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ABSTRACT: Dicobalt hexacarbonyl complexes are well-known for their applications in Nicholas reaction or simply as pro-
tecting group for alkynes. To recover the alkyne, demetallation is necessary, which usually involves a stoichiometric amount 
of an oxidizing agent or a strong ligand. This article reports a demetallation methodology based on a photocatalytic process. 
This approach employs a photocatalyst under aerobic conditions and the optimal results were achieved using mild near-
infrared irradiation. Mechanistic investigation is also presented to elucidate how the photocatalytic system promotes this 
deprotection. This tool is compatible with one-pot reaction and orthogonal deprotection of alkyne offering new perspectives 
for further applications.  

INTRODUCTION 

 
Alkyne dicobalt hexacarbonyl complexes are relevant re-

agents that can be employed to functionalize a propargylic 
position through the Nicholas reaction.1,2 This reaction has 
been applied to various structures, even in total synthesis of 
sophisticated natural coumpounds.3 These cobalt-based 
complexes are also used as a rare protecting group for al-
kyne and is sometimes employed to stabilize fragile triple-
bond4 for specific applications such as click chemistry.5 
When a dicobalt hexacarbonyl complex is installed into bio-
logically active molecules, their properties as a drug can be 
exacerbated as it was demonstrated in cancer treatment.6  
For most of these applications, the cobalt-complex is used 
as a transient group that needs to be demetalated to recover 
the original function. To do so, two main approaches are re-
ported in the literature. First, a one-electron oxidizing rea-
gent can be used to promote this deprotection like ceric am-
monium nitrate (CAN),7 2,3-Dichloro-5,6-dicyano-1,4-ben-
zoquinon (DDQ),8 I2,9 or Fe(NO3)3.10 Alternatively, a strong 
coordinating ligand (N-amine Oxide,5a,5c TBAF,11 diamine12 

can be involved to substitute a carbonyl ligand on the cobalt 
center and promote the demetalation. Both strategies suffer 
from the same drawback because an over-stoichiometric 
amount of the deprotecting reagent is required to recover 
the triple-bond (Scheme 1). This is an important limitation 
since many of these reagents are toxic and not recyclable.   

In parallel, the photocatalysis concept has recently 
emerged as a powerful tool to promote organic reactions via 
single electron transfer (SET)13 or energy transfer (EnT) 
pathways.14 In both cases, the photocatalyst (PCat) is pro-
moted to its excited state through visible-light or near-in-
frared irradiation15 providing new intermediates than can 
be used to triggered reaction. Thus, only a catalytic amount 

of PCat is engaged in achieving very complex transfor-
mations. To get a photocatalytic reaction even more renew-
able, O2 can be used in some cases as a co-oxidant to close 
the catalytic cycle. Recent advancements in NIR-
photocatalysis offer milder reaction conditions and present 
noteworthy benefits that should be taken into account for 
the development of new synthetic methodologies. Specifi-
cally, this light (λ > 750 nm) is lower in energy, penetrates 
deeper into solutions, and is biocompatible.  

Herein, we report a new photocatalytic approach under 
aerobic conditions and near-infrared activation to demeta-
late of cobalt-alkyne complex. This strategy results in a 
photo-controlled reaction, facilitating the delivery of the al-
kyne function by simple light-activation.  

 
Scheme 1. Demetallation of Alkyne Dicobalt Hexacar-
bonyl Complexes (a) State of the Art (b) Near-Infrared 
Photocatalysis Approach 

  
 
 
 
 



 

RESULTS AND DISCUSSION 

 
First, we screened potential photocatalysts that are able 

to perform the photodemetallation of complex 1a bearing 
an internal alkyne with two p-methoxybenzyl groups (Fig-
ure 1a). Acetonitrile was chosen as solvent, as well as a cat-
alytic loading of 8.0 mol% of photocatalyst and a reaction 
time of 4 h. Classical visible-light photocatalysts (4-CzIPN, 
Ru(bpy)3Cl2, Acr+-Mes, Ir(ppy)3, Eosin Y and Methylene 
Blue) were compared using the corresponding LEDs irradi-
ation at their maximum of absorption ( = 420 nm,  = 565 
nm,  = 660 nm).  To obtain comparable outcomes, the same 
irradiance range was used for the selected visible light 
LEDs.16 Under visible light irradiation, this reaction can be 
performed catalytically with most of the photocatalysts but 
the deprotection efficiency is low to moderate. Indeed, the 
best result was obtained with the 4-CzIPN which allowed to 
isolate 2a in 36% yield with a partial demetalation of 1a. 
Even the very powerful oxidant, the Fukuzumi catalyst 
(Acr+Mes-, E*red = + 2.18 V vs SCE),17 did not provide more 
than 32% yield. After recording the absorption spectrum of 
1a in MeCN, we observed a strong absorption band in UV 
(<400 nm), but also in the range 400-700 nm (Figure 1b). 
To anticipate a potential limitation due to visible wave-
lengths absorption, we compared these results with the 
Near Infrared-photocatalysts (NIR-photocatalysts) that we 
developed in our laboratory for various organic transfor-
mations: squaraine (Sq687)18 and cyanines (Cy746, Cy795, 
Cy997, Cy780).19 Above 700 nm, the complex 1a should not 
overlap with the absorption of the photocatalyst. The reac-
tion was run with Sq687 as photocatalyst at 810 nm but any 
amelioration was observed since 2a was isolated in 31% 
yield. However, two cyanines were efficient at 810 nm, both 
Cy780 and Cy795 afforded 68% yield with a partial conver-
sion. To further optimize the reaction conditions, we se-
lected the Cy780 since less by-products were observed in 
the crude mixture. 
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Figure 1. (a) Screening of photocatalysts. Reactions were run 
on 0.1 mmol in MeCN for 4 h, isolated yields are reported (b) 
Absorption spectrum of 1a in MeCN (C = 10-4M) 

.  
 
 
 
 

 



 

Table 1. Optimization Study 

 

 

aReactions were run on 0.1 mmol scale of 1a in 1 mL of 
solvent at room temperature under air atmosphere. Irradi-
ation with 2xLED-810 nm (2 x 23.7W/mm2). bIsolated 
yields obtained after column chromatography. cPortionwise 
addition was realized following the sequence: 4 x 2 mol% at 
t = 0 min, t = 3 h, t = 6 h, t = 9 h 

 
Having found an efficient photocatalyst (Cy780), a series 

of experiments were started to optimize the reaction condi-
tions (Table 1). A strong solvent effect was observed; the re-
action was less efficient in DCE, DMSO and iPrOH (25%, 
17% and 16 % yields respectively, entries 2-4). We tried to 
decrease the loading of photocatalyst to 5 mol% but in this 
case the conversion and yield were lower (46 % yield, entry 
5). To push forward the full conversion, the reaction was 
set-up for 24 h of irradiation. Surprisingly, we did not ob-
serve any improvement of conversion, and a comparable 
yield was obtained (60%, entry 6).  This result suggests that 
a degradation of the photocatalyst occurs during the reac-
tion (see ESI pS3). A kinetic experiment shows that after 3 
h, a plateau of conversion is reached and all the phototo-
calyst is photobleached (see ESI pS2). To circumvent this 
problem, we decided to add the photocatalyst in a portion-
wise manner (4 x 2.0 mol%). Thus, the reaction mixture is 
constantly refilled in fresh photocatalyst, and full conver-
sion is obtained after 24 h and 2a was isolated in  92 % yield 
(entry 7). This portionwise addition is technically simple 
since the reaction is achieved in open flask under aerobic 
conditions. Finally, control reactions were run. In the dark, 
we observed 28% of demetallation (entry 8), 20% without 
the photocatalyst (entry 9) and 7% when the complex 1a is 
poured into CH3CN in the dark for 24 h without photocalayst 
(entry 10). These results suggest that acetonitrile acts as a 
coordinating species promoting a slow decomposition of 
the cobalt complex, leading to a partial deprotection of the 
alkyne. This background reaction is not surprising, but the 

photocatalytic system is still important to accelerate the 
deprotection and reach the full conversion.  

 
Scheme 2. Substrate scope and limitations for the NIR-
photocatalytic demetallation of alkyne dicobalt hexa-
carbonyl complexes 

 

 
 
aReaction conditions: 0.1 mmol of 1 and 4 x 2 mol% of 

Cy780 in 1 mL of CH3CN at room temperature under air at-
mosphere. Irradiation with 2 LED-810 nm (2x23.7 
mW/mm2). Isolated yields obtained after column chroma-
tography. 

 
Then, the optimal conditions were applied to explore the 

scope of alkyne dicobalt hexacarbonyl complexes (Scheme 
2). By screening different para-substituted bis-aryl internal 
alkynes, we observed that it proceeds more efficiently with 
electrodonating groups such as methoxy (2a, 92% yield)  or 
methyl (2b, 100% yield). For molecules containing elec-
trowithdrawing groups (2c-e), we observed a significative 
erosion of the yields, ranging from 53% for nitro (2e) to 
80% for the trifluoromethyl (2d). Surprisingly, the reactiv-
ity of bulkier alkyne 2f with an ortho-methyl is still con-
served and a quantitative yield was obtained for the depro-
tection. Heteroaromatic rings are also well tolerated since 
the bis-thiophene 2g was obtained in 100% yield whereas 
the bis-furan 2h was deprotected in 54%. The demetalation 
is still efficient for nitrogen-containing heterocycles such as 
pyridine and protected piperidine, the products 2i and 2j 

Entry Parameter Conditionsa 
Yield  

(%)b 
1 

Solvent 

MeCN, 4 h, y = 8.0 68 
2 DCE, 4 h, y = 8.0 25 
3 DMSO, 4 h, y = 8.0 17 
4 iPrOH, 4 h, y = 8.0 16 
5 PCat loading MeCN, 4 h, y = 5.0 46 

6 Time 
MeCN, 24 h,  

y = 8.0 
60 

7c 
Cy780 

Portionwise 
MeCN, 24 h, 
 y = 4 x 2.0 

92 

8c 

Control 

MeCN, 24 h,  
y = 4 x 2.0 
In the dark 

28 

9 
MeCN, 24 h, 

 No PCat 
20 

10 
MeCN, 24 h,  

No PCat 
In the dark 

7 



 

were isolated in 64% and 78% yield respectively. Internal 
alkynes bearing alkyl groups are also compatible with these 
conditions of deprotection, as it was applied for the for-
mation of 2k (88% yield) and the sterically hindered 2l 
(94% yield). The robustness of this photocatalyzed demeta-
lation was also demonstrated using an alkynylsilane (tert-
butyldimethylsilyl, TBDMS). Under optimized conditions, 
2m was obtained in quantitative yield. The deprotection of 
polarized alkynes was also achieved, the alkyne 2n with the 
trifluoromethyl was isolated in 66% yield and the ester 2o 
in 43% yield. These conditions also accommodated more 
complex molecules. For example, we deprotected the alkyne 
function within Efavirenz (2p), an HIV-1 reverse transcrip-
tase inhibitor, with a remarkable yield of 89%. The efficient 
and selective demetalation of terminal alkynes is often 
more challenging since the deprotected alkyne is more re-
active and able to undergo degradation during the pro-
cess.20 In our case, we observed that sterically hindered ter-
minal alkynes are compatible with the developed condi-
tions, as it was demonstrated with the deprotection of 
ethisterone (2q) in 52% yield. However, when less bulky 
terminal alkyne is considered such as 2r, we only observed 
messy reaction with the formation of complex mixtures. It 
should be noted that similar result was obtained when we 
deprotected 2r with CAN.  

 
Scheme 3. One-pot tandem photodemetallation/CuAAC 
on terminal alkyne dicobalt hexacarbonyl complex  

 

 
One solution to circumvent this problem is to use al-
kynylsilane derivatives (such as 2m) and deliver the termi-
nal alkyne after desilylation. However, this solution re-
quires two steps. To provide another alternative, we aimed 
to determine whether a one-pot reaction could effectively 
trap the released terminal alkyne in situ before degradation. 
As a proof, a one-pot photodemetallation/copper-catalyzed 
azide-alkyne cycloaddition (CuAAC) was conducted be-
tween the complex 1r and the azide 3 in presence of 10% of 
CuI (Scheme 3). Under these conditions, we obtained after 
purification, 56% of the triazole 4 for two steps. This result 
shows that sensitive non-bulky terminal alkynes can be 
photodemetaled but a second one-pot reaction is required 
to avoid their degradation.  

 

Figure 2. Mechanistic Investigation 

We then explored the mechanism of the reaction, and two 
plausible pathways were considered (Figure 2). The path-
way 1 involves a direct quenching of the photocatalyst at its 
excited state by the cobalt-complex to promote a SET or 
EnT. In principle, the one-electron oxidation of such com-
plexes should be possible, the redox potential for alkyne di-
cobalt hexacarbonyl complexes are usually below +0.8 V vs 
SCE21 whereas E*red(Cy780) =+0. 84 V vs SCE.19b However, 
the Stern-Volmer experiments revealed that no apparent 
quenching between Cy780* and the complex 1a was ob-
served and the low slope was attributed to the partial deg-
radation of the photocatalyst. In addition, no EDA-complex 
between Cy780 and 1a was observed after recording the 
absorption spectra (see ESI pS4). The pathway 2 is related 
to the decomplexation of Co-complex by exchanging car-
bonyl ligands with reactive oxygen species (ROS) : singlet 
oxygen (1O2) or superoxide radical (O2.-). The role of ROS in 
the demetalation of alkyne-Co2CO6 complexes has been 
studied in medicinal chemistry, where these complexes 
serve as CO-Releasing Molecules (CORMs) in cancer treat-
ment.22 The elevated ROS concentration in cancer cells leads 
to the release of CO and the alkyne moiety. Furthermore, it 
has been demonstrated that electron donor ligands can pro-
mote the heterolytic Co-Co cleavage and the subsequent lib-
eration of alkyne.23  Since cyanines are known to act as pho-
tosensitizer in photodynamic therapy (PDT), the formation 
of ROS under the reaction conditions is highly probable.24 
To verify this point, control reactions were run, using the 
deprotection of 1a with 8 mmol% of Cy780 in CH3CN for 16 
h of irradiation at 810 nm. In absence of dioxygen very low 
conversion was observed (12%), pointing the crucial role of 
O2 in this reaction. In presence of sodium azide (1O2 scaven-
ger) a partial erosion of the yield is notified starting from 
60% for the reference conditions to 44%. The addition of 
benzoquinone (BQ) as O2.- scavenger provided a significa-
tive drop in conversion and yield (20%). In parallel, we also 
proved that Cy780 is able to generate superoxide anion and 
1O2 by trapping these intermediates with hydroethidine and 
9,10-dimethylanthracene (see ESI pS7). These combined 
experiments show that a plausible mechanism for this 



 

demetalation involves ROS, generated by the NIR-
photocatalyst.  

 
Scheme 4. Orthogonal Deprotection of Alkyne Com-
plexes  

 

 
 
Finally, we explored the orthogonal deprotection of the al-

kyne dicobalt complexes. In the context of selective protec-
tion/deprotection of alkyne functions, we prepared the al-
kyne Co2(CO)4.dppm complex 5 (dppm, bis(diphe-
nylphosphino)methane). This type of complexes is known 
to be more stable than the corresponding hexacarbonyl 
complexe and we expected to obtain a significative selectiv-
ity during the photodemetallation.25 The mixture of 1a and 
5 in stoichiometric ratio was treated under the optimized 
conditions and we were pleased to observe a selective 
deprotection of 1a, and 5 remained mainly untouched 
(Scheme 4). In addition, the deprotection of 5 was carried 
out in presence of 4 equivalents of CAN (70% of yield), 
demonstrating that these two complexes can be used as or-
thogonal protecting groups for alkynes based on selective 
deprotection methods. To secure this result, a control reac-
tion was run with alkyne Co2(CO)4.dppm complex alone and 
we observed the same result (see ESI pS29). The NIR-
photocatalytic deprotection of these complexes showed to 
be inefficient providing orthogonality for alkyne protec-
tion/deprotection. 

 
CONCLUSION 
 
In conclusion, the photo-demetalation of alkyne dicobalt 

hexacarbonyl complexes has been achieved using the near 
infrared photocatalysis driven by cyanines (Cy780). This 
approach shifts the paradigm from stoichiometric to photo-
catalytic since only 8% of photocatalyst is required to 
achieve the total deprotection. The reaction is quite versa-
tile as it is compatible with various alkynes. For more reac-
tive terminal alkynes, one-pot two-step procedures can be 
employed such as photodemetallation followed by CuAAC. 
The mechanistic study revealed that a direct quenching of 
Cy780* by dicobalt complex is not observed and a mecha-
nism involving ROS is more favorable. Finally, the orthogo-
nality between two different protecting groups alkyne-
Co2(CO)6 complex and alkyne-Co2(CO)4.dppm complex has 
been demonstrated. The selective release of the alkyne-
Co2(CO)6 cobalt complex under NIR-photocatalytic condi-
tions could be advantageous for numerous applications, in-
cluding the total synthesis of natural products.  

 

 
EXPERIMENTAL SECTION  
 
General Information. Unless otherwise stated, all the re-

agents are commercially available and were used without 
further purification. Tetrahydrofuran (THF) was distilled 
from sodium/benzophenone. Dichloromethane, toluene 
and acetonitrile were distilled over CaH2. Anhydrous dime-
thyl sulfoxide (DMSO) was purchased from Sigma Aldrich.  

Thin Layer Chromatography (TLC) was performed using 
Merck© silica gel 60 F254 Aluminum sheets. Column chro-
matography was performed using Merk© Geduran© Si 60 
A° silica gel (0.040-0.063mm). Cyanines photocatalysts 
were purchased from TCI, Merk, ABCR or Few Chemicals 
(FC). 1H, 13C and 19F NMR spectra were recorded on a Bruker 
400 spectrometer or on a Bruker 500 spectrometer. Chem-
ical shifts (δ) are given in ppm relative to the residual sol-
vent peak. Data were treated with MestreNova software and 
are reported as follows: chemical shift, integration, multi-
plicity ((s = singlet, d = doublet, t = triplet, q = quartet, quint 
= quintet, sept = septet, hept = heptet, m = multiplet, br = 
broad signal) and coupling constant (Hz). 

Infrared spectra were obtained on a Jasco FT/IR-4XLE 
FT/IR spectrometer using neat samples on a diamond ATR 
(PKS-D1 Diamond crystal kit). UV-vis absorption and fluo-
rescence spectra were recorded on a SAFAS flx-Xenius XC 
spectrophotometer including wavelength extension unit (to 
1100 nm) and using quartz cells (SAFAS, flx CELL QZ 
MACRO 10-S-45, Macro, TO 10, Volume 1000 à 3500 μl), at 
20 °C (External temperature controller and cooling system). 

High resolution mass spectrometry (HRMS) analysis was 
performed by the Mass Spectrometry Service at the Univer-
sity of Strasbourg. All the photocatalytic reactions were 
conducted using the following NIR-LED from Thorlabs:  
M810L4, light-emitting diode (LED, nominal wavelength: 
810 nm, output power: 542 mW, irradiance: 23.7 μW/mm2). 
The light source is placed in contact with the flask. 

General Procedure D for the Photocatalytic Deprotec-
tion of Alkyne Dicobalt Hexacarbonyl Complexes. 

A flask was charged with the complex 1 (0.1 mmol, 1 
equiv.) and Cy780 (1.4 mg, 0.002 mmol, 2 mol%). The mix-
ture was dissolved in distilled MeCN (1 mL) and irradiated 
under 810 nm for 24 h (under air atmosphere). After 3 h, 6 
h and 9 h, Cy780 (1.4 mg, 0.002 mmol, 2 mol%) was added 
and the flask was turned by 1/8. The solvent was then evap-
orated in vacuo and a column chromatography afforded the 
title compound.  

1,2-bis(4-methoxyphenyl)ethyne (2a). Prepared according 
to general procedure  D on a 0.105 mmol scale, column chro-
matography (10% EtOAc in petroleum ether) afforded the 
title compound (23 mg, 0.097 mmol, 92%).1H NMR (500 
MHz, CDCl3) δ 7.45 (d, J = 8.8 Hz, 4H), 6.87 (d, J = 8.8 Hz, 4H), 
3.83 (s, 6H). 13C{1H} NMR (126 MHz, CDCl3) δ 159.5, 133.0, 
115.9, 114.1, 88.1, 55.4. Data are consistent with those re-
ported in the literature 26 

1,2-di-p-tolylethyne (2b). Prepared according to general 
procedure D on a 0.106 mmol scale, column chromatog-
raphy (petroleum ether) afforded the title compound (22 
mg, 0.106 mmol, 100%).1H NMR (500 MHz, CDCl3) δ 7.41 (d, 
J = 8.0 Hz, 4H), 7.15 (d, J = 8.0 Hz, 4H), 2.36 (s, 6H).13C{1H} 
NMR (126 MHz, CDCl3) δ 138.3, 131.6, 129.2, 120.5, 89.0, 



 

21.7. Data are consistent with those reported in the litera-
ture. 27 

Dimethyl 4,4’-(ethyne-1,2-diyl)dibenzoate (2c). Prepared 
according to general procedure D on a 0.103 mmol scale, 
column chromatography (5% EtOAc in petroleum ether) af-
forded the title compound (21 mg, 0.071 mmol, 69%).1H 
NMR (500 MHz, CDCl3) δ 8.04 (d, J = 8.4 Hz, 4H), 7.61 (d, J = 
8.4 Hz, 4H), 3.94 (s, 6H). 13C{1H} NMR (126 MHz, CDCl3) δ 
166.6, 131.8, 130.1, 129.7, 127.5, 91.5, 52.5. Data are con-
sistent with those reported in the literature 26 

1,2-bis(4-(trifluoromethyl)phenyl)ethyne (2d). Prepared 
according to general procedure D on a 0.103 mmol scale, 
column chromatography (petroleum ether) afforded the ti-
tle compound (26 mg, 0.083 mmol, 80%). 1H NMR (500 
MHz, CDCl3) δ 7.69 – 7.60 (m, 8H).13C{1H} NMR (126 MHz, 
CDCl3) δ 132.1, 130.6 (q, J = 32.7 Hz), 126.5, 125.5 (q, J = 3.8 
Hz), 124.0 (q, J = 272.2 Hz), 90.3. 19F NMR (471 MHz, CDCl3) 
δ -62.9.28  

1,2-bis(4-nitrophenyl)ethyne (2e). Prepared according to 
general procedure D on a 0.105 mmol scale, column chro-
matography (10% EtOAc in petroleum ether) afforded the 
title compound (15 mg, 0.056 mmol, 53%).1H NMR (500 
MHz, CDCl3) δ 8.27 (d, J = 8.9 Hz, 4H), 7.72 (d, J = 8.9 Hz, 4H). 
13C{1H} NMR (126 MHz, CDCl3) δ 147.8, 132.8, 129.0, 124.0, 
92.2. Data are consistent with those reported in the litera-
ture.27 

1,2-di-o-tolylethyne (2f). Prepared according to general 
procedure D on a 0.106 mmol scale, column chromatog-
raphy (petroleum ether) afforded the title compound (22 
mg, 0.106 mmol, 100%). 1H NMR (500 MHz, CDCl3) δ 7.52 
(d, J = 7.3 Hz, 2H), 7.26 – 7.21 (m, 4H), 7.21 – 7.16 (m, 2H), 
2.54 (s, 6H). 13C{1H} NMR (126 MHz, CDCl3) δ 140.1, 132.0, 
129.6, 128.4, 125.7, 123.5, 92.4, 21. Data are consistent with 
those reported in the literature.29 

1,2-di(thiophen-2-yl)ethyne (2g). Prepared according to 
general procedure D on a 0.103 mmol scale, column chroma-
tography (petroleum ether) afforded the title compound 
(20 mg, 0.103 mmol, 100%). 1H NMR (500 MHz, CDCl3) δ 
7.33 (dd, J = 5.1, 1.2 Hz, 2H), 7.30 (dd, J = 3.6, 1.2 Hz, 2H), 
7.04 (dd, J = 5.1, 3.6 Hz, 2H). 13C{1H} NMR (126 MHz, CDCl3) 
δ 132.3, 127.8, 127.3, 123.1, 86.3. Data are consistent with 
those reported in the literature 26 

1,2-di(furan-2-yl)ethyne (2h). Prepared according to gen-
eral procedure D on a 0.106 mmol scale, column chromatog-
raphy (petroleum ether) afforded the title compound (9 mg, 
0.057 mmol, 54%). 1H NMR (500 MHz, CDCl3) δ 7.45 (d, J = 
1.9 Hz, 2H), 6.71 (d, J = 3.4 Hz, 2H), 6.43 (dd, J = 3.4, 1.9 Hz, 
2H). 13C{1H} NMR (126 MHz, CDCl3) δ 144.4, 136.6, 116.6, 
111.3, 83.4. Data are consistent with those reported in the 
literature.27 

3-((4-methoxyphenyl)ethynyl)pyridine (2i). Prepared ac-
cording to general procedure D on a 0.105 mmol scale, col-
umn chromatography (20% EtOAc in petroleum ether) af-
forded the title compound (14 mg, 0.067 mmol, 64%). 1H 
NMR (400 MHz, CDCl3) δ 8.90 (brs, 1H), 8.67 (brs, 1H), 7.77 
(d, J = 7.9 Hz, 1H), 7.48 (d, J = 8.8 Hz, 2H), 7.40 – 7.28 (m, 
1H), 6.89 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H). 13C{1H} NMR (126 
MHz, CDCl3) δ 160.2, 152.5, 148.5, 138.5, 133.4, 124.3, 
114.7, 114.3, 93.1, 85.0, 55.5. Data are consistent with those 
reported in the literature.30 

tert-butyl 4-((4-methoxyphenyl)ethynyl)piperidine-1-car-
boxylate (2j). Prepared according to general procedure D on 

a 0.105 mmol scale, column chromatography (10% EtOAc 
in petroleum ether) afforded the title compound (26 mg, 
0.082 mmol, 78%). 1H NMR (500 MHz, CDCl3) δ 7.33 (d, J = 
8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 3.73 (ddd, J 
= 13.4, 6.6, 3.6 Hz, 2H), 3.23 (ddd, J = 13.4, 8.4, 3.4 Hz, 2H), 
2.77 (tt, J = 8.1, 3.9 Hz, 1H), 1.84 (ddt, J = 13.4, 7.2, 3.4 Hz, 
2H), 1.65 (dtd, J = 12.2, 8.1, 3.6 Hz, 2H), 1.46 (s, 9H). 13C{1H} 
NMR (126 MHz, CDCl3) δ 159.3, 155.0, 133.1, 115.8, 114.0, 
90.4, 81.8, 79.6, 55.4, 42.4, 31.7, 28.6, 27.7. Data are con-
sistent with those reported in the literature.31 

1-(3-cyclohexylprop-1-yn-1-yl)-4-methoxybenzene (2k). 
Prepared according to general procedure D on a 0.105 mmol 
scale, column chromatography (10% EtOAc in petroleum 
ether) afforded the title compound (21 mg, 0.092 mmol, 
88%). 1H NMR (500 MHz, CDCl3) δ 7.33 (d, J = 8.9 Hz, 2H), 
6.81 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 2.28 (d, J = 6.7 Hz, 2H), 
1.90 – 1.83 (m, 2H), 1.74 (dt, J = 12.8, 3.3 Hz, 2H), 1.69 – 1.63 
(m, 1H), 1.59 – 1.50 (m, 1H), 1.26 (tt, J = 12.7, 3.4 Hz, 2H), 
1.17 (tt, J = 12.5, 3.3 Hz, 1H), 1.10 – 1.01 (m, 2H). 13C{1H} 
NMR (126 MHz, CDCl3) δ 159.1, 133.0, 116.5, 113.9, 87.8, 
81.2, 55.4, 37.7, 32.9, 27.4, 26.5, 26.3. Data are consistent 
with those reported in the literature.32 

2,5-dimethylhex-3-yne-2,5-diol (2l). Prepared according to 
general procedure D on a 0.105 mmol scale, column chroma-
tography (50% EtOAc in petroleum ether) afforded the title 
compound (14 mg, 0.099 mmol, 94%). 1H NMR (500 MHz, 
CDCl3) δ 3.64 (s, 2H), 1.47 (s, 12H). 13C{1H} NMR (126 MHz, 
CDCl3) δ 86.8, 65.0, 31.5. Data are consistent with those re-
ported in the literature.33 

tert-butyl((4-methoxyphenyl)ethynyl)dimethylsilane (2m). 
Prepared according to general procedure D on a 0.105 mmol 
scale, column chromatography (petroleum ether) afforded 
the title compound (26 mg, 0.106 mmol, 100%). 1H NMR 
(500 MHz, CDCl3) δ 7.41 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.8 
Hz, 2H), 3.81 (s, 3H), 0.99 (s, 9H), 0.17 (s, 6H). 13C{1H} NMR 
(126 MHz, CDCl3) δ 159.8, 133.6, 115.6, 113.9, 105.9, 90.8, 
55.4, 26.3, 16.9, -4.4. Data are consistent with those re-
ported in the literature.34 

4-(3,3,3-trifluoroprop-1-yn-1-yl)-1,1’-biphenyl (2n). Pre-
pared according to general procedure D on a 0.105 mmol 
scale, column chromatography (petroleum ether) afforded 
the title compound (17 mg, 0.069 mmol, 66%). 1H NMR (500 
MHz, CDCl3) δ 7.63 (s, 4H), 7.61 – 7.58 (m, 2H), 7.50 – 7.44 
(m, 2H), 7.43 – 7.37 (m, 1H). 13C{1H} NMR (126 MHz, CDCl3) 
δ 143.9, 139.8, 133.0 (d, J = 1.8 Hz), 129.1, 128.4, 127.4, 
127.3, 117.3, 115.0 (q, J = 256.6 Hz), 86.7 (q, J = 6.4 Hz), 76.3 
(q, J = 52.4 Hz). 19F NMR (471 MHz, CDCl3) δ -49.7. Data are 
consistent with those reported in the literature.35 

ethyl 3-phenylpropiolate (2o). Prepared according to gen-
eral procedure D on a 0.106 mmol scale, column chromatog-
raphy (10% EtOAc in petroleum ether) afforded the title 
compound (8 mg, 0.046 mmol, 43%). 1H NMR (500 MHz, 
CDCl3) δ 7.61 – 7.55 (m, 2H), 7.47 – 7.41 (m, 1H), 7.39 – 7.33 
(m, 2H), 4.29 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). 
13C{1H} NMR (126 MHz, CDCl3) δ 154.2, 133.1, 130.7, 128.7, 
119.7, 86.1, 80.8, 62.2, 14.2. Data are consistent with those 
reported in the literature.36 

(S)-6-chloro-4-(cyclopropylethynyl)-4-(trifluoromethyl)-
1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one (Efavirenz) (2p). 
Prepared according to general procedure D on a 0.103 mmol 
scale, column chromatography (20% EtOAc in petroleum 
ether) afforded the title compound (29 mg, 0.092 mmol, 



 

89%). 1H NMR (500 MHz, CDCl3) δ 9.16 (s, 1H), 7.49 (d, J = 
2.3 Hz, 1H), 7.36 (dd, J = 8.5, 2.3 Hz, 1H), 6.83 (d, J = 8.5 Hz, 
1H), 1.40 (tt, J = 8.3, 5.1 Hz, 1H), 0.97 – 0.82 (m, 4H). 13C{1H} 
NMR (126 MHz, CDCl3) δ 149.1, 133.4, 131.9, 129.3, 128.0, 
122.3 (q, J = 287.5 Hz), 116.3, 115.3, 96.1, 79.3 (q, J = 35.2 
Hz), 66.3, 9.0 (d, J = 2.9 Hz), -0.5. 19F NMR (471 MHz, CDCl3) 
δ -80.9. Data are consistent with those reported in the liter-
ature.37 

(8R,9S,10R,13S,14S,17R)-17-ethynyl-17-hydroxy-10,13-di-
methyl-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-
3H-cyclopenta[a]phenanthren-3-one (Ethisterone) (2q). Pre-
pared according to general procedure D on a 0.104 mmol 
scale, column chromatography (30% EtOAc in petroleum 
ether) afforded the title compound (17 mg, 0.054 mmol, 
52%). 1H NMR (500 MHz, CDCl3) δ 5.73 (s, 1H), 2.57 (s, 1H), 
2.44 – 2.25 (m, 5H), 2.07 – 1.97 (m, 2H), 1.93 (brs, 1H), 1.87 
– 1.82 (m, 1H), 1.76 – 1.53 (m, 6H), 1.53 – 1.30 (m, 3H), 1.20 
(s, 3H), 1.11 – 0.94 (m, 2H), 0.89 (s, 3H). 13C{1H} NMR (126 
MHz, CDCl3) δ 199.6, 171.1, 123.9, 87.2, 79.7, 74.2, 53.4, 
49.9, 46.7, 38.9, 38.6, 36.2, 35.7, 34.0, 32.8, 32.4, 31.5, 23.1, 
20.7, 17.4, 12.7. Data are consistent with those reported in 
the literature.33  
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