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Smectic liquid crystals can be viewed as model systems for lamellar structures for which there
has been extensive theoretical development. We demonstrate that a nonlinear energy description is
required with respect to the usual Landau-de Gennes elasticity in order to explain the observed layer
spacing of highly curved smectic layers. Using X-ray diffraction we have quantitatively determined
the dilation of bent layers distorted by antagonistic anchoring (as high as 1.8% of dilation for the most
bent smectic layers) and accurately described it by the minimal nonlinear expression for energy. We
observe a 1◦ tilt of planar layers that are connected to the curved layers. This value is consistent with
simple energetic calculations, demonstrating how the bending energy impacts the overall structure
of a thin distorted smectic film. Finally, we show that combined X-ray measurements and theoretical
modeling allow for the quantitative determination of the number of curved smectic layers and of the
resulting thickness of the dilated region with unprecedented precision.

The smectic state of liquid crystals bridges the study
of broken orientational symmetry à la nematic order, the
statistical mechanics of membranes, and the long range
periodic order in crystals. As such, it can be probed opti-
cally, mechanically, and through X-ray diffraction. From
a theoretical perspective, it provides an arena to system-
atically study the effects of nonlinear elasticity via fluc-
tuations [1], topological defects (where the distortions
can be large) [2–4], and, as we will demonstrate here,
even in complexions arising from antagonistic boundary
conditions. By focusing on regions of high layer curva-
ture using X-ray diffraction we have measured the layer
spacing with high resolution in the wave-vector transfer
and find that it is accurately described by the nonlinear
response of bent layers. As we will discuss, the nonlin-
earities we include are required by symmetry and do not
require any additional elastic constants providing a parsi-
monious explanation of the data. Thus we demonstrate,
even in a static configuration, the essential role of rota-
tional invariance in systems with spontaneously broken
symmetries.

We deposited a smectic film of 4-n-octyl-4’-
cyanobiphenyl (8CB) of thickness 180 nm on a rubbed
polyvinyl alcohol (PVA) coated glass surface in contact
with air, the former providing planar anchoring and the
latter homeotropic anchoring of the nematic director.
The resulting structure is made up of unidirectional

stripes of a period around 600 nm perpendicular to the
rubbing direction, as observed by optical microscopy
(Fig. 1). By combining grazing incidence and trans-
mission X-ray diffraction with ellipsometry we have
previously determined that the resulting configuration is
similar, in spirit, to an oily streak texture [5, 6]. Due to
the strong planar unidirectional anchoring induced by
the rubbed PVA substrate, perpendicular smectic layers
are present throughout, to a thickness of around 20-30
nm. Flattened hemicylinders are formed on top of these
perpendicular layers to oblige the strong homeotropic
anchoring at the air interface. A sharp, topological grain
boundary is thus induced in the flattened hemicylinder
between the perpendicular smectic layers below and the
planar smectic layers above (below zone 1 on Fig. 1)
[6]. Curved smectic layers form at the two edges of the
flattened hemicylinders (zone 2 on Fig. 1) [5].

By X-ray diffraction under grazing incidence condi-
tions (see section End Matter) we reveal a ring-like scat-
tering signal associated with these continuously rotating
smectic layers at the edges of the flattened hemicylin-
ders (Fig. 2(a)) [6]. For a given position in the scatter-
ing ring at an angle α corresponding to the direction of
the wave-vector transfer q (Fig. 2(a)), the signal corre-
sponds to those smectic layers with their normal parallel
to q (Fig. 1). To ensure that the Bragg condition is
satisfied, the incident angle is chosen to be the Bragg
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FIG. 1. Optical Microscopy image in the reflection mode be-
tween crossed polarizers providing a top view of the 8CB film.
The red arrow shows the direction of PVA rubbing, and the
black crosses show the polarizer directions. Flattened hemi-
cylinders are schematized on the left. Zone 1 (yellow) cor-
responds to the central part of the flattened hemicylinders.
Zone 2 (red) corresponds to the curved layers at the edges of
the flattened hemicylinders. The 8CB molecules are schema-
tized at the interfaces in yellow.

angle arcsin(λo/2d) ∼ 0.6◦, where d = 3.14 nm is the
8CB smectic spacing and λo = 0.067 nm is the X-ray
wavelength [7, 8]. However, this incident angle value ob-
scures the signal from the curved smectic layers below
α = 40◦ associated with the structure at the base of the
flattened hemicylinders, closest to the underlying perpen-
dicular layers. We will thus focus on the structure of the
curved smectic layers rotating from α = 40◦ (zone 2 in
Fig. 1) and on their connection with the central planar
layers (zone 1 in Fig. 1) that occurs close to α = 90◦.

In Fig. 2(b) we show the absolute value of q, Q, mea-
sured as the position of maximum intensity in the scat-
tering ring as a function of α. Fig. 2(c) shows the ring
width, ∆Q, and Fig. 2(d) shows the corresponding in-
tegrated intensity, I. We focus on only one side of the
flattened hemicylinders (40◦ ≤ α ≤ 90◦). This is due
to the symmetry of the data observed on the scattering
ring shown in Fig. 2(a) which corresponds to symmetri-
cal flattened hemicylinders. For a given α, Q is inversely
proportional to the average spacing between the layers
(Q = 2π/d) when the Bragg condition is fulfilled. Both
I and ∆Q depend on the number of smectic layers as-
sociated with α, as we will see hereafter for ∆Q. The
nearly constant values of I, Q, and ∆Q between α = 45◦

and α = 75◦ (Fig. 2) indicate in this α range an al-
most constant number of smectic layers rotating around
their curvature center with constant average spacing d
(Fig. 3(a)). At α ≈ 90◦, associated with the central
planar layers (zone 1 in Fig. 1), Q = 2.003 nm-1 (Fig.
2(b)). Being confined between air and the topological
grain boundary the central layers don’t experience any
modification, neither from elasticity nor from confining
surfaces. We expect the layer spacing of the central lay-
ers to be that of a bulk 8CB smectic, d0. The value of
Q0 of 2.003 nm-1 is associated with d0 = 3.14 nm and

accordingly close to the already published values [7, 8] if
we take into account the experimental precision of maxi-
mum value 0.015 nm−1 that may only affect the absolute
value of Q, not its relative variation. Between α = 45◦

and α = 75◦ (zone 2 in Fig. 1 - Fig. 3) Q is constant,
but smaller, with Q0 −Q = 0.00537± 0.00047 nm−1 (or
(Q0 − Q)/Q = 0.00269 ± 0.00023). The small but clear
decrease of Q implies that the curved layers in most of
the quarter cylinder are dilated compared to the central
planar layers (the layer spacing d = 2π/Q is larger be-
tween α = 45◦ and α = 75◦ than around α ≈ 90◦).
The origin of this dilation is due to the small radius

of curvature imposed on the curved layers of these thin
smectic films. To reduce the high bending energy near
the center of the quarter cylinders, the layers will dilate
to decrease the curvature. In order to properly model
the elastic response it is essential that any elastic free
energy we use must remain valid even for large deforma-
tions of layer spacing and orientation. This necessarily
requires that the expressions for strain and curvature be
extended to account for rotational invariance. In par-
ticular, this leads to a nonlinear relation between strain
and the phonon mode representing the displacement of
the layers [1]. Subsequently, we can develop the free en-
ergy as a series expansion in the strain and the curvature,
beginning at harmonic (i.e., quadratic) order. We could
include anharmonic terms with unknown moduli. We
will see, however, that we can interpret our results quan-
titatively just by using a harmonic theory with known
elastic moduli but with nonlinear strain. Thus we need
not invoke any new elastic coupling constants and rely en-
tirely on symmetry to set the relative coefficients of the
higher order terms. To this end, we have quantitatively
calculated the dilation for each smectic layer through a
minimization of the non-linear elastic energy [9]

F =
B

2

∫
d2x

{
1

4
[(∇ϕ)2 − 1]2 + λ2(∇2ϕ)2

}
(1)

where B is the bulk modulus, λ =
√

K/B is the pen-
etration length (K the layer bend elastic constant) and
ϕ is the phase variable of the smectic density wave, i.e.,
ρ(x) = ρ0 + ρ1 cos[2πϕ(x)/d0]. The first term in (1) ap-
pears explicitly to measure compression/dilation energy
while the second term measures curvature: both are har-
monic in strain and curvature. We can see explicitly how
the nonlinear realization of the symmetry appears in (1):
there are both quadratic and quartic terms in ∇ϕ but
their relative coëfficient must be chosen to set the layer
spacing to d0. It is precisely this requirement that leads
to the celebrated anomalous fluctuations of the smectic
layers [1]. Energy extremals satisfy the (fourth order)
Euler-Lagrange equation

∇ ·
(
∇ϕ

[
(∇ϕ)2 − 1

])
= 2λ2∇2∇2ϕ (2)

Note that when layers are equally spaced, the left-hand
side vanishes since (∇ϕ)2 = 1. However, in the quarter
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FIG. 2. (a) The intensity scattered by smectic layers in the flattened hemicylinders for an incident angle 0.6◦. (b) The position
of intensity maximum, Q as a function of α. (c) The ring width ∆Q. (d) The integrated intensity I.

cylinders, the right-hand side does not vanish. To see
this, we use the radial polar coördinate r in the xz cross
section: ϕ = r and so λ2∇2∇2ϕ = λ2/r3. Because λ
is comparable to the molecular length (i.e., λ ∼ d0), we
see that the curvature term is suppressed by a factor of
(λ/r)2 when we are multiple layers away from center of
curvature. In this regime we can solve (2) perturbatively.
Letting ϕ = r +∆(r) (2) becomes, to linear order in ∆:

(∆′′ +
∆′

r
) =

λ2

r3
(3)

from which it follows that ∆(r) = r0 + λ2/r. The radius

of the Nth layer found via ϕ = Nd0, is for large N ,
rN ≈ r0+d0(N−1/N) where r0 is an unknown parameter
that sets the location of the initial layer. In future work,
we will explore the physics that leads to this small but
measurable offset. Not only is this solution consistent
with the perturbative solution, i.e.,∆′/ϕ′ ∼ λ2/r2, it also

shows that the layer spacing for the Nth layer is dN =
rN+1 − rN = d0(1 +

1
N(N+1) ). Because (d0 − dN )/d0 < 0

the layers expand in response to being bent.
We parameterize the layers of the quarter cylinder by

N1 and N2: N2 is the number of the last layer of largest
curvature radius and N1 the one of the first layer, of the
smallest curvature radius as shown in Fig. 3(a). We
expect that layers with radius smaller than N1d0 will be-
come too costly near the center of curvature due to the
diverging elastic energy. These missing curved layers may
be replaced either by disordered liquid crystal (nematic
or isotropic area), by lengthened central smectic layers
close to the center of curvature, or by both [6, 10]. Us-
ing our perturbative solution, we calculate the average
dilation per layer d =

rN2
−rN1

N2−N1
as

d− d0
d0

=
Q0 −Q

Q
=

1

(N1N2)
(4)

(N2 − N1)d0 is the thickness of the quarter cylinder we
would find were there no curvature energy (i.e., when
λ = 0).

To ascertainN1 andN2, we turn to the data. As stated
earlier, the measured dilation of the curved layers (Q0 −
Q)/Q = 0.00269± 0.00023 (Fig. 2(b)) allows us to draw
a first curve that relates N1 to N2 (in red in Fig. 3(b)).

Alternatively, N1 and N2 can be calculated from the
evolution of ∆Q for a quarter cylinder as a function of
N2 and N1. As expected 1/∆Q linearly depend on the
number of layers N2 −N1, (see End Matter - Fig. 6):

1

∆Q
= c(N1)× (N2 −N1) + d(N1) (5)

where c(N1) and d(N1) have been calculated (see End
Matter - Fig. 6).

We use the experimental measurement of ∆Q =
0.0249± 0.0014 nm−1 (Fig. 2(c)) to obtain a new curve
relating N1 and N2 (black curve in Fig. 3(b)). The in-
tersection of the red and black curves in Fig. 3(b) allows
us to estimate the appropriate range of (N1, N2) values.
They are shown as green dots on Fig. 3(b). We obtain
N1 = 7 with N2 = 52 ± 3 or N1 = 8 with N2 = 49
or N2 = 50. N2 = 52 corresponds to a quarter cylin-
der radius of 163nm. The perpendicular layers that form
all along the substrate have an estimated thickness of
around 20 nm [6]. Adding this 20 nm base layer to the
quarter cylinder yields an overall thickness very close to
the expected 180 nm. These findings confirm the over-
all picture of the above model: the curved layers display
dilation to allow for a slight increase of their radius of cur-
vature. The dilation (dN −d0)/d0 evolves as 1/N(N +1)
with N the number of the considered layer counted from
the curvature center. When the first complete layer is

the 7th (or the 8th), dilations as high as 1.8% can be
reached. Dilation in response to large curvature of the
smectic layers is a general feature: it certainly arises in
focal conics for those smectic layers close to the elliptic
and hyperbolic focal lines. Here, it is experimentally re-
vealed for two reasons: we focus on thin films that allow
us to enhance the signal of the most distorted smectic
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FIG. 3. (a) Slice of quarter cylinder between α = 45◦ and
α = 75◦ with N1 and N2 shown. For the sake of clarity, only
29 layers are shown (b) Curves of N2 as a function of N1. In
red it corresponds to (4) with the influence of the uncertainty
in (Q − Q0) also shown by the red shaded zone. In black it
corresponds to (5) with the influence of the uncertainty in
∆Q also shown by the black shaded zone. The green dots
correspond to the corresponding possible (N1, N2) values.

layers and, on the other hand, the high Q resolution al-
lowing for measurements of average interlayer spacings
with relative variations of only 0.25%. This experimen-
tal demonstration that non-negligible dilation occurs for
the most distorted smectic layers is finally one of the
rare experimental demonstrations of the non-linear elas-
ticity of smectic materials at length scales as small as
ten times the molecular size. The large bending energy
of the smectic curved layers not only induces dilation
of these curved layers but also impacts the whole struc-
ture of these thin distorted smectic films. We expect
the central layers of the hemicylinder to be flat in order
to induce the smallest possible surface energy. Accord-
ingly the intensity is strongly increased around α = 90◦

(Fig. 2(d) - 4(b)). However, if we focus precisely on the
upper part of the scattering ring, we observe two sym-
metric maxima at α = 89◦ and α = 91◦ (Fig. 4(b)).
They demonstrate that the central smectic layers are not
strictly flat: two symmetrical zones made of straight but

FIG. 4. (a) Internal structure of the hemicylinder with
the curved smectic layers at the edges of the hemicylinder,
the central inclined and straight smectic layers, the central
chevron of width W . For the sake of clarity, only 23 layers
are shown. The junction between the curved layers at the
edges and the central ones is shown by the yellow inclined
line. (b) zoom on the top of the scattering ring for α values
close to 90◦. An incident angle of 0.61◦ has been used to al-
low the substrate reflectivity at exactly α = 90◦ to be outside
the scattering ring. Along the scattering ring only two peaks
appear at 89◦ and 91◦ thus separated by ∆α = 2◦.

tilted smectic layers are formed that lead to a central
chevron of width W that joins the straight and tilted
smectic layers with a dihedral angle of ∆α = 2◦ (Fig.
4(a)). The mismatch in the spacing between the central
planar layers and the dilated curved layers in the quar-
ter cylinder forces an angle between their two normals.
However, a tilted slightly curved boundary between the
two regions can accommodate strictly flat planar lay-
ers in the central region. So why do the central layers
tilt when this increases the surface energy between the
mesogens and the air? It can be understood through
the observation that a ∆α/2 tilt of the central layers in-
duces a reduction in the arclength of the curved layers
in the quarter cylinder and a concomitant reduction in
the bend and compression energy. This is, of course, bal-
anced against the extra area of the tilted central region.
If we excise a ∆α/2 wedge the saved bending energy is
Eb = − 1

2K ln(N2/N1)∆α/2 while the corresponding di-
lation energy is two orders of magnitude smaller and ne-
glected. The bent region in the center has a low energy,
Ecentral = 2(K/λ)[tan(∆α/2)− (∆α/2))] cos(∆α/2) [11].
It is also two orders of magnitude smaller than the bend-
ing energy of the quarter cylinder region. Taking into
account the known width, W = λ/(∆α/2), of a cen-
tral chevron of small angle ∆α (Fig. 4(a)) [12] the in-
creased surface energy due to the tilted central layers is
Es ≈ γ( 12L(∆α/2)2− 1

6λ(∆α/2)), where γ is the 8CB sur-
face tension and L is the central lateral size of the hemi-
cylinders (Fig. 4(a)). The minimization of the remaining
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two energy terms leads to ∆α/2 ∼ K ln(N2/N1)
(2Lγ) + (λ/6L).

With the experimental value L = 185 nm [6], the surface
tension of 8CB γ = 30 mJ/m2 [13, 14], N1 = 7, N2 = 52
we find that for ∆α/2 = 1◦ K = 8.09×10−11 N: the smec-
tic 8CB elastic constants have been measured with values
varying between K = 5.2×10−12 N and K = 1.8×10−10

N [15–17] and thus our estimate is compatible with prior
art. We thus conclude that the observed tilt is compatible
with the known properties of 8CB and that it is driven
by the necessity of decreasing the bending energy of the
curved smectic layers.

In conclusion, by combining synchrotron-based X-ray
diffraction with a theoretical energetic model we demon-
strate rare consequences of the non-linear character of the
smectic elastic energy. In order to reduce the bending en-
ergy dilation is induced in smectic layers: (dN −d0)/d0 ∼
1/N(N + 1), where N labels the smectic layer counted
from the curvature center. It is shown by studying thin
smectic 8CB films in which the distortion is managed
by antagonistic anchoring at the two interfaces (planar
unidirectional and homeotropic). However, this is a gen-
eral behavior that does not depend on the specific elastic
parameters of the material and cannot be described by
classical Landau-de Gennes elasticity. It should exist for
all curved smectic layers close to their curvature center.
For example, this will occur near the focal lines in a fo-
cal conic and will occur in any material with a lamel-
lar ground state. In the arrays of flattened hemicylin-
ders that appear in these distorted 8CB films we have
shown quantitative dilations as large as 1.8%. In fact,
the bending energy associated with curvature radii 7-50
times the layer spacing can successfully compete with the
surface energy of a large central region, leading to a non-
negligible tilt of the straight smectic layers attached to
the curved layers in the flattened hemicylinders. We also
show that combined synchrotron-based X-ray diffraction
and energetic consideration allow to precisely determine
(within 10%) the overall structure of these thin distorted
smectic films despite the corresponding small thickness
of 180nm.

End Matter

Sample preparation
Smectic films with an average thickness of 180nm
were prepared by depositing smectic 4-n-octyl-4’-
cyanobiphenyl (8CB, from Sigma Aldrich) onto rubbed
polyvinyl alcohol (PVA, from Sigma Aldrich). The PVA
layer, approximately 10nm thick, was prepared by spin-
coating a 100 µL droplet of a 0.5 wt% aqueous solution
of PVA, with an acceleration of 400 rpm/s and a speed
of 3000 rpm for 30 seconds on glass slides previously
cleaned with precision (thickness 130 µm). Spin-coating
was also employed for the deposition of 8CB once the
PVA layer had been rubbed with a rubbing machine us-
ing a roller covered by velvet tissue. The 8CB was dis-

FIG. 5. X-ray diffraction setup, where the smectic stripes are
almost parallel to the beam showing the ring-like scattered
signal on the Eiger detector.

solved in toluene (0.2 M). Subsequently, a 50µL droplet
of this solution was deposited onto the rubbed PVA layer
and spin-coated at a speed of 3000 rpm with an acceler-
ation ranging between 500 rpm/s and 1000 rpm/s for
30 seconds. The average thickness has been determined
through a careful mapping of the overall sample by op-
tical microscopy. Between parallel polarizers, the local
colors are associated with optical phenomena induced
by the interfaces of the LC film. The film thickness is
thus extracted through the analysis of the color bands as
seen through polarized microscopy. We have established
a corresponding color chart by using an average optical
index n = (ne + 2no)/3, with 8CB extraordinary index
ne = 1.67 and ordinary index no = 1.52.
X-ray scattering measurements
The X-ray diffraction measurements were performed at
the SIXS beamline of the SOLEIL synchrotron facility.
The photon energy was fixed at 18.44 keV, and the X-ray
beam size was set at 300 µm × 100 µm. The scattering
signal was collected on a 2D Eiger 1M hybrid pixel de-
tector (DECTRIS), which is located 1700 mm from the
sample. The experimental setup is described in Fig. 5,
where the observed stripes from optical microscopy (Fig.
1) are almost parallel to the incident beam. The X-ray
beam probes an area with dimensions of 300 µm wide
and 18 mm long, matching the entire sample length. For
a given α the scattering ring was fit to a Gaussian curve
allowing us to extract Q, the position of maximum in-
tensity in the scattering ring, ∆Q, the full width at half
maximum (FWHM) as well as I the integrated inten-
sity (Fig. 2). Between α = 45◦ and α = 75◦, we have
measured the average Q with its standard deviation and
the average ∆Q with its standard deviation leading to
Q = 1.99763 ± 0.00047 nm-1 and ∆Q = 0.0249 ± 0.0014
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FIG. 6. Evolution of the inverse of the ∆Q as function of N2−
N1 for different values of N1 for a perfect quarter cylinder.

nm-1

Cylindrical calculation of a quarter cylinder
We have calculated the scattering from a complete quar-
ter cylinder for a given wave-vector transfer q of orienta-
tion α and of absolute value Q :

A(Q, r, α) = L

∫ π/2

0

dβ

∫ ∞

0

rdr

N2∑
N1

eiQr cos (α−β)δ(r−nd)

(6)
We have shown that A(Q, r, α) does not depend on α, as
expected, and only depends on the value of N1 and N2.
To calculate the dependency of ∆Q as a function of N1

and N2, we first calculated the intensity I =| A |2. For
given values of N1 and N2 we have drawn the variation
of I as a function of Q. After fitting the calculated curve
with a Gaussian curve, we extracted ∆Q. This calcula-
tion was made for arbitrary N1 and N2 (Fig. 6), and we
find that ∆Q can be written as in (5), where{

c(N1) = −3.7× 10−5N2
1 + 3× 10−3N1 + 0.738

d(N1) = 0.828N1 + 0.396
(7)

JdD. N. thanks the French embassy in Rwanda for hav-
ing provided the PhD grant. R.D.K. thanks the Institute
for Theoretical Physics at Utrecht University for their
hospitality when this work was initiated. R.D.K. was
supported by a Simons Investigator Grant from the Si-
mons Foundation.

∗ emmanuelle.lacaze@insp.jussieu.fr
[1] G. Grinstein and R. A. Pelcovits, Nonlinear elastic theory

of smectic liquid crystals, Phys. Rev. A 26, 915 (1982).
[2] T. Ishikawa and O. D. Lavrentovich, Dislocation profile in

cholesteric finger texture, Phys. Rev. E 60, R5037 (1999).
[3] E. A. Brener and V. I. Marchenko, Nonlinear theory of

dislocations in smectic crystals: An exact solution, Phys.
Rev. E 59, R4752 (1999).

[4] C. D. Santangelo and R. D. Kamien, Bogomol’nyi,
prasad, and sommerfield configurations in smectics,
Phys. Rev. Lett. 91, 045506 (2003).

[5] J.-P. Michel, E. Lacaze, M. Alba, M. De Boissieu,
M. Gailhanou, and M. Goldmann, Optical gratings
formed in thin smectic films frustrated on a single crys-
talline substrate, Phys. Rev. E 70, 011709 (2004).

[6] D. Coursault, B. Zappone, A. Coati, A. Boulaoued,
L. Pelliser, D. Limagne, N. Boudet, B. H. Ibrahim,
A. De Martino, M. Alba, et al., Self-organized arrays
of dislocations in thin smectic liquid crystal films, Soft
Matter 12, 678 (2016).

[7] A. Leadbetter, J. Frost, J. Gaughan, G. Gray, and
A. Mosley, The structure of smectic A phases of com-
pounds with cyano end groups, J. Phys. (Paris) 40, 375
(1979).

[8] N. A. Clark, T. Bellini, R. M. Malzbender, B. N. Thomas,
A. G. Rappaport, C. D. Muzny, D. W. Schaefer, and
L. Hrubesh, X-ray scattering study of smectic ordering
in a silica aerogel, Phys. Rev. Lett. 71, 3505 (1993).

[9] P. Aviles and Y. Giga, A mathematical problem related
to the physical theory of liquid crystal configurations,
Proc. Centre Math. Appl. 1987, 1 (1987).

[10] J.-P. Michel, E. Lacaze, M. Goldmann, M. Gailhanou,
M. De Boissieu, and M. Alba, Structure of smectic defect
cores: X-ray study of 8cb liquid crystal ultrathin films,
Phys. Rev. Lett. 96, 027803 (2006).

[11] C. Blanc and M. Kleman, Curvature walls and focal conic
domains in a lyotropic lamellar phase, Eur. Phys. J. B 10,
53 (1999).

[12] P. G. De Gennes and J. Prost, The Physics of Liquid
Crystals (Oxford Science Publications, 1993).

[13] M. Tintaru, R. Moldovan, T. Beica, and S. Frunza, Sur-
face tension of some liquid crystals in the cyanobiphenyl
series, Liq. Cryst. 28, 793 (2001).

[14] C. Schuring, H. Thieme and R. Stannarius, Surface
tensions of smectic liquid crystals, Liq. Cryst. 28, 241
(2001).

[15] M. J. Bradshaw and E. P. Raynes, The frank constants
of some nematic liquid crystals, J. Phys. (Paris) 46, 1513
(1985).

[16] M. Benzekri, T. Claverie, J. Marcerou, and J. Rouillon,
Nonvanishing of the layer compressional elastic constant
at the smetic-a-to-nematic phase transition: A conse-
quence of landau-peierls instability?, Phys. Rev. Lett. 68,
2480 (1992).

[17] A. Zywocinski, F. Picano, P. Oswald, and J.-C.
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