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Abstract. The Inverse Folding problem involves identifying RNA sequences that adopt a target struc-
ture with respect to free-energy minimization, i.e. preferential to all alternative structures. The problem
has historically been regarded as challenging, largely due to its proven NP-completeness of an extended
version where the base pair maximization energy model is used. In contrast, it has recently been shown
that a large subset called m-separable structures, notably including those comprising helices of length
3+, can be solved in linear-time within the same energy model. This permits not only the identification
of a single solution, but also the characterization of a language of solutions.
In this work, we seek to describe the “hardness” of Inverse Folding, bridging (at least heuristically) the
gap between a simplified energy model and a more realistic Turner energy model. We used LinearBPDesign
to generate seed sequences for RNAinverse, thereby improving the design process in a Turner energy
model. To this end, we extended LinearBPDesign to accommodate biseparability and to handle non-
or high modulo separable structures by minimalist addition of base pairs.
Our study suggests that seeds generated by LinearBPDesign capture long-range interactions, thereby
improving the performance of RNAinverse compared to seed focusing on refining the energy model
itself. Most surprisingly, a significant number of LinearBPDesign seeds uniquely fold into the target
structure in the Turner model, especially when helices are at least of length 2. This observation suggests
that the “hardness” of design may arise from the intrinsic properties of the structures themselves.

Keywords: RNA design · RNA secondary structure · Dynamic programming · Sampling.
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1 Introduction

A recurrent problem in RNA structural design, called inverse folding, consists in finding RNA sequences
that preferentially fold into one (or several) user-provided structures. Targeting a certain structure is indeed
an objective of interest as the structure of biologically-active non-coding RNAs is often seen as an impor-
tant contributor to its function [4]. Considering the wealth of biological functions (catalytic, regulatory. . . )
performed by RNA, including but not limited to gene expression, splicing and epigenetic modifications [19],
rational design of synthetic and diverse RNA appears more and more of high importance in order to unlock
applications in synthetic biology and medicine [9,5,11,26].

The first method proposed for inverse folding, named RNAinverse [8], was developed in 1994 and explores
the sequence space by applying mutations to an initial sequence. This heuristic strategy has been iterated
on and improved numerous times over the last years with notable examples including RNA-SSD [1] and
FRNAkenstein [12]. Newer methods such as INCARNAFBINV [16] or RNAPOND [25] combine the negative and
positive design paradigm to find an optimal solution. NEMO [14] integrates domain knowledge into a Nested
Monte Carlo Search in order to achieve results similar to those of expert human designers. With its score of
94 out of 100, NEMO currently outperforms all other design tools on the EterRNA 100 benchmark [10]. Finally,
solutions relying on machine learning have been increasingly developed in recent years. SentRNA [21] employs
a fully connected neural network, trained on player-submitted solutions to the EterRNA game in combination
with an adaptive walk to further refine the results. In comparison, libLEARNA [18] utilizes automated deep
reinforcement learning to train a policy network.

An increased level of attention has been dedicated to the theoretical and computational properties of
RNA inverse folding. Due to the intricacies of the Turner nearest-neighbor free-energy model [22], very
little is currently known about inverse folding in realistic energy models. Yao et al. [23] characterized an
exhaustive set of local undesignable motifs through brute force enumeration, and revealed a drastic reduction
of the set of designable secondary structures. Zhou et al. [28] extended the collection by larger undesignable
structures, instances of which were detected in a popular RNA inverse benchmarks [10]. Inverse folding
under a simplified BP energy models (aka BP inverse folding), in which independent additive contributions of
individual base pairs are assumed, enjoy more comprehensive theoretical studies. Bonnet et al. [2] established
the NP-hardness of a mildly constrained version of inverse folding in a BP energy model. A tree-coloring
perspective introduced by Hales et al. [6] led to a characterization of easy classes of instances for inverse
folding. Surprisingly, this framework was instantiated by Boury et al. [3] into a linear-time solution for all
secondary structures consisting of helices having 3+ BPs. The underlying DP algorithm could be extended
into a uniform random generation of solutions for BP inverse folding, and a sizeable portion of solutions were
shown to represent promising solutions for inverse foldifng in the Turner energy model.

The existence of a linear-time algorithm for sampling sequences, guaranteed to be solutions to inverse
folding in the BP model, motivates consideration of exact BP designs as seeds within classic local optimization
schemes. We focus on RNAinverse due to both its historical value, relatively straightforward optimization
scheme, and surprising resilience in the context of a large array of competitors. Firstly, we wish to assess
the performance of the exact design, in BP energy models, as a candidate solution in the Turner model.
Of particular interest is the number of single-point mutations needed to convert an exact BP design into a
solution/design with respect to the Turner model. Finally, a realistic design scenario requires the generation
of (large) sets of diverse solutions, to capture further constraints through post hoc filtering, motivating the
consideration of generalized strategies for sequence generation.

Our main contributions and conclusions include:

1. Exact design in simplified models systematically outperforms naive seeding strategies, leading to ultimate
solutions that are more stable and substantially diverse (see Sec. 3.1 and 3.2);

2. The introduction of the concept of biseparability (see Sec. 2.2), strictly generalizing the concept of
separability [3] to increase the diversity of produced solutions (see Sec. 3.2);

3. A uniform random generation algorithm for biseparated sequences (see Sec. 2.2), guaranteed to represent
solutions to BP inverse folding, running in linear-time for a large class of structures, notably including
secondary structures consisting of helices having 3+ BPs;

4. We observe that an excessive focus on a limited collection of benchmarks, consisting in part of pathological
structures, results in the promotion of method that poorly generalize (see Sec. 3.4). More extensive
validation efforts are needed to ensure the continued development of general methodologies.
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Fig. 1: Secondary structure as a tree and levels associated with (bi)separated sequences. (Left)
The tree represents base pairs as (internal) nodes, and unpaired positions as leaves. (Center) Example of a
proper 2-separated sequence (⇒ B design). The levels of unpaired (A) positions are even, while the levels
of paired AU/UA positions are odd, implying 2-separability. (Right) Example of a proper (2, 2)-biseparated
sequence (⇒ B design). Two sets of levels (red for AU/UA, and green for GC/CG) are simultaneously handled
relatively to A and C, and the absence of overlap ensures unicity of the MFE fold, while allowing the
assignment of a mix of A and C to unpaired regions.

2 Methods

In this work we consider the Inverse Folding problem, the most typical instance of negative RNA design.

Definition 1 (Inverse Folding).
Input: A nested secondary structure S of length n.
Output: RNA sequence ω with |ω| = n, such that ∀S′ ̸= S, E(ω, S) < E(ω, S′) where E(ω, S) is the free-energy
of ω folding into S within some energy model of interest.

In other words, the Inverse Folding problem not only requires the target structure to be the minimum
free-energy (MFE) conformation of ω, but also requires the absence of competing folds of equal stability. It
is only in that case that we say that ω is a design for S. In this work, we study Inverse Folding in two
different energy models:

1. The base pair maximization energy model B, sometimes referred to as the Nussinov-Jacobson energy
model [13], where the energy of a structure is simply defined as minus its number of base pairs;

2. The – more realistic – Turner energy model T , where the energy of a secondary structure is defined as a
sum of independent contributions associated with loops occurring in the structure. A precise definition
of loops is not needed here, and thus omitted in the interest of space, but we refer the reader to Turner
and Mathews [22] for details.

To lift any ambiguity, we say a structure S is B-designable (resp. T -designable) if there exists a sequence ω
which is a B-design (resp. T -design), i.e. a solution of inverse folding with respect to the model B (resp. T ).

2.1 Classic separability and linear-time design within a BP energy model

We first recall key concepts underpinning the LinearBPDesign method, with a focus on m-separability [3],
reframed in terms of nucleotide assignments instead of the colors used by Hales et al [6]. We abstract a
(target) secondary structure of length n as a tree T = (V,E) (Fig. 1 left) where each node either represents a
base pair (i, j) (internal nodes) or an unpaired position k (leaves). A loop consists in the union of an internal
node (i.e. a base pair) and its (direct) children. For a sequence ω, the content Ci,j of a loop, rooted at a base
pair (i, j), is defined as the list of base pairs assigned to the children of (i, j), augmented with the inverted
content of (i, j), i.e. Ci,j := [ωj .ωi] · [ωi′ .ωj′ | (i′, j′) BP children of (i, j)].

Definition 2 (Proper sequence). A sequence ω is proper for a secondary structure T = (V,E) when, for
each node (i, j) ∈ V , the content Ψ := Ci,j of the loop rooted at (i, j) obeys:

|Ψ |GC ≤ 1, |Ψ |CG ≤ 1, |Ψ |CG · |Ψ |GC = 0, |Ψ |AU ≤ 1, |Ψ |UA ≤ 1 and |Ψ |AU · |Ψ |UA = 0,
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where |Ψ |XY denotes the number of occurrences of XY in the list Ψ .

In other words, a sequence is proper when its loop assignments forbid local alternatives (Fig. 3). Being
proper is thus a necessary condition for a sequence to represent a B-design. Meanwhile, the (modulo) m-
separated condition represents a sufficient condition to rule out the existence of global alternatives (i.e.
long-range rearrangment) to the target T . It crucially relies on the concept of level which ensures G/C
imbalance, and thus a strict suboptimality of alternatives, upon forming an alternative base pair.

Namely, given a sequence ω compatible with a structure T , the level L : V (T ) → Z of a node v is
L(v) := |pv|GC − |pv|CG where pv denotes the base pairs found on the path from parent(v) to the root of
T . Denote by LAU|UA(T ;ω) the set of levels of {AU,UA} base pairs, and by LA(T ;ω) those of A-assigned
unpaired positions.

Definition 3 ((Modulo) m-separated sequence). A sequence ω is m-separated for a structure T , if
and only if ω is proper, features A unpaired positions, and {l mod m | l ∈ LAU|UA(T ;ω)} ∩ {l′ mod m | l′ ∈
LA(T ;ω)} = ∅.

A structure T is m-separable if it admits an m-separated sequence. An example of a 2-separated sequence
can be seen in Figure 1.

Finally, Boury et al [3] shows that it is sufficient for a sequence to be m-separated to represent a B-design,
i.e. to be a solution to Inverse Folding with respect to the B energy model thus avoiding all alternative
structures made of AU, GC and also GU base pairs. Moreover, finding a proper m-separated sequence for a
structure over n nucleotides (if it exists), can solved in O(nm 2m) time. The authors finally show that any
designable structure featuring helices of length at least 3 is 2-separable, thus the Inverse Folding in B
can be solved in linear-time for this large subset of reasonable instances.

2.2 Biseparated sequences: enriching the set of exact solutions for the BP-based model

An obvious limitation of m-separated sequences as defined above is that their unpaired positions are always
set to A, yielding uncanny sequences of limited diversity. To work around the issue, we introduce the concept
of biseparability, whereby both A and C are allowed in the unpaired regions. In addition to the G/C imbalance
exploited by classic separability, biseparability captures A/U imbalance. It ensures that alternative G/C base
pairs remain suboptimal when involving the C nucleotides intended to remain unpaired in T . Figure 1 shows
an example of a (2,2)-biseparated sequence.

Concretely, we will now consider two types of levels: the A-level, denoted by LA : V → Z, refers to the
classic level L(v) introduced by Hales et al [6] and featured in the previous section; The C-level LC(v) of a
node T is similarly defined as:

LC(v) := |p|AU − |p|UA (and LA(v) := L(v))

where pv again denotes the base pairs found on the path from parent(v) to the root of T . For a given
sequence ω, we denote by LCG|GC(T ;ω) the set of C-levels of {CG,GC} base pairs, and by LC(T ;ω) those of
C-assigned unpaired positions. These definitions enable the introduction of the concept of (modulo) (mA,mC)-
biseparability relative to A and C.

Definition 4 ((Modulo) (mA,mC)-biseparated sequences). A sequence ω is (mA,mC)-biseparated for
a target secondary structure T , if an only if:

1. ω is proper;
2. Levels of AU/UA and A do not overlap: {l mod mA | l ∈ LAU|UA(T ;ω)}∩{l′ mod mA | l′ ∈ LA(T ;ω)} = ∅;
3. Levels of CG/GC and C do not overlap: {l mod mC | l ∈ LCG|GC(T ;ω)}∩{l′ mod mC | l′ ∈ LC(T ;ω)} = ∅.

Deciding biseparability in general is NP-hard as (2n, 1)-biseparability corresponds exactly to separability,
which was proven NP-hard [3]. Similarly, deciding the existence of a (mA,mC)-biseparated sequence remains
NP-hard in general, as it coincides with biseparability in the worst case (by considering mA = 2n and
mC = 2n). Our intent here is thus to explore small modular values of mA and mC.

Fortunately, even moderate values of mA and mC already capture large subsets of structures. For instance,
it can be observed that any designable structure T with helices of size 3 or more admits a (2,1)-biseparated
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sequence. Indeed, T then admits a sequence ω which is proper (⇒ Cond. 1) and 2-separated (⇒ Cond. 2),
and additionally features A in each of its unpaired positions. It follows that LC(T ;ω) = ∅, implying the
validity of Cond. 3, and we conclude that ω is a (2,1)-biseparated sequence.

Theorem 1. Given a structure T , any sequence ω compatible with T and biseparated is a B-design.

The proof is similar to that of separability [6], with minor modifications (see Sec. A for details).
A striking feature of (mA,mC)-biseparated sequences is that, for fixed values of mA and mC, they can

be found and uniformly sampled in time only linear in n, the size of the target. The following dynamic pro-
gramming scheme counts the set of (mA,mC)-biseparated sequences for a target structure T , given admissible
modular levels ξLA ⊂ [1,mA] and ξLC ⊂ [1,mC] respectively for unpaired As and Cs:

p(ξLA ,ξLC )

v→µ,(ℓA,ℓC)
=



1(l∈ξLA )∧(µ=A) + 1(l∈ξLC )∧(µ=C) if v is leaf
0 if ℓ ∈ ξLA and µ ∈ {AU,UA}
0 if ℓ ∈ ξLC and µ ∈ {GC,CG}
1 if children(v) = ∅∑
µ′ proper assignment

children(v)→Σ2∪{A,C}

∏
vi∈children(v)

p(ξLA ,ξLC )

vi→µ′(vi),(ℓ′A,ℓ
′
C)

otherwise.

where v = (i, j) and v = i correspond to a node or leaf of T , with prior nucleotide(s) assignment denoted by
µ, ℓA and ℓC are the current modular A and C levels, and ℓ′A and ℓ′C the updated modular levels of A and C
following the choice of µ′: ℓ′C := ℓC + 1µ′(v′)=AU − 1µ′(v′)=UA mod mA and symmetrically for ℓ′A. The overall

number of separated sequences is then ultimately found in p(ξLA , ξLC) := p(ξLA ,ξLC )

Root(T )→ε,(0,0).
The correctness of the dynamic programming scheme can be established through a straightforward adap-

tation of the proof of m-separated sequences [3]. Moreover, for a fixed (ξLA , ξLC) pair, it can be computed in
complexity which is linear in n the number of nucleotides, mA and mC since: i) µ may only take 8 possible
values (single or pair of nucleotides); ii) ℓA and ℓC respectively take values in [0,mA) and [0,mC); iii) In the
B model, a target structure featuring a loop having >4 BPs does not admit a solution to inverse folding (⇐
Proper condition is necessary for the existence of designs); iv) Apart from the open chain, only one type of
A or C is allowed in the unpaired positions of the loop, otherwise a conflict would arise with the content of
one of the base pairs of the multiloop. It follows from (iii) and (iv) that the sum over all assignments can
be computed in constant time. By iterating over the 2mA+mC possible values of (ξLA , ξLC), and checking if
p(ξLA , ξLC) ̸= 0, one can determine the existence of modulo (mA, mC)-separated sequences.

Theorem 2. The existence of (mA,mC)-biseparated sequences can be decided in O(nmA mC 2mA+mC).

Meanwhile, a uniform generation of x biseparated sequences can be done in expected time O(xn 2mA+mC)
following a precomputation in O(nmA mC 2mA+mC), as described in Boury et al [3]. In a nutshell, one chooses
a random level assignment (ξLA , ξLC) with probability proportional to its number of sequences, and a rejection
step is used to correct for the compatibility of certain sequences with at most O(2mA+mC) level assignments.

2.3 Minimal augmentation of non-separable secondary structures

Certain secondary structures are known to be non-separable with respect to the B energy model, implying
the absence of m-separated proper sequences for any value of m. For generality, we should be able to handle
these structures, so we chose to minimally modify the input structure. Indeed, it was shown by Halès et al. [6]
that any structure with suitable loop constraints can become 2-separable by adding at most one base pair
per helix. We revisit this idea in a more general setting, augmenting the input structure by at most k base
pairs, with ≤ H additions per helix. Doing that, it is clear that we are not solving the initial problem, but
at least we can get (and sample) exact sequences from slightly augmented structures, that lie in a controlled
“neighborhood" from the input structure. The value of k should be as minimal as possible. In our case, we
mostly work with H = 1 adding at most 1 base pair per helix as structures with minimally extended helices
are likely to be functionally equivalent to the input instance. Figure 2 illustrates the process of structure
augmentation with k = 1 and H = 1.
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Fig. 2: Non separable structure augmentation with H = 1 and k = 1. At most H = 1 base pair (gray)
could be added on each helix in the input structure. The value of k decreases by 1 whenever one base pair
is added until the value reaches 0. The added base pair i (red) is selected with a probability proportional to
the precomputed assignment counts αi with dynamic programming. Then a sequence is sampled uniformly
for the final augmented structure.

In terms of method, we simply tweak the dynamic programming. When assigned, each node v at the end
of a helix can have a new behavior: it can do recursion on itself, artificially adding, at the bottom of v, a
node v′ that should also be assigned (thus giving v′ a feasible proper assignment and incrementing the level
as with v assigned). This auto-recursive call can be performed at most H times, effectively exploring the
feasible augmented structures.

Note that for simplicity, the dynamic programming scheme is written for the m-separable case only, but
can easily be adapted for the (mA, mC)-biseparable case. Notations are the same as in Section 2.2 with k
and H as defined above, and h represents the number of base pairs added on top of the “current" node:

pξL,H
v→µ,ℓ,(k,h) =



1l∈ξL if v is leaf
pξL,H
v→µ,ℓ,(k,0) +

∑
µ′ proper assignment

for 1 child

pξL,H
v→µ′(v),ℓ′,(k−1,h+1) if k > 0, h < H and LH(v)

0 if ℓ ∈ ξL and µ ∈ {AU,UA}
1 if children(v) = ∅∑
µ′ proper assignment
children(v)→Σ2∪{∅}

∏
vi∈children(v)

∏
∑

ki=k
ki=0 if vi is leaf

pξL,H
vi→µ′(vi),ℓ′,(ki,0)

otherwise.

where ℓ′ corresponds to the next level after 1 assigned node as previously and LH is a function that returns
True on input v iff v is a last node of a helix (e.g. has a leaf as a child or at least 2 base pairs children).

The complexity remains mainly the same as m-separability or (mA, mC)-separability (Sec. 2) with minor
overheads: i) O(H) as every state can be duplicated H times in the worst case with ≤ H auto-recursive calls;
ii) O(k3) to distribute k among the ≤ 3 helices stemming from a multiloop. Since both of k and H remain
limited to stay close to the intended target, the overall overhead remains generally inconsequential.

2.4 Heuristic extension for Turner energy model (T -designability)

Multiloops. Even if large multiloops are forbidden in B, structures in T can contain arbitrary large multiloops
still remaining designable as the proper condition mainly forbids local rearrangement inside multiloops
(Fig. 3). Thus we use the “unproper” strategy [3] that retains the condition on m-separability excluding the
proper condition. The m-separability condition may be more useful in T as it catches “long-range interactions”
by forbidding rerootings of any base pairs with all, even far, unpaired positions. Handling of multiloops of any
size can be done without impacting performances, through a slight modification of the dynamic programming
scheme. It involves auto-recursion as used in Section 2.3, with details found in Section F.
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Fig. 3: Structures containing forbidden motifs in B and alternatives over given (unproper) se-
quences (A) The structure contains an undesignable motif (m3o). The Turner energy of the alternative is
marginally worse than the target (-1.0 kcal.mol−1 vs -1.2 kcal.mol−1). The sequence is not m-(bi)separated
as AU and A occur at the same level; (B) For this sequence, the alternative is not competitive in B. (C) The
structure contains an m5 forbidden multiloop. Frequently, alternatives for the B model contain base pairs
that are “isolated”, and end up being uncompetitive in the T model.

Implementation and interfacing with RNAinverse. Given that a B-design may not be a T -design, we have
combined the (bi)separated sequence generation (i.e. extended LinearBPDesign) with RNAinverse to design
secondary structures in the Turner energy model. Given a target structure, a m-separated or (mA,mC)-
biseparated B-design is uniformly sampled with m,mA,mC ≤ M and provided to RNAinverse as a starting
seed sequence in the following three steps: i) The minimum modulo M is chosen such that an adequate
number of B-designs (1,000 by default) is included in the sampling pool. For biseparability, we enforce M to
be at least 3 to ensure that there is a sufficient number of B-designs with a mix of A and C in the unpaired
region; ii) If a B-undesignable multiloop presents, “unproper” strategy is used, and only in this case; iii) If M
is “too large” or cannot be determined (non-separable structure), we use structure augmentation (Sec. 2.3)
to decrease the modulo. However, in practice, this is rarely the case for a design in the T model (see Sec. B).

From the seed sequence, RNAinverse performs an adaptive random walk in the sequence space. At each
step, a position is randomly selected to be mutated as well as the paired partner (if one exists). The new
sequence is accepted if the resulting base pair distance between the MFE structure and the target decreases.
RNAinverse begins by targeting the small substructures and then progresses to the entire target structure
to reduce the required computational time. Each walk stops when the target is reached, i.e. distance equals
0, or there is no more mutation that can be introduced to improve the distance. For the Inverse Folding
problem, a negative flag should be used (option -R-k). RNAinverse restarts the walk from a new different
seed sequence until k T -designs are found. We slightly adjust RNAinverse for this study such that the target
is the only MFE structure of the returned T -design.

Other seed sequence generations. We also considered two other seed generation strategies to investigate the
impact of LinearBPDesign exact seed on RNAinverse:

1. Uniform sampling: Default option of RNAinverse. A seed sequence is uniformly chosen from the entire
sequence space. Each paired position takes nucleotides from six possible canonical base pairs;

2. Boltzmann sampling: Usually used in positive design. A seed sequence is sampled from a Boltzmann
distribution based on the folding free-energy to the target [15]. We consider here a special base pair
energy model from [7], where the energy contribution of each base pair depends on the nucleotides
(prioritized to CG and GC) and on its position in the helix (stacked or helix-end).

We further limited all unpaired positions to be A for a better comparison with separated seeds.

3 Results

3.1 LinearBPDesign directly solves most structures with helices of length 2+

The first query is whether B-designs generated through LinearBPDesign are also T -designs, particularly for
structures comprising helix length of 3+, given they are B-designable. For minimum helix lengths of 1 and 2,
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Fig. 4: Histogram of structure count in the function of T -design number. From top to bottom, each
set contains 1,000 structures of a minimum helix length of 1, 2, and 3+ base pairs, respectively. For each
structure, 5,000 sequences are sampled for each seed strategy, biseparability (blue), separability (orange),
and Boltzmann sampling (green) without further RNAinverse optimization. At most one T -design is found
among 5,000 uniform sampled sequences for more than 2/3 of structures, the result is then omitted from the
plot. The bin width is 100 except for the first bin, which represents the amount of unsolved structures.

the probability of a randomly and uniformly sampled structure being T -designable decreases exponentially
due to the existence of forbidden motifs with isolated base pairs or stacks [23]. To this end, three sets of
1,000 secondary structures of size 150 nts were created for different minimum helix lengths in two ways. The
first set comprises 1,000 randomly and uniformly generated structures containing only helices of length 3+.
The second and the third sets are composed of each 1,000 MFE structures of random sequences computed
with RNAfold, for minimum helix length of 1 and 2 base pairs respectively. Sequences with more than one
MFE structure are excluded from the samples.

B-designable structures are often T -designable. For each structure, LinearBPDesign is employed
with an appropriate minimum modulo M in order to uniformly sample 5,000 biseparated sequences. It is also
possible that some sequences may be redundant as a result of the sampling process. However, the proportion
of duplicates is relatively low, with an average of 0.423 duplicates per structure. As illustrated in Figure 4,
at least one T -design is present among the 5,000 sampled biseparated B-designs for more than 95.8% of
secondary structures containing only helices of length 2+. Conversely, 421 out of 1,000 structures with an
isolated base pair remain unsolved.

Separated B-designs are mostly T -designs for MFE structures. Nevertheless, only 20% of the
identified T -designs contain C in at least one unpaired position. Indeed, focusing exclusively on separated
B-designs markedly increases the number of T -designs for the MFE structures. It is noteworthy that for 601
MFE structures with a minimum helix length of 2, over 90% of sampled separated B-designs are also T -
designs. The discrepancy between these results and those on uniformly sampled structures indicates that the
language employed in LinearBPDesign B-designs may be surprisingly capable of capturing the characteristics
inherent to the Turner energy model.

(Bi)Separability overlooks dangling energy. We examined the sequences sampled from a Boltzmann
distribution, with the unpaired positions restricted to A. The outcomes are comparable to those of biseparated
sequences, exhibiting, in general, a diminished degree of success, except for the structures containing isolated
base pairs. Only for half of the structures with isolated base pairs, compared with the result of biseparability,
no T -design within 5,000 Boltzmann sampled sequences could be found. Two potential explanations for this
phenomenon can be postulated. Firstly, the restriction on minimum (small) modulo-separated sequence space
is too restrictive for these structures. Secondly, the simple Nussinov-Jacobson energy model fails to account
for the energy contribution from dangling ends, while this is captured in the special base pair energy model
used for Boltzmann sampling.

3.2 Negative seeds are typically close to solutions to the inverse folding problem

In this section, we aim to design within the Turner energy model the MFE secondary structures that cannot
be directly solved by biseparated B-designs in the previous section. It consists of in total 476 instances, of
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Fig. 5: Performance of RNAinverse with different seed strategies in violinplots. For each successfully
solved target, 100 T -designs are sampled and the average value is computed for (a) mutation needed from
seed to design, (b) normalized ensemble defect of seeds (orange) and designs (blue) to the target structure
(the expected distance from target structure to a random structure in the ensemble divided by the structure
size), and (c) sequence diversity quantified by the pairwise Hamming distance. In each plot, from left to
right, is the seed sequence strategy with separated, biseparated, Boltzmann sampling, Boltzmann sampling
with a choice of A and C to fill loop, and uniform sampling.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Uniform 77.4 (79)Boltzmann 81.0 (84)Biseparated 72.0 (73)Separated 78.8 (80)NEMO 94

Fig. 6: Summary of solving Eterna100 v2 benchmark with different RNAinverse seed strategies.
Light green indicates success in all 5 runs while dark green means at least one success. From top to bottom
are the performance of RNAinverse with uniform, Boltzmann, biseparated, and separated seeds. The number
is the average amount of solved puzzles for five runs and the one in the parenthesis is the best run result.
NEMO performance is taken from [10]. Puzzles that are not the only MFE structure of the provided solution
are marked orange. Note that the provided NEMO solution for puzzle 79 (red) has a different target structure.

which 471 contain at least one isolated base pair. For each seed sequence strategy, we asked for 100 T -designs
using RNAinverse -R-100 with a time limit of 2h, however, most of the tasks were finished within a few
minutes (Fig. C.2). In terms of the number of successes, using Boltzmann sampled seeds accomplished all
tasks, while 5 and 6 tasks were unfinished with separated and biseparated seeds, showing a limit on the
sequence space restriction strategy. However, 100 T -designs were returned for all successful tasks.

Separated seeds enable high stability. We further evaluated the designs among solved structures
and visualized the performances in Figure 5. Compared with Boltzmann sampled seeds, separated B-designs
are usually closer to the final T -solutions being only one or two mutations away. The resulting T -designs
reach low normalized ensemble defect with 0.021 on average, a negative design metric that is often used to
quantify the quality of the design. At the same time, using separated seeds results in the lowest sequence
diversity among designs.

Biseparated seeds enable high diversity. On the other hand, designing with biseparated seeds has the
highest sequence diversity, measured with the average pairwise Hamming distance of obtained T -designs. The
sequence diversity is similar to the uniform sampled ones when restricted to paired positions only (Fig. C.4c).
The amount of required mutations to find the T -design is close to the Boltzmann sampled seeds with a larger
variance while the resulting designs have a higher normalized ensemble defect (0.077 vs 0.040 on average).
However, both reach the same level of performance if we consider the best one among 100 T -designs for each
structure (Fig. C.4d). To validate the need of LinearBPDesign for mixing A and C, we consider alternative
Boltzmann sampled seeds where each loop can be filled either with A or C with 50% chance each. The
resulting designs have a worse performance regarding these three metrics.

On larger structures, separated seeds only need few mutations. Running the same experiment
on larger MFE structures of random sequences of 500 nts yields a similar performance as on the MFE
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Fig. 7: Example of post-design neutral network traveling. (a) Structure of interest. (b) Sequence logo
of 100 T -designs. From top to bottom, RNAinverse solutions with biseparated seeds; resulting sequences after
up to 100 moves within neutral network; moving 100 steps within neutral network and ensuring in each step
the normalized ensemble defect is at most 0.01 more than the current best with a much longer computational
time. The positional dinucleotide entropy for unpaired positions is 1.33, 3.51, 3.58. The average normalized
ensemble defect is 0.08, 0.18, 0.08.

structures of 150 nts. RNAinverse returned T -designs reaching an average normalized ensemble defect at
0.013 using separated seeds. This value is 0.062 and 0.035 for using, respectively, biseparated and Boltzmann
sampled seeds. Unsurprisingly, using both biseparated and Boltzmann sampled seeds requires more mutations
for RNAinverse to find T -designs (on average 12.1 and 11.2). However, separated seeds for MFE structure
of 500 nts still locate close to the final designs with only 2.3 mutations needed on average.

3.3 A naive sampling strategy is sufficient to solve most EterRNA 100 puzzles

EterRNA 100 v2 benchmark [10] contains 100 artificial puzzles, several of which were intentionally built to be
hard to design, by containing a large multiloop or a chain of isolated base pairs and stacks. The benchmark has
been often used to validate the performance of RNA design methods based on the number of solved puzzles.
To the best of our knowledge, the current leaders are NEMO [14] with 94 puzzles [10] using Nested Monte
Carlo Search, eM2dRNAs with 82 puzzles using a sophisticated structure decomposition [17], and libLEARNA
with 78 puzzles using reinforcement learning [18]. Note that the negative RNA design problem considered in
these methods does not require the target to be the only MFE structure of the solutions. The first two were
conducted with a 24h time limit while the latter is unknown.

Success of naive sampling with forced As. We ran RNAinverse with each seed strategy 5 times
on the benchmark on an Intel Xeon Gold 6342 processor. RNAinverse was asked to find one T -design for
each puzzle in each run with a two-hour time limit (see Fig. 6 for results). Surprisingly, simply forcing A in
unpaired bases, RNAinverse is able to solve an average of 77 puzzles using uniform seeds (79 puzzles for best
run), increased to 84 with Botzmann-sampled seeds, and to 80 with separated seed for the best run.

Multiloops may be easy to design in T . High degree multiloops are B-undesignable due to the
existence of energy-neutral local rearrangements. This “hardness” may not directly imply in T model as
explained in Figure 3. For instance, Puzzle 51 contains a large multiloop of degree 25 (Fig. E.7a). This
puzzle can be easily solved with separated seeds with none or few mutations using RNAinverse, suggesting
that long-range rearrangement has more impact on the “hardness” than multiloop for the Inverse Folding
problem in Turner energy model.

Separability over biseparability to get quickly a single solution. RNAinverse with biseparated
seed can only solve on average 72 puzzles within two hours. An example to illustrate the possible limitation is
Puzzle 75, which contains two loops separated by an isolated base pair (Fig. E.7b). Starting with a separated
seed sequence where unpaired positions are filling with A, RNAinverse managed to find a T -design by
mutating two positions next to the isolated base pair. This shows the capacity of RNAinverse optimization
in response to dangling energy. On the other hand, RNAinverse is trapped in the local minimum after six
mutations when starting with a separated seed filled with C in unpaired positions.
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3.4 Methods on “hard” benchmarks still struggle on “simple” tasks

We also ran libLEARNA on the same set consisting of 476 MFE structures used in Section 3.2. For each
structure, we gave libLEARNA a three-hour time limit and let it run until 100 T -designs were found. libLEARNA
only successfully returned 100 T -designs for 350 structures. Note that the returned sequences are discarded
if a competing MFE structure other than the target exists. Surprisingly, the discarded amount could be 100x
more than the number of T -designs for some structures (Fig. C.3). Among the 378 structures with at least
50 T -designs returned, the performance of libLEARNA is similar to RNAinverse using biseparated seeds with
a larger variance in the sequence diversity (Fig. C.4).

4 Discussion

Introducing biseparability combined with RNAinverse increases the sequence diversity and the proportion of
wobble base pairs GU (1‰ v.s. 3‰), however this may still be far from rational RNA design. Nevertheless,
the results of this study demonstrate that negative seeds often are located exactly on or close to the neutral
network, allowing fast access to it. Studies on theoretical evolutionary showed that the neutral network of an
RNA secondary structure is often quite extensive and sufficiently connected such that simple point mutations
can result in long paths enclosed in the network [20]. A similar idea, exploiting this fact to further improve
the ensemble defect of designed sequences, is implemented in [27]. As a proof of concept, we chose one of
the generated MFE structures as the example and performed a post-design random walk within the neutral
network to increase unpaired positions diversity (Fig. 7).

Despite RNAinverse being considered outdated and inefficient by now, more than 30 years after its first ap-
pearance, we have shown that it is still possible to reach performance comparable to more recent strategies by
combining it with negative seeds offered by LinearBPDesign. However, the intrinsic strategy of RNAinverse
still hinders a design of certain target structures. Strategies to improve this could include adapting a more
efficient structure decomposition [17] or optimization method. To show this, we tested a naive combination
of LinearBPDesign (bi)separated seeds with NEMO on the popular EterRNA benchmark, demonstrating that
88/90 puzzles could be solved within two hours (Fig. E.6). To prevent NEMO from exceedingly departing from
the initial seed, we implemented a forced restart of NEMO every five minutes. Unfortunately, even with this
precaution, the distance between the seed and the proposed solution was regularly large enough, to make
drawing a decisive conclusion on the impact of negative seed impossible.

The large variance of the performance observed when using biseparated seed hints at a lack of consistency
when using uniform sampling. One possible strategy to mitigate this is to add a post-sampling rejection step
to filter out unwanted or less probable seeds. However, when using Boltzmann sampled seeds, we detected a
significantly lower variance in performance. This suggests that using weighted sampling of LinearBPDesign,
which supports both positive and negative design paradigms, can further improve the performance. It should
be noted that when the base pair energy model is used as done here, this is equivalent to increasing the
amount of GC base pairs since the wobble base pair GU is not considered. Using Boltzmann sampling with
a stack energy model as was done in [15] requires a more complex dynamic programming scheme, such as
provided by the Infrared framework [24], to take care of energy contribution from adjacent base pairs as
well as the constraints imposed by LinearBPDesign.

The success of directly using separated B-designs to solve Inverse Folding within the Turner energy
model, notably for the uniformly sampled structure of minimum helix length 3+, indicates that the structure
itself likely exerts a greater influence on the “hardness” of the design than the energy model. Another common
“hardness” observed for both energy models is the long-range rearrangement to form an alternative structure.
Separability ensures that any alternatives are less favorable in the BP model. The resulting B-designs are
found to be close to T -designs with high stability.

Data Availability. The code and scripts to run presented experiments can be found at https://github.com/
ViennaRNA/negseeddesign. The different seed initial strategy will be included in the next ViennaRNA release.
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