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ABSTRACT
With the rise of SSL and ASR technologies, the Wav2Vec2
ASR-based model has been fine-tuned for automated speech
disorder quality assessment tasks, yielding impressive results
and setting a new baseline for Head and Neck Cancer speech
contexts. This demonstrates that the ASR dimension from
Wav2Vec2 closely aligns with assessment dimensions. De-
spite its effectiveness, this system remains a black box with
no clear interpretation of the connection between the model
ASR dimension and clinical assessments. This paper presents
the first analysis of this baseline model for speech quality as-
sessment, focusing on intelligibility and severity tasks. We
conduct a layer-wise analysis to identify key layers and com-
pare different SSL and ASR Wav2Vec2 models based on pre-
trained data. Additionally, post-hoc XAI methods, includ-
ing Canonical Correlation Analysis (CCA) and visualization
techniques, are used to track model evolution and visualize
embeddings for enhanced interpretability.

Index Terms— Speech quality assessment, Interpretabil-
ity, Pathological speech, ASR, SSL

1. INTRODUCTION

In the 21st century, people have a variety of communication
choices, which make life easier. Nonetheless, verbal commu-
nication continues to play an irreplaceable role in the culture
of humanity. Because only through verbal communication
can we, as humans, fully comprehend and express all the intri-
cate aspects of a subject, including emotions, and more. The
lack of ability to communicate using speech often referred to
as a speech disorder, represents a significant loss and necessi-
tates the need for treatment. Speech disorders can be caused
by various reasons such as Parkinson’s disease, throat can-
cer, stroke, etc [1, 2]. This leads to various treatment meth-
ods specific to different disease stages and causes. Moreover,
each patient may have different responses or adaptations to
the same treatment method. Regular assessment of speech has
to be conducted after a certain period of time to ensure the ef-
fectiveness of the treatment method as well as to monitor the
patient’s condition [3]. However, this assessment process de-
mands substantial resources and expertise. Therefore, efforts
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to develop an automated speech quality assessment architec-
ture as an alternative or support to this process have been in-
creasing in recent years [4, 5]. Some automatic systems have
shown robust performance and stability by learning from ex-
pert decisions [6, 7].

In 2024, Nguyen et al. [8] introduced a system that
leverages the Automatic Speech Recognition (ASR) based
Wav2Vec2 model [9], known for its strong capability in
learning speech representations. This approach compared
self-supervised learning (SSL) and the ASR dimension for
speech quality assessment. It is shown that the fine-tuning
of SSL models, using the ASR dimension, achieves the best
results for the downstream task [8]. Despite its good per-
formance, this assessment system is not perfect, and the
actual behavior of the model is not well understood, which
could pose significant problems, especially in the medical
domain. Therefore, it is important to clarify and understand
the decision-making process to ensure trustworthiness for hu-
mans, making these systems applicable in real-life scenarios.

In this paper, we present the first analysis of the ASR-
based Wav2Vec2 model for speech disorder assessment, fo-
cusing on the prediction task of both intelligibility and sever-
ity scores. Our study begins with a layer-wise analysis of the
model performance to identify which layers are most dedi-
cated to these tasks, providing insights crucial for future re-
search in the community. This analysis involves freezing and
fine-tuning parts of the model up to selected layers to better
understand how training should be approached in future. Fur-
thermore, we conducted this layer-wise analysis across dif-
ferent versions of Wav2Vec2 models, based on the amount
of pre-trained data. By comparing their performance in the
speech quality assessment tasks, we aim to establish the ini-
tial connection between pre-trained SSL data and its impact
on speech quality assessment, a question that has yet been
addressed in prior work [8]. This exploration promises ben-
efits not only for the speech disorder community but also
for the SSL speech community, offering insights into the ef-
fects of data quantity and characteristics on model perfor-
mance. In the parallel, we use a post-hoc eXplainable AI
(XAI) method to gain more insights. Specifically, we uti-
lize Canonical Correlation Analysis (CCA) to track how the
model evolves across layers. Finally, we visualize the embed-
ding information to enhance interpretability.

ar
X

iv
:2

41
0.

08
25

0v
1 

 [
ee

ss
.A

S]
  1

0 
O

ct
 2

02
4



2. CORPUS

This paper utilized four different corpora. Different variants
of Wav2vec2-based ASR were trained using the Common
Voice corpus [10]. The BREF [11] corpus was used to de-
velop a phoneme recognition system intended for subsequent
layer-wise analysis. Other analysis experiments of the paper
is based on two additional French speech corpora: C2SI [12]
and SpeeCOmco [13, 14], recorded within the context of
Head and Neck Cancers (HNC).

2.1. Common Voice

First introduced in 2019 by Mozilla, Common Voice re-
sponded to the problem of training data scarcity for speech
technology, which was unavailable for most languages or
otherwise prohibitively expensive at that time. It is a multi-
lingual, open-sourced corpus designed specifically for ASR.
Data collection is conducted through crowd-sourcing, where
participants are asked to record their speech by reading sen-
tences displayed on the screen via the project application
or website. In the context of this paper, the French corpus
(version 6.1) is used to align with the work of [8].

2.2. BREF

The BREF corpus, introduced in 1991, is a comparable data
for French, similar to other major corpora in different lan-
guages such as TIMIT [15]. Specifically designed for as-
sessing automatic speech recognition systems and studying
phonological variations, this paper uses the BREF-120 cor-
pus, featuring 120 speakers primarily from the Paris region.
These participants were given a short reading test, which con-
tains sentences collected from LeMonde newspaper. In total,
115 hours of read-speech data from 65 females and 47 males
were collected.

2.3. C2SI

C2SI is a French corpus recorded from 2015 to 2017 as part of
the Carcinologic Speech Severity Index (C2SI) INCa project,
comprises speech recordings from healthy controls (HC) and
patients diagnosed with Head and Neck Cancer. Recorded
tasks include sustaining /a/ vowels, describing pictures, and
reading text passages or pseudowords, facilitating analysis of
speech distortion at multiple levels, including phonation, con-
tinuous speech production, and prosody-specific aspects.

This paper relies on different sets of recordings from 106
speakers - 82 patients and 24 HC - to conduct experiments.
The first set is based on passage reading task. The first para-
graph of La Chèvre de monsieur Seguin, a tale by Alphonse
Daudet, was read by participants. A group of six experts then
listened to these audio recordings and provided individual
perceptual evaluations on speech intelligibility and severity.
The evaluation is on a scale from 0 to 10, where a score of

0 represents severe speech disorder or unintelligible speech,
and a score of 10 represents normal or highly intelligible
speech. Another set of audio recordings used in this paper
was based on the sustained vowel task. These recordings
contain the production of 3 sustained vowels /a/. They could
provide information on lower dimensions of speech such as
voice level, stability, harmonics contents, etc.

2.4. SpeeCOmco

Comprising 27 patients suffering from Head and Neck Can-
cer, Speech and Communication in Oncology (SpeeCOmco)
is an additional corpus for C2SI. Similar to the C2SI passage
reading set, participants provided audio recordings of reading
La Chèvre de monsieur Seguin, which were evaluated by the
same panel of experts using the same metrics as in C2SI. In
this study, SpeeCOmco is used to test extended speech quality
assessment models, following the approach proposed by [8].

3. BASELINE SYSTEM

In the study by [8], the authors introduce an architecture us-
ing Wav2Vec2-based ASR as the initial component or feature
extractor for speech quality assessment tasks. Subsequently,
these features pass through intermediate layers, which include
a statistical pooling layer (mean and standard deviation) and
two linear layers of size 1024. Finally, a basic linear layer
with a dimension of 1 is employed to generate output scores
for intelligibility or severity. The model’s performance is
measured based on the Mean Squared Error (MSE) between
the predicted scores and the ground truth. All layers, includ-
ing Wav2Vec2, are updated during training to align them with
the downstream task space.

They compared the Wav2Vec2-3K-Large and Wav2Vec2-
7K-Large models, both fine-tuned on ASR tasks using the
CommonVoice dataset. These models were pre-trained on
self-supervised tasks using approximately 3000 hours and
7700 hours of healthy speech, respectively. The authors ob-
served that starting with Wav2Vec2-based ASR outperformed
Wav2Vec2-based SSL in fine-tuning for speech quality as-
sessment, achieving superior results in both intelligibility and
severity in the context of HNC patients. Another finding is
also interesting since the 3K model performs better compared
with 7K model despite less pre-trained SSL data. However, it
is not totally clear what could caused this difference.

4. ANALYTICAL APPROACHES

This paper undertakes an analysis of the current baseline of
automatic speech quality assessment, as described in the pre-
vious section. Firstly, we add more models using different
pre-trained starting points to the original models proposed
by Nguyen et al. [8]. Secondly, we extract frame-level fea-
tures using passage reading , which are then use in Canoni-



cal Correlation Analysis (CCA) [16] framework to gain more
insights about the models. This analysis is conducted layer-
wise. In parallel, different layer embeddings are employed
to train for the final task in order to identify the best layer.
Finally, based on the results of CCA and layer-wise training,
visualization using scatter plots is performed at the phoneme-
level for read speech and at the frame-level for sustained vow-
els.

4.1. Additional models for comparative analysis

To observe the impact of the amount of data used for pre-
training SSL, we compared our five different models (com-
prising two Wav2Vec2-based SSL and three Wav2Vec2-based
ASR).

LeBenchmark recently published another pre-trained
model, Wav2Vec2-14K-Large, which was trained on an ad-
ditional 7000 hours of data from the 7K-model [17]. We
fine-tuned this new 14K model, along with the previous
Wav2Vec2-1K-Large pre-trained SSL model, using the Com-
mon Voice dataset for the ASR downstream task. This pro-
cess was carried out using the end-to-end approach provided
by SpeechBrain [18], which is identical to that used by the
current baseline. For a comprehensive comparison, we addi-
tionally fine-tuned the 7K model using the Common Voice
6.1 dataset, aligning with other models, instead of following
the approach in [8] where the available 7K model ASR from
SpeechBrain, fine-tuned for Common Voice 14, was used.

Moving forward, we will employ the following labels:
1K-ASR, 3K-ASR, 7K-ASR, and 14K-ASR to represent
ASR-based models, and 1K-SSL, 3K-SSL, 7K-SSL, and
14K-SSL for SSL-based models.

4.2. Layer-wise training

For a more robust investigation of the impact of each layer
from the pre-trained Wav2Vec2-based ASR model, we trained
this model in layer-wise manner for speech disorder assess-
ment task. To investigate which layers in the ASR model pro-
vide relevant information for downstream tasks, we freeze all
layers of the ASR-based Wav2Vec2 model and extract repre-
sentations layer-wise for downstream training. In parallel, we
conducted partial fine-tuning experiments, we conducted par-
tial fine-tuning experiments, progressing layer by layer from
one layer, to two layers, and so forth up to all layers.This ap-
proach aimed to explore potential reductions in computational
costs, preservation of critical information,etc. These findings
could provide valuable insights into feature analysis for the
target task.

4.3. Canonical correlation analysis

Canonical Correlation Analysis (CCA) is a statistical method
that measure the relationship between continuous-valued vec-
tors by maximizing their linear projections’ correlations. In

the context of neural networks, CCA is well-known for evalu-
ating the similarity of representations either between different
models or within a single model. Its ability to remain invariant
to linear transformations makes it particularly useful for this
purpose. Consequently, CCA is commonly utilized to investi-
gate the characteristics of deep learning models [19, 20, 21].

Since then, multiple variants of CCA have been in-
troduced, but notable ones include Singular Vector CCA
(SVCCA) [22] and Projection-Weighted CCA (PWCCA)
[23]. Both SVCCA and PWCCA are designed to address
the issue where not all dimensions (neurons) of a neural net-
work layer may be utilized or active during the training task.
SVCCA employs singular value decomposition (SVD) to re-
move low variance neurons that primarily introduce noise.
On the other hand, PWCCA calculates a weighted mean of
the correlation per neuron, assigning higher weights to direc-
tions that contribute more to the input. Both variants have
demonstrated increased robustness compared to the original
method. Given that SVCCA requires determining a threshold
for the number of dimensions to be used, we decided to use
PWCCA variant instead. For simplicity, we will refer to this
variant as CCA from this point forward.

CCA is utilized to evaluate the similarity between layer
representations of different Wav2Vec2 feature extractors, as
described in Section 4.1, and their counterparts : (i) from cor-
responding layer of pre-trained ASR models (CCA-ASR),
(ii) pre-trained SSL model (CCA-SSL) and (iii) from the
acoustic information of phoneme recognition model (CCA-
phoneme). For this analysis, we exclusively used models
with equivalent pre-trained SSL data as the feature extractor
variants (1K, 3K, 7K, and 14K).

4.4. Phoneme encoder

As observed in previous studies [24, 25, 26], phoneme in-
formation strongly influences the assessment of severity and
intelligibility in speech disorders. To compare the informa-
tion present in the system’s feature extractor, we fine-tuned a
phoneme recognition model using Wav2Vec2 7K-SSL in an
end-to-end approach with the Connectionist Temporal Clas-
sification (CTC) loss function. The model was trained on
the BREF corpus, with an 80-10-10% split between the train-
ing, validation, and test sets. It achieved its best performance,
with a Phone Error Rate of 3.4%, on the test set. This model
encodes meaningful phoneme representations, supported by
prior research [27, 28]. Consequently, the output of the last
layer of this Wav2Vec2 model (layer 24) was employed to
analyze the phoneme information of the systems using CCA-
phoneme as described in 4.3.

4.5. t-SNE visualization

Building upon the results obtained from the above analysis
methods, we will further examine and visualize the repre-
sentations of last layer of feature extractor Wav2Vec2 -



the 24th layer. To do that, we applied t–Stochastic Neigh-
bourhood Embedding (t-SNE) method [29] to reduce the in-
formation from layer 24 to 2-dimensional plane. The focus
here is to observe the system behavior, in terms of speech
representation, at the phoneme level for read speech and at
the frame level for the sustained vowel production task. For
the phoneme level, the approach involves averaging all frames
of each phoneme utterance using mean and standard deviation
to generate a representative vector for the corresponding ut-
terance.

5. INSIGHTS

All experiments were conducted for both intelligibility and
severity assessment targets. Due to page limitations, read-
ers should expect similar behavior across both tasks if only
a single task is reported without specification. Additionally,
all visualization clustering techniques were applied to the last
layer of the feature extractor Wav2Vec2 (layer 24).

For all subsections 5.1, 5.2 and 5.3, the C2SI reading cor-
pus was used to train the system and compare it with the base-
line system. This corpus was also utilized to extract embed-
dings of the system and calculate CCA in subsections 5.4, 5.5,
5.6. In subsection 5.7, we used the C2SI corpus sustained
vowel audios to extract embeddings and visualize them. The
SpeCOmco corpus was used to report performance in subsec-
tions 5.1 and 5.3, as well as to visualize phoneme information
in subsection 5.6 with t-SNE.

5.1. Relationship between pre-trained SSL data and
speech quality assessment

Following the training and evaluation process outlined in [8],
Table 1 illustrates the performance of additional models de-
tailed in Section 4.1 using 10-fold validation, compared with
the models from the same study. The results are reported on
SpeCOmco corpus using MSE as described in Section 3

Comparing the feature extractors based on SSL, it’s evi-
dent that the two additional models, 1K-SSL and 14K-SSL,
have poorer performance compared to 3K-SSL and 7K-SSL.
It’s clear that having thousands of data points less signifi-
cantly impacts the performance of 1K-SSL on both tasks. De-
spite the additional 7000 hours of data, 14K-SSL fails to per-
form anywhere close to the levels achieved by 3K-SSL and
7K-SSL. This result may be due to the additional 7000 hours
of data in the 14K-SSL model, which includes Niger-Mali
French [17], leading to a broader range of acoustic informa-
tion captured by the model. This broader scope may not align
well with the C2SI corpus, which primarily includes French
mainland speakers, making it more challenging for tasks re-
lated to comprehensibility or intelligibility.

However, for the severity task, which focuses more on
acoustic or low-level speech information, all SSL models
have shown similar performance. This is logical since SSL

Table 1: MSE results (mean ± std) for severity and intelligi-
bility prediction tasks with different pre-trained models

Intelligibility
MSE

Severity MSE

Feature Extractor Based on Pre-trained SSL
3K-SSL [8] 1.65 ± 0.43 2.1 ± 0.83
7K-SSL [8] 1.84 ± 0.49 1.83 ± 0.71
1K-SSL 3.65 ± 1.44 2.30 ± 0.53
14K-SSL 3.25 ± 1.4 2.23 ± 0.89

Feature Extractor Based on Pre-trained ASR
3K-ASR baseline [8] 0.73 ± 0.18 1.15 ± 0.14
7K-ASR baseline [8] 0.98 ± 0.26 1.15 ± 0.16
1K-ASR 0.9 ± 0.17 1.33 ± 0.21
7K-ASR 1.1 ± 0.23 1.76 ± 0.50
14K-ASR 0.86 ± 0.19 1.28 ± 0.15

models are known for their capability to capture speech rep-
resentations well, especially acoustic information, resulting
in similar performance among them.

Looking at the ASR-based models, we observe a similar
performance among all ASR models. Since the ASR mod-
els have been fine-tuned with the Common Voice dataset, this
may lead to some forgetting of information from the origi-
nal SSL model, effectively pulling all SSL models towards
better alignment with the task. This suggest that the ASR
dimension is closer and more important for speech disorder
assessment. A notable observation is that after ASR fine-
tuning, the 7K model exhibits poorer performance compared
to the others. This could be attributed to more than half of
the 7K pre-trained data (4000 hours) leaning towards sponta-
neous speech, which might be emphasized in ASR task.

5.2. Relationship between ASR performance and speech
quality assessment

Comparing our new 7K-ASR model with the 7K-ASR base-
line used in [8], we observe a decline in performance across
both tasks, particularly in the severity task where both per-
formance and stability are significantly worse. This decline
can be attributed to the amount of ASR data used to obtain
the ASR model. As indicated in [8], the pre-trained 7K-ASR
model served as a baseline provided SpeechBrain, trained on
CommonVoice 14, which includes approximately 400 more
hours of ASR data compared to the version used in our study.

On the other hand, the 7K-ASR baseline model yielded
better ASR performance, with a Word Error Rate (WER) of
10.24%, while our version only achieved a WER of 13.45%.
Similar behavior is observed among the 1K, 3K, and 14K
ASR models. The 3K model achieved the lowest WER,
whereas the 1K model had the highest. Interestingly, this
ASR performance pattern aligns with the performance of



Fig. 1: Performance comparison of freeze and fine-tuned layer-wise feature extractor training on speech quality assessment
tasks

speech quality assessment, with the 3K model outperforming
the others.

The new 7K-ASR model, despite having a better WER
than the 1K and 14K models on the same version of Common-
Voice corpus (13.45% WER compared to 16.64% and 15.52%
WER, respectively), performed worse in the assessment tasks.
This should be attributed to the amount of pre-trained SSL
data, which is more lean towards spontaneous speech, as ex-
plained in section 5.1.

5.3. Layer-wise training analysis

Figure 1 illustrates the results of layer-wise training, both
when freezing and fine-tuning the feature extractor model as
described in Section 4.2, across different assessment tasks.

There is a similarity in performance between freeze and
fine-tuning for the initial layers, indicating that the infor-
mation in these layers remains relatively stable throughout
fine-tuning and could be frozen to faster the process. Look-
ing at the intelligibility task, there is a notable performance
difference between freeze and fine-tuning from higher layers
(starting from layer 8). In contrast, for the severity task, the
representations of ASR models at intermediate layers ex-
hibit similar performance with fine-tuning, with some layers
achieving identical performance at layer 22. This suggests
that ASR models encapsulate acoustic or low-level infor-
mation for severity assessment across intermediate layers,
requiring only minor adjustments in fine-tuning to achieve
convergence. On the other hand, for intelligibility, the neces-
sary information seems less clear with ASR models, requires
fine-tuning to achieve optimal performance. Nevertheless,
the overall trend for both fine-tuning and freezing indicates
that intermediate layers (layer 8 onwards) contain relevant
information for speech quality assessment. However, the
14K-ASR model exhibits a different behavior compared to
the others from layer 9 to layer 16. This unusual behav-
ior in the mid-layers suggests that the additional data from
the African accent provide more different speech dimension
which is not observed in the other models. Further analysis
is required which could provide more insight into the impact

(a) CCA-ASR

(b) CCA-SSL

(c) CCA-phoneme

Fig. 2: CCA similarity between fine-tuned feature extractors
with pre-trained ASR Wav2Vec2, SSL Wav2vec2 models and
phoneme encoder

of data on SSL models and to understand why the ASR per-
formance of the 14K model is inferior to that of the 3K or 7K
models, as indicated in [17] despite having more pre-trained
data.

5.4. Impact of fine-tuning on the ASR model

As observed in previous sections, the 3K-ASR baseline con-
tinues to demonstrate the best performance among all models.
Therefore, starting from this section onward, all analyses are
conducted using the 3K-ASR baseline model.

The CCA-ASR analysis (Fig. 2a) revealed a consistent
and relatively high similarity between the ASR pre-trained
model and the feature extractor of the automatic assessment



system, gradually decreasing from layer 0 to layer 24 but con-
sistently remained at a minimum level of around 0.7. Given
this observation, it could be inferred that freezing the upper
layers during training is viable, as their similarity is excep-
tionally high. This finding provides additional support for
the conclusion drawn in [8] that pre-trained ASR serves as
a strong initialization for both severity and intelligibility as-
sessment.

5.5. The SSL representation within model

Looking at CCA-SSL (Fig. 2b), we can clearly observe a con-
tinuance decrease in similarity across layers. This aligns with
CCA-ASR as well, where similarity primarily relates to ASR.
However, in the last 3 layers, the CCA score sharply increases
to nearly 0.8. This is intriguing as [20] demonstrated that SSL
follows an encoder-decoder style, suggesting that these final
layers closely resemble the input as if they are reconstructing
the input signal. Additionally, a notable point is that the 14K
model exhibits a different behavior compared to the others,
with the CCA score consistently decreasing linearly.

5.6. Phonetic information in feature extractor

When comparing the phoneme information encoded within
the feature extractor with the last layer of the phoneme recog-
nition system, we observed a relatively low similarity score
of approximately 0.6 across layers (Fig. 2c).

The data points in Fig. 3a represent phoneme utterances,
with each point labeled according to phoneme type (conso-
nant or vowel) on the left, and speech quality (severe, mild,
and healthy) on the right. The plot on the left indicates that
feature extractors cannot distinguish between consonants and
vowels, corroborating with CCA-phoneme. However, the
plot on the right demonstrates that feature extractors can
distinguish between patients based on their speech quality.
This suggests that unlike ASR, the feature extractors may not
clearly distinguish between phonemes (e.g., between vowels
and consonants) but may instead capture lower-level phonetic
information (nasal, labial, etc), consistent with findings from
[25].

5.7. Voice production information in feature extractor

Figure 3b presents the visualization of sustained vowels at the
frame level, with each point labeled according to the quality
class of the respective patient. Since records related to the
sustained vowels only contain a single vowel (in this particu-
lar case, vowel ”a”) pronounced continuously, it is typically
used to measure voice quality [30]. Indeed, this type of audio,
especially the stable part of the vowel, makes the measure-
ment of voice characteristics such as jitter and breathiness
easier. As observed in Fig. 3b, the three levels of speech
quality (represented by the three patient groups - healthy,
mild, and severe) are distinctly separated, with the severity

(a) phoneme utterances level

(b) vowel frame level

Fig. 3: 2D t-SNE visualization of the last Wav2Vec2 layer

task showing slightly clearer separation than intelligibility.
This suggests a strong correlation between voice informa-
tion and the model decision, which is logical considering
that patients suffering from cancer often exhibit significant
patterns of fatigue or discontinuous speech whereas healthy
speakers do not. While testing the overall model performance
using sustained vowel audio, the model MSE is notably high,
with MSE values of 15.16 for the severity task and 17.11
for the intelligibility task. This is expected, as the model
was trained primarily on read speech. Despite Wav2Vec2
ability to capture voice signal details, accurate scoring still
requires speech-related dimensions like continuous speech,
and phonetic variety. Combining this with Section 5.6, we can
conclude that the model relies not only on speech dimensions
such as articulation, resonance, and probably prosody (not
studied here), but also needs to incorporate voice information
to make final scoring decisions the most accurate.

6. CONCLUSION

This paper presents the first analysis on automatic speech
quality assessment using ASR as a pre-trained starting point.
We found that aligning the domain of pre-trained SSL data
with downstream speech tasks (e.g., read speech with read
speech) is more critical than the quantity of pre-trained data.
Additionally, the experiments show a strong correlation be-
tween ASR performance and quality assessment, highlight-
ing the impact of not only phonetic features but also low-
dimensional voice signals. Finding of an unusual pattern in
the 14K model’s layers suggests the need for further investi-
gation into the effects of data quantity on model behavior.
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