and the JFT-MFCC ones (for the proposed
GOC-SVM and Benchmark 2 methods, cf. path (b), path (c)
in Figure 2, respectively), using 4000 chunks for training
(all normal) and 1000 for the test, containing normal and
anomalous samples. Table II details the obtained results of
Area under the curve (AUC), overall accuracy, and F1 score
for normal and anomalous samples.

3) Graph embedding and filtering vs graph embedding
only: One-class SVM is also performed on the JFT of the fil-
tered graph-embedded MFCC features, to compare them with
the JFT graph-embedded ones (without filtering). Filtering is
achieved using a simple TF wavelet filter [17], applied on
Ny, = 6 filterbank components and of order 6. However, it
is worth noting that the filter type and its configuration have
been set amongst several other ones, according to their final
performances (cf. Table I and Table II).

4) OC-SVM vs. Binary SVM: Table I details the results of
using one-class and binary-classification SVM. Both methods
are tested using (a) Unfiltered JFT-MFCC features embedded
on the Ring graph (for its highest performance amongst other

types of graphs, cf. Table II), and (b) Filtered JFT-MFCC
features embedded on the fully-connected (FC) graph (also
selected for its highest performance, cf. Table II). Such an
assessment is useful to understand the effect of using both
graph embedding and filtering in enhancing the performance of
the semi-supervised OC-SVM to make it as close as possible to
a fully-supervised classifier, such as the Binary-classification
SVM.

C. Results and discussion

Firstly, the results of Table II confirm the advantage of using
both graph embeddings on the OC-SVM classification results,
from either the overall metrics, i.e., AUC and Accuracy, or
the class-wise ones, i.e., F'I score for both classes, normal
and anomalous. Such an improvement in comparison to the
Benchmark 1 method, i.e., OC-SVM, is especially noted when
using a time-structured graph topology, such as the Ring graph.

Secondly, Table I confirms that applying a filterbank at the
output of the graph remarkably improves the graph embedding
performance for OC-SVM, i.e., the proposed GOC-SVM,
to make it comparable to binary classification SVM, i.e.,
benchmark 2 (GBin-SVM). This is quite an interesting result
since graph embedding and then filtering seem to provide a
latent description that may be comparable to deep features,
i.e., descriptors that may increase the classification results even
though they are not explicitly interpretable.

Thirdly, as mentioned in Table I, graph embedding and
filtering allow the OC-SVM to reach much higher perfor-
mances than using plain MFCC features, i.e., with No Graph.
This is proved by the fact that OC-SVM based on graph-
embedded features (GOC-SVM) performs nearly as well as
fully-supervised binary-classification SVM (GBin-SVM), even
though the Fl-score for the anomalous class needs to be
improved. However, such a finding might be very promising
to address one-class classification in particular, and weakly-
supervised classification problems in general, through explor-
ing the advantages of using graph embedding for timely-
structured data, such as audio events.

Finally, and perhaps most importantly, the obtained results
confirm that graph embedding may be a good alternative to
deal with uncertainty in audio data. As already mentioned, all
sounds in the dataset contain the same amount of background
noise, which, at a certain level, would make it difficult to
set separate clusters for anomalous and normal sounds. This
problem might be addressed by embedding the features on an
appropriate graph structure and choosing the right graph filter

type.
VI. CONCLUSION

In this work, we tried to address the problem of Anoma-
lous Sound Detection (ASD) using Graph Signal Processing
(GSP), particularly through graph embedding (and optionally
filtering) of the audio features, i.e., MFCC coefficients, that
are fed into a one-class SVM classifier. Results show, firstly a
clear improvement in comparison to the ASD semi-supervised
state-of-the-art method, i.e., One-class SVM based on only
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TABLE I: Classification results using (a) One-Class SVM (benchmark 1), (b) Graph-based One-Class SVM (GOC-SVM)
(Proposed method) and (c¢) Graph-based Binary SVM (GBin-SVM) (benchmark 2-Proposed), for different signals of a clip
duration of 1 sec), applied on (i) the original features (No Graph), (ii) features embedded on the best performing graph structure
without filtering (Ring graph), (iii) features embedded on the best performing graph structure with filtering (FC graph), as

highlighted in Table II

Classifier Graph use  Graph filter use AUC Acc F1 (norm.) F1 (anom.)
OC-SVM (Benchmark 1) No Graph No filtering 0.56  0.23 0.21 0.25
. . Ring graph  No filtering 090 0.98 0.99 0.89
Graph-based Binary SVM (GBin-SVM) (benchmark 2-Proposed) FC graph Simple TFW filterbank 0.90 098 0.99 0.30
Ring graph  No filtering 0.66 0.42 0.49 0.31
Graph-based OC-SVM (GOC-SVM) (Proposed) FC graph Simple TFW filterbank  0.91  0.97 0.98 0.88

TABLE II: Classification results using the proposed Graph-based One-Class SVM (GOC-SVM) for different a clip duration
of 1 sec, applied on (a) features embedded on a graph only, and (b) features embedded on a graph with Simple Tight Frame
Wavelet (TFW) filterbank (Sensor Network, Path, Ring, Fully connected (FC) and Nearest Neighbors (NN)) (* The number of

asteriscs indicate the performance rank of graph topologies)

Proposed GOC-SVM Method Graph type AUC Acc F1 (normal) F1 (anomalous)
Sensor 0.61 034 0.37 0.30
Path 059 029 0.31 0.27

Using Graph embedding only Ring*** 0.66 0.42 0.49 0.31
Fully-connected™ 0.57 042 0.24 0.26
Nearest neighbors™* 0.66 041 0.48 0.33
Sensor 091 084 0.90 0.57
Path 0.89 0.82 0.88 0.59

Using Graph embedding with Simple TFW filterbank | Ring™ 0.89 0.82 0.88 0.59
Fully-connected*** 091 0.97 0.98 0.88
Nearest neighbors™* 0.91 0.84 0.90 0.60

MFCC (without graph-embedding); and secondly a compa-
rable performance with fully-supervised binary-classification
SVM, in terms of objective metrics, such as AUC, accuracy
and F1 scores. Such results imply that using GSP for feature
embedding in the ASD framework helps increasing the clusters
separability, and thus improving the discrimination power of
the extracted features, even though the training is performed
on normal data only. As an outlook, this work should be
continued to understand why some specific graph topologies,
like Ring and Fully-connected, are doing better than the other
ones, and if some specific parametrization could improve
less performing ones’ results. Also, the GSP-base model’s
complexity could be investigated to make it possible to run
on real-time devices for anomalous sound detection'. .
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