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Abstract. The Inverse Folding problem involves identifying RNA sequences that adopt a target structure with
respect to free-energy minimization, i.e. preferential to all alternative structures. The problem has historically been
regarded as challenging, largely due to its proven NP-completeness of an extended version where the base pair
maximization energy model is used. In contrast, it has recently been shown that a large subset called m-separable
structures, notably including those comprising helices of length 3+, can be solved in linear time within the same
energy model. This permits not only the identification of a single solution, but also the characterization of a language
of solutions.
In this work, we seek to describe the “hardness” of Inverse Folding, bridging (at least heuristically) the gap between
a simplified energy model and a more realistic Turner energy model. We used LinearBPDesign to generate seed
sequences for RNAinverse, thereby improving the design process in a Turner energy model. To this end, we ex-
tended LinearBPDesign to accommodate biseparability and to handle non- or high modulo separable structures
by minimalist addition of base pairs.
Our study suggests that seeds generated by LinearBPDesign capture long-range interactions, thereby improving
the performance of RNAinverse compared to seed focusing on refining the energy model itself. Most surprisingly, a
significant number of LinearBPDesign seeds uniquely fold into the target structure in the Turner model, especially
when helices are at least of length 2. This observation suggests that the “hardness” of design may arise from the
intrinsic properties of the structures themselves.

Keywords: RNA design · RNA secondary structure · Dynamic programming · Sampling.

1 Introduction

A recurrent problem in RNA structural design, called inverse folding, consists of finding RNA sequences that preferen-
tially fold into one (or several) user-provided structures. Targeting a certain structure is indeed an objective of interest
as the structure of biologically active non-coding RNAs is often seen as an important contributor to its function [4].

Considering the wealth of biological functions (catalytic, regulatory. . . ) performed by RNA, including but not lim-
ited to gene expression, splicing and epigenetic modifications [19], rational design of synthetic and diverse RNA ap-
pears more and more of high importance in order to unlock applications in synthetic biology and medicine [9,5,11,26].

The first method proposed for inverse folding, named RNAinverse [8], was developed in 1994 and explores the
sequence space by applying mutations to an initial sequence. This heuristic strategy has been iterated on and improved
numerous times over the last years with notable examples including RNA-SSD [1] and FRNAkenstein [12]. Newer
methods such as INCARNAFBINV [16] or RNAPOND [25] combine the negative and positive design paradigm to find an
optimal solution.

NEMO [14] integrates domain knowledge into a Nested Monte Carlo Search in order to achieve results similar to
those of expert human designers. With its score of 94 out of 100, NEMO currently outperforms all other design tools on
the EterRNA 100 benchmark [10]. Finally, solutions relying on machine learning have been increasingly developed
in recent years. SentRNA [21] employs a fully connected neural network, trained on player-submitted solutions to the
EterRNA game in combination with an adaptive walk to further refine the results. In comparison, libLEARNA [18]
utilizes automated deep reinforcement learning to train a policy network.
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An increased level of attention has been dedicated to the theoretical and computational properties of RNA inverse
folding. Due to the intricacies of the Turner nearest-neighbor free-energy model [22], very little is currently known
about inverse folding in realistic energy models. Yao et al. [23] characterized an exhaustive set of local undesignable
motifs through brute force enumeration, and revealed a drastic reduction of the set of designable secondary structures.
Zhou et al. [28] extended the collection by larger undesignable structures, instances of which were detected in popular
RNA inverse benchmarks [10]. Inverse folding under a simplified BP energy model (aka BP inverse folding), in which
independent additive contributions of individual base pairs are assumed, enjoy more comprehensive theoretical studies.
Bonnet et al. [2] established the NP-hardness of a mildly constrained version of inverse folding in a BP maximization
energy model, where a partial nucleotide assignment is provided. This extended RNA folding problem arguably reflects
real-world use cases, as maintaining precise bases at certain positions is often required to preserve the functionality of
RNAs.

A tree-coloring perspective introduced by Hales et al. [6] led to a characterization of easy classes of instances
for inverse folding. Surprisingly, this framework was instantiated by Boury et al. [3] into a linear-time solution for
all secondary structures consisting of helices having 3+ BPs. The underlying DP algorithm could be extended into
a uniform random generation of solutions for BP inverse folding, and a sizeable portion of solutions was shown to
represent promising solutions for inverse folding in the Turner energy model.

The existence of a linear-time algorithm for sampling sequences, guaranteed to be solutions to inverse folding in
the BP model, motivates the consideration of exact BP designs as seeds within classic local optimization schemes.
We focus on RNAinverse due both to its historical value, relatively straightforward optimization scheme, and to its
surprising resilience in the context of a large array of competitors. Firstly, we wish to assess the performance of the
exact design, in BP energy models, as a candidate solution in the Turner model. Of particular interest is the number
of single-point mutations needed to convert an exact BP design into a solution/design with respect to the Turner
model. Finally, a realistic design scenario requires the generation of (large) sets of diverse solutions, to capture further
constraints through post hoc filtering, motivating the consideration of generalized strategies for sequence generation.

Our main contributions and conclusions include:

1. Exact design in simplified models systematically outperforms naive seeding strategies, leading to ultimate solu-
tions that are more stable and substantially diverse (see Sec. 3.1 and 3.2);

2. The introduction of the concept of biseparability (see Sec. 2.2), strictly generalizing the concept of separability [3]
to increase the diversity of produced solutions (see Sec. 3.2);

3. A uniform random generation algorithm for biseparated sequences (see Sec. 2.2), guaranteed to represent solutions
to BP inverse folding, running in linear time for a large class of structures, notably including secondary structures
consisting of helices having 3+ BPs;

4. We observe that an excessive focus on a limited collection of benchmarks, consisting in part of pathological
structures, results in the promotion of methods that poorly generalize (see Sec. 3.4). More extensive validation
efforts are needed to ensure the continued development of general methodologies.

2 Methods
To be a design for a secondary structure S, a sequence ω Bonnet et al. [2] of a mildly constrained version of inverse
folding in a BP energy model, where a partial nucleotide assignment (possibly empty) is provided. It can be argued
that such an extended RNA folding problem is more indicative of real-world tasks, as conserving the bases at certain
positions is often required to enable the functionality of RNAs. require beforehand to be compatible with S: Base
pairs in S over ω should be Watson-Crick pairs (G-C, C-G, A-U,U-A) or wobble pairs (G-U, U-G). But it is far from
sufficient to obtain a specific enough design. In this work, we consider the INVERSE FOLDING problem, the most
typical instance of negative RNA design.

Definition 1 (INVERSE FOLDING).
Input: A pseudoknot-free (e.g. nested) secondary structure S of length n .
Output: RNA sequence ω with |ω| = n, such that ∀S′ ̸= S, E(ω, S) < E(ω, S′) where E(ω, S) is the free-energy of ω
folding into S within some energy model of interest.

Here compatibility is hidden inside the energy function E that scores ∞ for incompatible pairs. Note that the IN-
VERSE FOLDING problem not only requires the target structure to be the minimum free-energy (MFE) conformation
of ω, but also requires the absence of competing folds of equal stability. It is only in that case that we say that ω is a
design for S. In this work, we study INVERSE FOLDING in two different energy models:
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Fig. 1: Secondary structure as a tree and levels associated with (bi)separated sequences. A pseudoknot-free sec-
ondary structure is abstracted as a tree where base pairs are internal nodes, and unpaired positions are leaves. The levels
of nodes are indicated in square boxes with a thick colored border for internal nodes (e.g. base pairs) and a shaded
color for leaves (e.g. unpaired positions) (Left) Example of a proper 2-separated sequence (⇒B design). The levels (in
red) of unpaired (A) positions are even, while the levels of paired AU/UA positions are odd, implying 2-separability.
(Right) Example of a proper (2, 2)-biseparated sequence (⇒ B design). Two sets of levels (red for AU/UA where
leaves are even, and green for GC/CG where leaves are odd) are simultaneously handled relatively to A and C, and the
absence of overlap between nodes and leaves levels of a given color ensures unicity of the MFE fold. Thanks to the
biseparability, the assignment of a mix of A and C to unpaired regions give access to more diverse sequences.

1. The base pair maximization energy model B, sometimes referred to as the Nussinov-Jacobson energy model [13],
where the energy of a structure is simply defined as minus its number of base pairs;

2. The – more realistic – Turner energy model T , where the energy of a secondary structure is defined as a sum
of independent contributions associated with loops occurring in the structure. A precise definition of loops is not
needed here, and thus omitted in the interest of space, but we refer the reader to Turner and Mathews [22] for
details.

To lift any ambiguity, we say a structure S is B-designable (resp. T -designable) if there exists a sequence ω which is
a B-design (resp. T -design), i.e. a solution of inverse folding with respect to the model B (resp. T ).

2.1 Classic separability and linear-time design within a BP energy model

We first recall key concepts underpinning the LinearBPDesign method, with a focus on m-separability [3], reframed
in terms of nucleotide assignments instead of the colors used by Hales et al [6]. We abstract a (target) secondary
structure S of length n as a tree T [S] = (V,E) (Fig. 1 left) where each node either represents a base pair (i, j)
(internal nodes) or an unpaired position k (leaves). A loop consists of the union of an internal node (i.e. a base pair)
and its (direct) children. For the rest of the manuscript, we refrained from distinguishing T [S] and S designing it
simply S. For a sequence ω, the content Ci,j of a loop, rooted at a base pair (i, j), is defined as the list of base
pairs assigned to the children of (i, j), augmented with the inverted content of (i, j), i.e. Ci,j := [ωj .ωi] · [ωi′ .ωj′ |
(i′, j′) BP children of (i, j)].

Definition 2 (Proper sequence). A sequence ω is proper for a secondary structure S = (V,E) when ω is compatible
with S and, for each internal node (i, j) ∈ V , the content Ψ := Ci,j of the loop rooted at (i, j) obeys:

|Ψ |GC ≤ 1, |Ψ |CG ≤ 1, |Ψ |CG · |Ψ |GC = 0, |Ψ |AU ≤ 1, |Ψ |UA ≤ 1 and |Ψ |AU · |Ψ |UA = 0,

where |Ψ |XY denotes the number of occurrences of XY in the list Ψ , e.g. the number of internal nodes assigned XY .
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In other words, a sequence is proper when its loop assignments forbid local alternatives (Fig. 4). Being proper is
thus a necessary condition for a sequence to represent a B-design. Meanwhile, the (modulo) m-separated condition
represents a sufficient condition to rule out the existence of global alternatives (i.e. long-range rearrangement) to the
target secondary structure S. It crucially relies on the concept of level which ensures G/C imbalance, and thus a strict
suboptimality of alternatives, upon forming an alternative base pair.

Namely, given a sequence ω compatible with a structure S, the level L : V (S) → Z of a node v is L(v) := |pv|GC−
|pv|CG where pv denotes the base pairs found on the path from parent(v) to the root of S. Denote by LAU|UA(S;ω) the
set of levels of {AU,UA} base pairs. We also denote by LA(S;ω) the levels of A-assigned unpaired positions.

Definition 3 ((Modulo) m-separated sequence). A sequence ω is m-separated for a structure S, if and only if ω is
proper, features A unpaired positions, and {l mod m | l ∈ LAU|UA(S;ω)} ∩ {l′ mod m | l′ ∈ LA(S;ω)} = ∅.

A structure S is m-separable if it admits an m-separated sequence. An example of a 2-separated sequence can be seen
in Figure 1.

Finally, Boury et al [3] shows that it is sufficient for a sequence to be m-separated to represent a B-design, i.e. to
be a solution to INVERSE FOLDING with respect to the B energy model thus avoiding all alternative structures made
of AU, GC and also GU base pairs. Moreover, finding a proper m-separated sequence for a structure over n nucleotides
(if it exists), can be solved in O(nm 2m) time. The authors finally show that any designable structure featuring helices
of length at least 3 is 2-separable, thus the INVERSE FOLDING in B can be solved in linear time for this large subset
of reasonable instances.

2.2 Biseparated sequences: enriching the set of exact solutions for the BP-based model

An obvious limitation of m-separated sequences as defined above is that their unpaired positions are always set to A,
yielding uncanny sequences of limited diversity. To work around the issue, we introduce the concept of biseparability,
whereby both A and C are allowed in the unpaired regions. In addition to the G/C imbalance exploited by classic
separability, biseparability captures A/U imbalance (see Fig. 2 for an example). It ensures that alternative G/C base
pairs remain suboptimal when involving the C nucleotides intended to remain unpaired in S. Figure 1 shows an
example of a (2,2)-biseparated sequence.

Concretely, we will now consider two types of levels: the A-level, denoted by LA : V → Z, refers to the classic
level L(v) introduced by Hales et al [6] and featured in the previous section; the C-level LC(v) of a node in S is
similarly defined as:

LC(v) := |p|AU − |p|UA (and LA(v) := L(v))

where pv again denotes the base pairs found on the path from parent(v) to the root of S. For simplicity, we refrained
from precise if we speak about LA and LC and denote it simply L as the choice between LA and LC will clearly be
made due to the involved letters. With that, we keep previous notations of LAU|UA(S;ω) and LA(S;ω) that correspond
to A-levels. Additionnaly, for a given sequence ω, we denote by LCG|GC(S;ω) the set of C-levels of {CG,GC} base
pairs, and by LC(S;ω) those of C-assigned unpaired positions. These definitions enable the introduction of the concept
of (modulo) (mA,mC)-biseparability relative to A and C.

Definition 4 ((Modulo) (mA,mC)-biseparated sequences). A sequence ω is (mA,mC)-biseparated for a target sec-
ondary structure S, if an only if:

1. ω is proper;
2. features only A and C unpaired positions;
3. Levels of AU/UA and A do not overlap: {l mod mA | l ∈ LAU|UA(S;ω)} ∩ {l′ mod mA | l′ ∈ LA(S;ω)} = ∅;
4. Levels of CG/GC and C do not overlap: {l mod mC | l ∈ LCG|GC(S;ω)} ∩ {l′ mod mC | l′ ∈ LC(S;ω)} = ∅.

More generally, we say that a sequence is biseparated when it respects the above definition without restrictions on
mA and mC modulo. (which always conincide with (mA,mC)-biseparability at least when mA = 2n and mC = 2n).
Deciding biseparability, in general, is NP-hard as (2n, 1)-biseparability corresponds exactly to separability, which was
proven NP-hard [3]. Similarly, deciding the existence of a (mA,mC)-biseparated sequence remains NP-hard in general.
Our intent here is thus to explore small modular values of mA and mC.

Fortunately, even moderate values of mA and mC already capture large subsets of structures. For instance, it can be
observed that any designable structure S with helices of size 3 or more admits a (2,1)-biseparated sequence. Indeed,
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Fig. 2: Toy example. (a) Secondary structure of size 40 nts with a biseparated B-design. (b) Sequence logo of 20 sep-
arated (top) and biseparated (bottom) B-designs. (c) Count of B-designs with different modulo. The (2,2)-biseparated
B-design amount (244) equals double of 2-separated B-design amount (122), showing that there is no B-design with
a mix of A and C in unpaired positions in modulo (2,2). On the contrary (3, 3)-biseparability yields 852 B-designs,
with more than 80 % of them that are not 2-separated depicting how allowing a mix of A and C gives access to more
numerous sequences favoring a larger sequence diversity.

S then admits a sequence ω which is proper (⇒ Cond. 1) and 2-separated (⇒ Cond. 3), and additionally features A in
each of its unpaired positions. It follows that LC(S;ω) = ∅, implying the validity of Cond. 4, and we conclude that ω
is a (2,1)-biseparated sequence.

Theorem 1. Given a structure S, any sequence ω biseparated for S is a B-design.

The proof is similar to that of separability [6], with minor modifications (see Sec. A for details).
A striking feature of (mA,mC)-biseparated sequences is that, for fixed values of mA and mC, they can be found and

uniformly sampled in time only linear in n, the size of the target. The following dynamic programming scheme counts
the set of (mA,mC)-biseparated sequences for a target structure S, given admissible modular levels ξLA ⊂ [1,mA] and
ξLC ⊂ [1,mC] respectively for unpaired As and Cs:

p
(ξLA ,ξLC )

v→µ,(ℓA,ℓC)
=



1(l∈ξLA )∧(µ=A) + 1(l∈ξLC )∧(µ=C) if v is leaf
0 if ℓ ∈ ξLA and µ ∈ {AU,UA}
0 if ℓ ∈ ξLC and µ ∈ {GC,CG}
1 if children(v) = ∅∑

µ′ proper assignment
children(v)→Σ2∪{A,C}

∏
vi∈children(v)

p
(ξLA ,ξLC )

vi→µ′(vi),(ℓ′A,ℓ
′
C)

otherwise.

where v corresponds to a node or leaf of S (thus being a pair of indexes or a single index respectively), with prior
nucleotide(s) assignment denoted by µ, ℓA and ℓC are the current modular A and C levels, and ℓ′A and ℓ′C the updated
modular levels of A and C following the choice of µ′: ℓ′C := ℓC+1µ′(v′)=AU−1µ′(v′)=UA mod mA and symmetrically

for ℓ′A. The overall number of separated sequences is then ultimately found in p(ξLA , ξLC) := p
(ξLA ,ξLC )

Root(T )→ε,(0,0).
The correctness of the dynamic programming scheme can be established through a straightforward adaptation of

the proof of m-separated sequences [3]. Moreover, for a fixed (ξLA , ξLC) pair, it can be computed in complexity which
is linear in n (the number of nucleotides), mA and mC since: i) µ may only take 8 possible values (single or pair
of nucleotides); ii) ℓA and ℓC respectively take values in [0,mA) and [0,mC); iii) In the B model, a target structure
featuring a loop having >4 BPs does not admit a solution to INVERSE FOLDING (⇐ Proper condition is necessary for
the existence of designs); iv) Apart from the open chain, only one type of A or C is allowed in the unpaired positions
of the loop, otherwise a conflict would arise with the content of one of the base pairs of the multiloop. It follows from
(iii) and (iv) that the sum of all assignments can be computed in constant time. By iterating over the 2mA+mC possible
values of (ξLA , ξLC), and checking if p(ξLA , ξLC) ̸= 0, one can determine the existence of modulo (mA, mC)-separated
sequences.

Theorem 2. The existence of (mA,mC)-biseparated sequences can be decided in O(nmA mC 2mA+mC).

Meanwhile, a uniform generation of x biseparated sequences can be done in expected time O(xn 2mA+mC) following
a precomputation in O(nmA mC 2mA+mC), as described in Boury et al [3]. In a nutshell, one chooses a random level
assignment (ξLA , ξLC) with probability proportional to its number of sequences, and a rejection step is used to correct
for the compatibility of certain sequences with at most O(2mA+mC) level assignments.
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Fig. 3: Non separable structure augmentation with H = 1 and k = 1. Here, at most H = 1 base pair (gray) could
be added on each helix in the input structure. The value of k decreases by 1 whenever one base pair is added until the
value reaches 0. The added base pair i (red) is selected with a probability proportional to the assignment counts αi.
αi is never explicitly computed as the dynamic programming simply integrates over all possible sequences in a given
“neighborhood". Then a sequence is sampled uniformly for the final augmented structure.

2.3 Minimal augmentation of non-separable secondary structures

Certain secondary structures are known to be non-separable with respect to the B energy model, implying the absence
of m-separated proper sequences for any value of m. For generality, we should be able to handle these structures, so
we chose to minimally modify the input structure. Indeed, it was shown by Halès et al. [6] that any structure with
suitable loop constraints can become 2-separable by adding at most one base pair per helix. We revisit this idea in a
more general setting, augmenting the input structure by at most k base pairs, with ≤ H additions per helix. Doing
that, it is clear that we are not solving the initial problem, but at least we can get (and sample) exact sequences from
slightly augmented structures, that lie in a controlled “neighborhood" from the input structure. The value of k should
be as minimal as possible. In our case, we mostly work with H = 1 adding at most 1 base pair per helix as structures
with minimally extended helices are likely to be functionally equivalent to the input instance. Figure 3 illustrates the
process of structure augmentation with k = 1 and H = 1.

In terms of method, we simply tweak the dynamic programming. When assigned, each node v at the end of a helix
can have a new behavior: it can do recursion on itself, artificially adding, at the bottom of v, a node v′ that should also
be assigned (thus giving v′ a feasible proper assignment and incrementing the level as with v assigned). We allow this
auto-recursive call to be performed at most H times per helix, effectively exploring the feasible augmented structures.

Note that for simplicity, the dynamic programming scheme is written for the m-separable case only, but can easily
be adapted for the (mA, mC)-biseparable case. Notations are the same as in Section 2.2 with k and H as defined above,
and h represents the number of base pairs added on top of the “current" node:

pξL,H
v→µ,ℓ,(k,h) =



1l∈ξL if v is leaf
pξL,H
v→µ,ℓ,(k,0) +

∑
µ′ proper assignment

for 1 child

pξL,H
v→µ′(v),ℓ′,(k−1,h+1) if k > 0, h < H and LH(v)

0 if ℓ ∈ ξL and µ ∈ {AU,UA}
1 if children(v) = ∅∑
µ′ proper assignment

children(v)→Σ2∪{∅}

∏
vi∈children(v)

∏
∑

ki=k
ki=0 if vi is leaf

pξL,H
vi→µ′(vi),ℓ′,(ki,0)

otherwise.

where ℓ′ corresponds to the next level after 1 assigned node as previously and LH is a function that returns True on
input v iff v is a last node of a helix (e.g. has a leaf as a child or at least 2 base pairs children).

The complexity remains mainly the same as m-separability or (mA, mC)-separability (Sec. 2) with minor over-
heads: i) O(H) as every state can be duplicated H times in the worst case with ≤ H auto-recursive calls; ii) O(k3) to
distribute k among the ≤ 3 helices stemming from a multiloop. Since both k and H remain limited to staying close to
the intended target, the overall overhead remains generally inconsequential.
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Fig. 4: Structures containing forbidden motifs in B and alternatives over given (unproper) sequences (A) The
structure contains an undesignable motif (m3o). The Turner energy of the alternative is marginally worse than the
target (-1.0 kcal.mol−1 vs -1.2 kcal.mol−1). The sequence is not m-(bi)separated as AU and A occur at the same level;
(B) For this sequence, the alternative is not competitive in B. (C) The structure contains an m5 forbidden multiloop.
Frequently, alternatives for the B model contain base pairs that are “isolated”, and end up being uncompetitive in the
T model.

2.4 Heuristic extension for Turner energy model (T -designability)

Multiloops. Even if large multiloops are forbidden in B, structures in T can contain arbitrary large multiloops still
remaining designable as the proper condition mainly forbids local rearrangement inside multiloops (Fig. 4). Thus we
use the “unproper” strategy [3] that retains the condition on m-separability excluding the proper condition.

The m-separability condition may be more useful in T as it catches “long-range interactions” by forbidding reroot-
ings of any base pairs with all, even far, unpaired positions. Handling of multiloops of any size can be done without
impacting performances, through a slight modification of the dynamic programming scheme. It involves auto-recursion
as used in Section 2.3, with details found in Section E.

Implementation and interfacing with RNAinverse. Given that a B-design may not be a T -design, we have com-
bined the (bi)separated sequence generation (i.e. extended LinearBPDesign) with RNAinverse to design secondary
structures in the Turner energy model. Given a target structure, a m-separated or (mA,mC)-biseparated B-design is
uniformly sampled with m,mA,mC ≤ M and provided to RNAinverse as a starting seed sequence in the following
three steps: i) The minimum modulo M is chosen such that an adequate number of B-designs (1,000 by default) is
included in the sampling pool. For biseparability, we enforce M to be at least 3 to ensure that there is a sufficient num-
ber of B-designs with a mix of A and C in the unpaired region; ii) If a B-undesignable multiloop presents, “unproper”
strategy is used, and only in this case; iii) If M is “too large” or cannot be determined (non-separable structure), we
use structure augmentation (Sec. 2.3) to decrease the modulo. However, in practice, this is rarely the case for a design
in the T model (see Sec. B).

From the seed sequence, RNAinverse performs an adaptive random walk in the sequence space. At each step, a
position is randomly selected to be mutated as well as the paired partner (if one exists). The new sequence is accepted
if the resulting base pair distance between the MFE structure and the target decreases. RNAinverse begins by targeting
the small substructures and then progresses to the entire target structure to reduce the required computational time.
Each walk stops when the target is reached, i.e. distance equals 0, or no more mutation can be introduced to improve
the distance. For the INVERSE FOLDING problem, a negative flag should be used (option -R-k). RNAinverse restarts
the walk from a new different seed sequence until k T -designs are found. We added a post-RNAinverse filter for this
study to ensure that the target is the only MFE structure of the returned T -design.

Other seed sequence generations. We also considered two other seed generation strategies to investigate the impact
of LinearBPDesign exact seed on RNAinverse:

1. Uniform sampling: Default option of RNAinverse. A seed sequence is uniformly chosen from the entire sequence
space. Each paired position takes nucleotides from six possible canonical base pairs;

2. Boltzmann sampling: Usually used in positive design. A seed sequence is sampled from a Boltzmann distribution
based on the folding free-energy to the target [15]. We consider here a special base pair energy model from [7],
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Fig. 5: Frequency of T -designs among sampled B-designs. From left to right, each set contains 1,000 structures
having respective minimum helix lengths of 1, 2, and 3+ base pairs. For each structure, 5,000 B-designs are sam-
pled for each seed strategy, biseparability (blue), separability (orange), and Boltzmann sampling (green) without fur-
ther RNAinverse optimization. The plots show how many T -designs can be found among the 5000 sequences sampled
for each of the 1000 structures. The number of unsolved structures is visualized by the dotted line between at least 1
and 0 T -designs found.

where the energy contribution of each base pair depends on the nucleotides (prioritized to CG and GC) and on
its position in the helix (stacked or helix-end). We further limited all unpaired positions to be A (respectively a
balance between A and C) for a better comparison with separated seeds (respectively biseparated seeds).

3 Results

3.1 LinearBPDesign directly solves most structures with helices of length 2+

The first query is whether B-designs generated through LinearBPDesign are also T -designs, particularly for struc-
tures comprising helix length of 3+, given they are B-designable. For minimum helix lengths of 1 and 2, the probability
of a randomly and uniformly sampled structure being T -designable decreases exponentially due to the existence of
forbidden motifs with isolated base pairs or stacks [23]. To this end, three sets of 1,000 secondary structures of size
150 nts were created for different minimum helix lengths in two ways. The first set comprises 1,000 randomly and
uniformly generated structures containing only helices of length 3+ since any such structure is B-designable. For the
second and third sets, structures with a minimal helix length of 1 and 2 base pairs respectively were generated. Since
the objective is to investigate B- and T -designability from a theoretical aspect, the sets were generated as follows:
random RNA sequences were sampled and folded using RNAfold, while sequences without a unique MFE or with-
out the required minimal helix length, were discarded. This method of structure generation guarantees that a unique
T -designs exists.

B-designable structures are often T -designable. For each structure, LinearBPDesign is employed with an ap-
propriate minimum modulo M in order to uniformly sample 5,000 biseparated sequences. It is also possible that some
sequences may be redundant as a result of the sampling process. However, the proportion of duplicates is relatively
low, with an average of 0.423 duplicates per structure. As illustrated in Figure 5, at least one T -design is present
among the 5,000 sampled biseparated B-designs for more than 95.8% of secondary structures containing only helices
of length 2+. Conversely, 421 out of 1,000 structures with an isolated base pair remain unsolved.

Separated B-designs are mostly T -designs for MFE structures. Nevertheless, only 20% of the identified T -
designs contain C in at least one unpaired position. Indeed, focusing exclusively on separated B-designs markedly
increases the number of T -designs for the MFE structures. It is noteworthy that for 601 MFE structures with a min-
imum helix length of 2, over 90% of sampled separated B-designs are also T -designs. The discrepancy between
these results and those on uniformly sampled structures indicates that the language employed in LinearBPDesign
B-designs may be surprisingly capable of capturing the characteristics inherent to the Turner energy model.

(Bi)Separability overlooks dangling energy. We examined the sequences sampled from a Boltzmann distribution,
with the unpaired positions restricted to A. The outcomes are comparable to those of biseparated sequences, exhibiting,
in general, a diminished degree of success, except for the structures containing isolated base pairs. Only for half of the
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Fig. 6: Performance of RNAinverse with different seed strategies in violinplots. For each successfully solved
target, 100 T -designs are sampled and the average value is computed for (a) mutation needed from seed to design,
(b) normalized ensemble defect of seeds (orange) and designs (blue) to the target structure (the expected distance
from target structure to a random structure in the ensemble divided by the structure size), and (c) sequence diversity
quantified by the pairwise Hamming distance. In each plot, from left to right, is the seed sequence strategy with
separated, biseparated, Boltzmann sampling, Boltzmann sampling with a choice of A and C to fill loop, and uniform
sampling.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Uniform 77.4 (79)
Boltzmann 81.0 (84)

Biseparated 72.0 (73)
Separated 78.8 (80)

NEMO 89.4 (90)

Fig. 7: Summary of solving Eterna100 v2 benchmark with different RNAinverse seed strategies. Light green
indicates success in all 5 runs while dark green means at least one success. From top to bottom are the performance
of RNAinverse with uniform, Boltzmann, biseparated, and separated seeds. The number is the average amount of
solved puzzles for five runs and the one in the parenthesis is the best run result. We also ran NEMO under the same
conditions, with results showing that NEMO still outperforms other tools in terms of the number of puzzles solved.

structures with isolated base pairs, compared with the result of biseparability, no T -design within 5,000 Boltzmann
sampled sequences could be found. Two potential explanations for this phenomenon can be postulated. Firstly, the
restriction on minimum (small) modulo-separated sequence space is too restrictive for these structures. Secondly, the
simple Nussinov-Jacobson energy model fails to account for the energy contribution from dangling ends, while this is
captured in the special base pair energy model used for Boltzmann sampling.

3.2 Negative seeds are typically close to solutions to the inverse folding problem

In this section, we aim to design within the Turner energy model the MFE secondary structures that cannot be directly
solved by biseparated B-designs in the previous section. It consists of a total of 476 instances, of which 471 contain at
least one isolated base pair. For each seed sequence strategy, we asked for 100 T -designs using RNAinverse -R-100
with a time limit of 2h, however, most of the tasks were finished within a few minutes (Fig. C.1a). In terms of the
number of successes, using Boltzmann sampled seeds accomplished all tasks, while 5 and 6 tasks were unfinished
with separated and biseparated seeds, showing a limit on the sequence space restriction strategy. However, 100 T -
designs were returned for all successful tasks.

Separated seeds enable high stability. We further evaluated the designs among solved structures and visualized
the performances in Figure 6. Compared with Boltzmann sampled seeds, separated B-designs are usually closer to
the final T -solutions being only one or two mutations away. The resulting T -designs reach low normalized ensemble
defect with 0.021 on average, a negative design metric that is often used to quantify the quality of the design. At the
same time, using separated seeds results in the lowest sequence diversity among designs.

Biseparated seeds enable high diversity. On the other hand, designing with biseparated seeds has the highest
sequence diversity, measured with the average pairwise Hamming distance of obtained T -designs. The sequence di-
versity is similar to the uniform sampled ones when restricted to paired positions only (Fig. C.2c). The amount of
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Fig. 8: Example of post-design neutral network traveling. (a) Structure of interest. (b) Sequence logo of 100 T -
designs. From top to bottom, RNAinverse solutions with biseparated seeds; resulting sequences after up to 100 moves
within the neutral network; moving 100 steps within the neutral network and ensuring in each step the normalized
ensemble defect is at most 0.01 more than the current best with a much longer computational time. The positional
dinucleotide entropy for unpaired positions is 1.33, 3.51, 3.58. The average normalized ensemble defect is 0.08, 0.18,
0.08.

required mutations to find the T -design is close to the Boltzmann sampled seeds with a larger variance while the re-
sulting designs have a higher normalized ensemble defect (0.077 vs 0.040 on average). However, both reach the same
level of performance if we consider the best one among 100 T -designs for each structure (Fig. C.2d). To validate the
need of LinearBPDesign for mixing A and C, we consider alternative Boltzmann sampled seeds where each loop can
be filled either with A or C with 50% chance each. The resulting designs have a worse performance regarding these
three metrics.

On larger structures, separated seeds only need a few mutations. Running the same experiment on larger
MFE structures of random sequences of 500 nts yields a similar performance as on the MFE structures of 150 nts.
RNAinverse returned T -designs reaching an average normalized ensemble defect at 0.013 using separated seeds
(see Fig. C.3). This value is 0.062 and 0.035 for using, respectively, biseparated and Boltzmann sampled seeds. Un-
surprisingly, using both biseparated and Boltzmann sampled seeds requires more mutations for RNAinverse to find
T -designs (on average 12.1 and 11.2). However, separated seeds for MFE structure of 500 nts still located close to the
final designs with only 2.3 mutations needed on average.

3.3 A naive sampling strategy is sufficient to solve most EterRNA 100 puzzles

EterRNA 100 v2 benchmark [10] contains 100 artificial puzzles, several of which were intentionally built to be hard
to design, by containing a large multiloop or a chain of isolated base pairs and stacks. The benchmark has been often
used to validate the performance of RNA design methods based on the number of solved puzzles. To the best of our
knowledge, the current leaders are NEMO [14] with 94 puzzles [10] using Nested Monte Carlo Search, eM2dRNAs with
82 puzzles using a sophisticated structure decomposition [17], and libLEARNA with 78 puzzles using reinforcement
learning [18]. Note that the negative RNA design problem considered in these methods does not require the target
to be the only MFE structure of the solutions. The first two were conducted with a 24h time limit while the latter is
unknown.

Success of naive sampling with forced As. We ran RNAinverse with each seed strategy 5 times on the benchmark
on an Intel Xeon Gold 6342 processor. RNAinverse was asked to find one T -design for each puzzle in each run with
a two-hour time limit (see Fig. 7 for results). Surprisingly, simply forcing A in unpaired bases, RNAinverse is able to
solve an average of 77 puzzles using uniform seeds (79 puzzles for best run), increased to 84 with Botzmann-sampled
seeds, and to 80 with separated seed for the best run.

Multiloops may be easy to design in T . High-degree multiloops are B-undesignable due to the existence of
energy-neutral local rearrangements. This “hardness” may not apply directly in T model as explained in Figure 4. For
instance, Puzzle 51 contains a large multiloop of degree 25 (Fig. D.2a). This puzzle can be easily solved with separated
seeds with none or few mutations using RNAinverse, suggesting that long-range rearrangement has more impact on
the “hardness” than multiloop for the INVERSE FOLDING problem in Turner energy model.

Separability over biseparability to get quickly a single solution. RNAinverse with biseparated seed can only
solve on average 72 puzzles within two hours. An example to illustrate the possible limitation is Puzzle 75, which
contains two loops separated by an isolated base pair (Fig. D.2b). Starting with a separated seed sequence where
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unpaired positions are filling with A, RNAinverse managed to find a T -design by mutating two positions next to the
isolated base pair. This shows the capacity of RNAinverse optimization in response to dangling energy. On the other
hand, RNAinverse is trapped in the local minimum after six mutations when starting with a separated seed filled with
C in unpaired positions.

3.4 Successful methods on “hard” benchmarks still struggle on “simple” tasks

We also ran libLEARNA on the same set consisting of 476 MFE structures used in Section 3.2. For each structure,
we gave libLEARNA a three-hour time limit and let it run until 100 T -designs were found. libLEARNA only success-
fully returned 100 T -designs for 350 structures. Note that the returned sequences are discarded if a competing MFE
structure other than the target exists. Surprisingly, the discarded amount could be 100x more than the number of T -
designs for some structures (Fig. C.1). Among the 378 structures with at least 50 T -designs returned, the performance
of libLEARNA is similar to RNAinverse using biseparated seeds with a larger variance in the sequence diversity
(Fig. C.2).

On the MFE structure set of both 150 and 500 nts, NEMO successfully found at least one solution for all target
structures. It also showed a similar performance compared with using biseparated seed for target structures of 150 nts
(Fig. C.2). However, NEMO requires more time to complete the task of returning 100 solutions, which yields a larger
impact on larger structures (Fig. C.1a). Within a time limit (10h) set to each tool, NEMO only completes the current task
– finding 100 solutions uniquely folding into the target – for 256 out of 500 structures of 500 nts (Fig. C.1).

4 Discussion

Introducing biseparability combined with RNAinverse increases the sequence diversity and the proportion of wobble
base pairs GU (1‰ v.s. 3‰), however, this may still be far from rational RNA design. Nevertheless, the results of this
study demonstrate that negative seeds often are located exactly on or close to the neutral network, allowing fast access
to it. Studies on theoretical evolution showed that the neutral network of an RNA secondary structure is often quite
extensive and sufficiently connected that simple point mutations can result in long paths enclosed in the network [20].
A similar idea, exploiting this fact to further improve the ensemble defect of designed sequences, is implemented
in [27]. As a proof of concept, we chose one of the generated MFE structures as the example and performed a post-
design random walk within the neutral network to increase unpaired positions diversity (Fig. 8).

Despite RNAinverse being considered outdated and inefficient by now, more than 30 years after its first appear-
ance, we have shown that it is still possible to reach performance comparable to more recent strategies by combining
it with negative seeds offered by LinearBPDesign. Moreover, negative seeds can be efficiently generated in large
amounts. The integration of RNAinverse can serve as a rapid heuristic approach to ascertain the designability of the
specified target.

However, the intrinsic strategy of RNAinverse still hinders the design of certain target structures. Strategies to
improve this could include adapting a more efficient structure decomposition [17] or optimization method. To show
this, we tested a naive combination of LinearBPDesign (bi)separated seeds with NEMO on the popular EterRNA
benchmark, demonstrating that 88/90 puzzles could be solved within two hours (Fig. D.1). To prevent NEMO from
exceedingly departing from the initial seed, we implemented a forced restart of NEMO every five minutes. Unfortunately,
even with this precaution, the distance between the seed and the proposed solution was regularly large enough, to make
drawing a decisive conclusion on the impact of negative seed impossible. It is also worth noticing that, with separated
seeds, NEMO managed to solve a puzzle that remained unsolved using its default seed.

The large variance of the performance observed when using biseparated seeds hints at a lack of consistency when
using uniform sampling. One possible strategy to mitigate this is to add a post-sampling rejection step to filter out
unwanted or less probable seeds. However, when using Boltzmann sampled seeds, we detected a significantly lower
variance in performance. This suggests that using weighted sampling of LinearBPDesign, which supports both pos-
itive and negative design paradigms, can further improve the performance. It should be noted that when the base pair
energy model is used, as done here, this is equivalent to increasing the amount of GC base pairs since the wobble base
pair GU is not created in the negative seed strategy. Using Boltzmann sampling with a stack energy model, as done
in [15] requires a more complex dynamic programming scheme, such as provided by the Infrared framework [24],
to take care of energy contributions from adjacent base pairs as well as the constraints imposed by LinearBPDesign.

The success of directly using separated B-designs to solve INVERSE FOLDING within the Turner energy model,
notably for the uniformly sampled structure of minimum helix length 3+, indicates that the structure itself likely exerts
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a greater influence on the “hardness” of the design than the energy model. Another common “hardness” observed for
both energy models is the long-range rearrangement to form an alternative structure. Separability ensures that any
alternatives are less favorable in the BP model. The resulting B-designs are found to be close to T -designs with high
stability.

Data Availability. The code and scripts to run presented experiments can be found at https://github.com/ViennaRNA/
negseeddesign. The different seed initial strategy will be included in the next ViennaRNA release.
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A Proof of designability of biseparability

We first introduce some definitions: Given a nucleotide l = A or C, we denote l+, the complementary letter of c in
Watson-Crick pairings: C+ = G, A+ = U. We also denote l the opposite letter of l: A = C and C = A.

Theorem 3. Biseparability implies designable.

Proof. For the sake of simplicity, we provide the proof in the Watson-Crick energy model, allowing thus only the
pairing of A and U and of G and C (no wobble pairs) with each base pair accounted 1 in terms of energy. To extend
these results in the Nussinov-Jackobson energy model, one could directly apply Proposition 11 in Halès et al. Such
proof is not reported as no adaptation is needed here.

We denote ω the sequence such as ω is a biseparated sequence for S. (ω is of size n, with positions indexed from
0) Note that necessarily, all paired positions of ω in S paired G and C or A and U. Thus every G and U are paired in
S and ♯G + ♯U is exactly the maximum number of base pairs that a secondary structure can do over ω. Now suppose
by contradiction that there exists an alternative structure S′ with as many base pairs as S We show that all unpaired
positions in S are also unpaired in S′. If it is not the case, it means that there is a pair between what was an unpaired
l, l ∈ {A,C} at position i and what was a paired l+ at position j in S. One can compute the imbalance in numbers
of l

+
and l delimited by the base pair between positions i and position j, which delimits an inside and an outside

∀area ∈ {inside, outside}

Iarea =| {k ∈ Sarea | ω(k) = l
+} | − | {k ∈ Sarea | ω(k) = l} |

where Sinside = [i, j] and Soutside = [0, i] ∪ [j, n− 1].
Note that we can now separate the l depending if they were paired in S or not: (note that all l

+
are always paired

in S)

Iarea =| {k ∈ Sarea | ω(k) = l
+
, ω(k) is paired in S} | − | {k ∈ Sarea | ω(k) = l, ω(k) is paired in S} |

− | {k ∈ Sarea | ω(k) = l, ω(k) is unpaired in S} |

That we can rewrite with the following notation for simplicity:

Iarea = Iarea, paired in S− | {k ∈ Sarea | ω(k) = l, ω(k) is unpaired in S} |

Together, Iinside, paired in S and Ioutside, paired in S contains all the l and l
+

that were paired in S and as they were
paired together:

Iinside, paired in S + Ioutside, paired in S = cste = 0

https://doi.org/10.1093/nar/gkp892
https://doi.org/10.1093/nar/gkp892
https://doi.org/10.1145/3307339.3342163
https://doi.org/10.1145/3307339.3342163
https://doi.org/10.1145/3307339.3342163
https://doi.org/10.1145/3307339.3342163
https://doi.org/10.1038/s41586-023-06127-z
https://doi.org/10.1038/s41586-023-06127-z


14 T. Boury et al.

Note that Iinside, paired in S corresponds exactly to an imbalance of levels, meaning that in a biseparated sequence, we
have Iinside, paired in S ̸= 0. By agregating this two results, it means for Iinside, paired in S and Ioutside, paired in S that one
is < 0 and the other > 0. W.l.o.g, we consider that Iinside, paired in S > 0. Thus Iinside ≥ Iinside, paired in S > 0. We
have shown that, when we have an alternative base between i and j, we have at least one l

+
that is unpaired in ω with

structure S′. As all l
+

and l+ were paired, it currently means that there are fewer base pairs in S’ than in S which is a
contradiction. Thus every unpaired position that is unpaired in ω with S is also unpaired in ω with S′.

B Showcase of structure modification for high modulo separability
In practice, it is rare to encounter a secondary structure that is non-separable or requires high modulo to be sepa-
rable (thus requiring an unreasonable time of computation). Here, we consider a separable secondary structure with
a minimum modulo m = 5. Extending the target structure by adding two extra base pairs with the structure tree
augmentation introduced in Section 2.3 decreases the minimum modulo to 2 (Fig. B.1a). In the strict design scheme
where a modification of the target structure is not allowed, one can first sample B-designs of the new structure with
less computation time, then provide to RNAinverse as the seed sequence while removing the added base pairs. As
illustrated in Figure B.1b, despite that none of such seed sequences is directly a T -design of the target structure, only
a few mutations are needed for RNAinverse to find the T -designs, showing a potential application.
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(b)

Fig. B.1: Toy example to showcase structure tree augmentation. (a) Target structure with two added base pairs (red)
and a 2-separable B-design. Paired bases are colored in black for GC, white for CG, and gray for AU and UA.
(b) Histogram of needed mutation amount to find T -designs using RNAinverse with 200 modified B-design seeds.

C Additional results of designing MFE structures

We consider designing 476 MFE secondary structures of size 150 nts within the Turner energy model that cannot be di-
rectly solved by biseparated B-designs. For each seed sequence strategy, we ask for 100 T -designs using RNAinverse
-R-100 with a time limit of 2h. As shown in Figure C.1a, the majority of the tasks were done within one minute using
separated and Boltzmann sampled seeds. Using biseparated seeds requires a longer computing time of RNAinverse,
but most tasks were completed within five minutes. Conversely, libLEARNA seems to be struggling with some struc-
tures. As libLEARNA may return solutions adapting multiple structures as MFE conformation, the design process
for each structure is set to terminate when either 100 T -designs are returned or a 3h computational time is reached.
Among all 476 structures, libLEARNA returned 100 T -designs for 350 of them. However, it is unable to find any
solutions for 13 structures and 8 more structures without any T -design. Figure C.1 shows the number of solution
returned by libLEARNA against the number of T -designs. Surprisingly, the difference between the two values could
be extremely large. Solutions of 378 structures where libLEARNA found at least 50 T -designs are used to compare the
performance with other methods (Fig. C.2).

Next, we ran the same experiment as the previous section on a set consisting of 500 MFE structures of random
sequences of length 500 nts. RNAinverse was run with different seed strategies, Boltzmann sampled, separated, and
biseparated, and returned 100 T -designs for, respectively, 499, 498, and 493 structures. As visualized in Figure C.3, the
performance is in general similar to the ones on shorter structures of length 150 nts. biseparated and Boltzmann sam-
pled seeds located slightly further to the final T -designs that require more mutations using RNAinverse. Conversely,
separated seeds are still close to the final T -designs.
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Fig. C.1: Required time to find 100 T -designs in boxplot (a). We ran RNAinverse with biseparated (blue), separated
(orange), and Boltzmann sampled (green) seeds and NEMO (red) on MFE structure sets with length 150 and 500 nts.
Only the time of the successful tasks (100 T -designs returned) is considered. Number of T -designs found against the
number of solutions returned by (b) libLEARNA within 3h and (c) NEMO within 10h for a given target. Structures
beyond the red line (at least 50 T -designs) are used for performance comparison.
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Fig. C.2: Performance of RNAinverse with different seed strategies and libLEARNA in violinplots. For each suc-
cessfully solved target, the average value is computed among obtained T -designs for normalized ensemble defect of
seeds (orange) and solutions (blue) to the target structure (a), and sequence diversity quantified by the pairwise Ham-
ming distance on full sequence (b) and dinucleotide entropy on paired positions (c), as well as the best-normalized
ensemble defect reached of each structure (d). In each plot, from left to right, is the seed sequence strategy with
separated, biseparated, Boltzmann sampling, Boltzmann sampling with a choice of A and C to fill loop, uniform sam-
pling, libLEARNA, and NEMO.
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Fig. C.3: Performance of RNAinverse with different seed strategies on a set of MFE structures of 500 nts in
violinplots. For each successfully solved target, 100 T -designs are obtained and the average value is computed for
mutation needed from seed to design (a), normalized ensemble defect of seeds (orange) and solutions (blue) to the
target structure (b), and sequence diversity quantified by the pairwise Hamming distance on full sequence (c) and din-
ucleotide entropy on paired positions (d). In each plot, from left to right, is the seed sequence strategy with separated,
biseparated, and Boltzmann sampling.
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D Additional EterRNA benchmark results

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Biseparated 88
Separated 90

NEMO 89.4 (90)NEMO

Fig. D.1: Summary of solving Eterna100 v2 benchmark using NEMO with different seed strategies. Light green
indicates success in all 5 runs while dark green means at least one success. The performance of NEMO with (bi)separated
seed obtained from LinearBPDesign. NEMO is given two hours for each puzzle and is forced to restart from a new
seed every five minutes to avoid losing the impact of the initial seed.

(a)

......(((......((((..(....(((........)))....).....)))).......)))...........
AAAAAAGGGAAAAAAGAACAACGAAACUCAAAAAAAAGAGAAAAGGAAAAGUUCAAAAAAACCCAAAAAAAAAAA ✓
CCCCCCUGCCCCCCCCUCUCCCCCCCUGACCCCCCCCUCACCCCGCCCCCAGAGCCCCCCCGCACCCCCCCCCCC

(b)

Fig. D.2: Case study on two EterRNA puzzles. (a) Puzzle 51, structure with a large multiloop of degree 25, with a
separated B-design that is also a T -design. Paired bases are colored in black for GC, white for CG, and gray
for AU and UA. (b) Puzzle 75 consists of two loops separated by an isolated base pair. RNAinverse either reaches the
final T -design or gets trapped in the local minimum in with few mutations. The mutations are marked in red.

E Handling of multiloops for the heuristic unproper method

To handle multiloops in the unproper manner, we tweak the dynamic programming by replacing “proper” assignment
with any assignment.

However, a naive implementation still requires an overhead enumeration, in practice, of 4d assignments of letters
with d as the degree of the multiloop. To solve that, note that contrary to the proper case, a base pair assignment here
does not depend on the assignments of its “siblings” but only on the current levels. Thus, in that case, there is no use
for a parent to force the assignments of its children. Instead one can simply let them free to determine their “destiny”
themselves. It is performed by letting the base pairs children in a node determine them with auto-recursion which
assignments they can take according to the levels. In terms of complexity, it replaces the previously evoked cost by
O(d), which is indeed linear over the whole tree structure:

pξLv→µ,ℓ =



∑
c∈{GC,CG,AU,UA}

pξLv→c,ℓ if c =?? and v is not leaf

1l∈ξL if v is leaf
0 if ℓ ∈ ξL and µ ∈ {(A,U), (U,A)}
1 if children(v) = ∅∏
vi∈children(v)

vi is leaf

pξL
vi→A,ℓ′

∏
vi∈children(v)
vi is not leaf

pξL
vi→??,ℓ′ otherwise.
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