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Abstract

Memory consolidation processes have traditionally been investigated from the perspective of hours or days.
However, recent developments in memory research have shown that memory consolidation processes could
occur even within seconds, possibly because of the neural replay of just practiced memory traces during short
breaks. Here, we investigate this rapid form of consolidation during statistical learning. We aim to answer (1)
whether this rapid consolidation occurs in implicit statistical learning and general skill learning, and (2) whether
the duration of rest periods affects these two learning types differently. Human participants performed a widely
used statistical learning task—the alternating serial reaction time (ASRT) task—that enables us to measure im-
plicit statistical and general skill learning separately. The ASRT task consisted of 25 learning blocks with a rest
period between the blocks. In a between-subjects design, the length of the rest periods was fixed at 15 or
30 s, or the participants could control the length themselves. We found that the duration of rest periods does
not affect the amount of statistical knowledge acquired but does change the dynamics of learning. Shorter
rest periods led to better learning during the learning blocks, whereas longer rest periods promoted learning
also in the between-block rest periods, possibly because of the higher amount of replay. Moreover, we found
weaker general skill learning in the self-paced group than in the fixed rest period groups. These results sug-
gest that distinct learning processes are differently affected by the duration of short rest periods.
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Significance Statement

Results of this study suggest that short rest periods affect general skill learning and the dynamics of statisti-
cal learning. Shorter rest periods could lead to online learning, while longer rest periods promote offline im-
provement. Our results can be explained by the different number of neural replays during the different
lengths of short rest periods.

Received June 9, 2022; accepted December 7, 2022; First published February
15, 2023.
The authors declare no competing financial interests.

Author contributions: L.F., D.N., and T.V. designed research; T.V. performed
research; R.Q. and T.V. contributed unpublished reagents/analytic tools;
L.Sz-B. and T.V. analyzed data; L.Sz-B., L.F., N.S., R.Q., D.N., and T.V. wrote
the paper.

February 2023, 10(2) ENEURO.0228-22.2022 1–10

Research Article: Confirmation

https://orcid.org/0000-0001-7659-3605
https://orcid.org/0000-0002-9629-5856
https://doi.org/10.1523/ENEURO.0228-22.2022


Introduction
Learning is the process of gaining knowledge or skills

by studying, practicing, or experiencing events repeatedly.
The development of knowledge is not limited to the duration
of the practice, as it continues to develop between training
sessions, either during awake or sleep periods. This phe-
nomenon is known as memory consolidation (Robertson et
al., 2004b). Consolidation was previously thought to occur
during an extended period, from hours to days (Squire et
al., 2015). Recent studies suggest that memory consolida-
tion can occur within shorter periods, even in seconds
(Bönstrup et al., 2019). It has been suggested that this phe-
nomenon is because of the neural replay of just practiced
memory traces during short breaks (Buch et al., 2021).
However, previous research has investigated the effect of
short rest periods—when replays occur—on learning only
with one predetermined fixed rest period (Du et al., 2016;
Bönstrup et al., 2019) or multiple self-paced rest periods
(Quentin et al., 2021; Fanuel et al., 2022). Their results do
not allow us to determine the causal role of short rests in
the learning process, or whether more replay leads to better
learning performance. To fill this gap, in the present study,
we manipulated the duration of rest periods—indirectly the
possible amount of replay—to test whether rest durations
affect differently (1) the general speedup on a statistical
learning task independent of the statistical probabilities in
the task (general skill learning) and (2) the learning of statisti-
cal probabilities (statistical learning).
Rest periods inserted in a learning process may facili-

tate the acquisition of new skills (Walker et al., 2002). In
the study of Bönstrup et al. (2019), the performance on an
explicit motor skill learning task improved during short, 10 s
rest periods. In their study, frontoparietal b oscillatory activ-
ity during rest periods was associated with learning gains
from rapid consolidation. A reanalysis of these data sug-
gested that such rapid consolidation is driven by the replay
of just practiced memory traces during short breaks (Buch
et al., 2021). As the awareness of learning determines how
knowledge acquisition gains from offline periods (Robertson
et al., 2004a, b), this rapid consolidation maymanifest differ-
ently or even be absent during implicit learning of statistical

regularities. Implicit statistical learning implies the process
of unintentional acquisition of probabilistic regularities em-
bedded in the environment (Cleeremans and Jimenez,
1998; Howard et al., 2004). So far, two studies have exam-
ined the rapid consolidation in implicit statistical learning.
On one hand, they have found that implicit acquisition of
statistical knowledge does not improve during short breaks
but deteriorates, and this effect is not associated with the
length of rest periods (Fanuel et al., 2022). On the other
hand, statistical learning was found to develop during prac-
tice (online), indicating that it benefits from evidence accu-
mulation during practice and the information learned does
not consolidate during short rest periods (Quentin et al.,
2021).
Based on previous results, implicit statistical learning

occurs only online and does not benefit from rapid con-
solidation. However, previous studies have a crucial limi-
tation: the length of the rest periods was not controlled
experimentally. In the present study, to grasp a causal re-
lationship between the length of breaks and the learning
performance, we varied the rest period duration between
participants. We aimed to test whether shorter and longer
rest durations affect the performance of implicit statistical
learning (i.e., the learning of probabilistic regularities) and
general skill learning (i.e., the general speedup on a learn-
ing task independent of the statistical probabilities). To
tackle this question, we used the alternating serial reac-
tion time (ASRT; Fig. 1A,B) task (Howard et al., 2004), which
enables us to measure these two aspects of learning sep-
arately. Healthy adults performed 25 blocks of the ASRT
task (one block=80 trials) and were offered to rest after
each block. The rest period was (1) a shorter 15 s break,
(2) a 30 s break, or (3) a self-paced duration (Fig. 1C). As
rapid consolidation is related to neural replay (Buch et al.,
2021), we expected that the extended rest periods would
benefit implicit statistical learning more than the shorter
rest periods because of the higher amounts of replays.
Moreover, we aimed to test whether there is dissociation
in the temporal dynamics of general skill learning and sta-
tistical learning regarding online and offline changes and
how it is affected by the length of the rest periods.

Materials and Methods
Participants
There were 361 participants in this preregistered, on-

line study (https://osf.io/pfy7r). Participants were uni-
versity students and gained course credits for their
participation. Following careful quality control of par-
ticipant data (see below in the section Quality control
of data), the final sample consisted of 268 participants
(age: mean = 21.46 years; SD = 2.20 years; 77.61% fe-
male, 22.39%male). Participants were randomly divided into
three groups (15 s break, 30 s break, and self-paced).
Participants in the three groups did not differ in age, educa-
tion, sex, handedness, or working memory performance
(Table 1). All participants had normal or corrected-to-normal
vision, and none of them reported a history of any neurologic
or psychiatric condition. Participants provided informed
consent, and all study procedures were approved by the
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Research Ethics Committee of the Eötvös Loránd
University (Budapest, Hungary) and was conducted in
accordance with the Declaration of Helsinki.

Alternating serial reaction time task
We used the ASRT task to measure implicit statistical

and general skill learning separately. The ASRT task was
programmed in JavaScript using the jsPsych framework
[de Leeuw, 2015; code is openly available on GitHub:
https://github.com/vekteo/ASRT_rapid_consolidation (see
also https://doi.org/10.5281/zenodo.7124730)]. During the
ASRT task, a visual stimulus appeared on the screen (a
drawing of the head of a dog) in one of four horizontal

locations. Participants must have indicated the location
of the target stimulus by pressing the corresponding key
on the keyboard (from left to right, the S, F, J, and L keys
on a computer keyboard). Participants were instructed
to use their left and right middle and index fingers to re-
spond to the targets. Unknown to the participants, the
stimuli followed a probabilistic eight-element sequence,
where pattern and random elements alternated with
each other (e.g., 2 - r - 4 - r - 3 -r - 1 -r, where r indicates
a random location, and the numbers represent the prede-
termined positions from left to right). Each participant was
randomly assigned to 1 of 24 possible sequences (as the
permutation of the 8-element sequence structure al-
lowed 24 different sequences) and then was exposed to

Table 1: Descriptive statistics of the three experimental groups

Self-paced group (n=88) 15 s group (n = 90) 30 s group (n=90) Comparison
Age (years) 21.896 2.07 21.246 2.23 21.276 2.26 p=0.09, BF01 = 2.76
Education (sec/BA/MA) 68/17/3 67/22/1 73/16/1 p=0.56, BF01 = 16.37
Gender (M/F) 18/70 20/70 22/68 p=0.82, BF01 = 16.43
Handedness (l/r/a) 8/80/0 8/80/2 10/78/2 p= 0.68, BF01 = 10.02
2-back task (d9) 1.576 0.95 1.496 0.87 1.526 0.89 p=0.82, BF01 = 21.03

Mean and SD values for age and 2-back task are presented. For education (sec, secondary education or lower; BA, bachelor’s level or equivalent; MA, master’s
level or equivalent), gender (M, male; F, female), and handedness (l, left, r, right, a, ambidextrous), case numbers are presented. To compare age and 2-back task
scores, one-way ANOVAs were conducted. To compare education, gender, and handedness ratios, x2 tests were conducted.

Figure 1. The ASRT task and the study design. A, The temporal progress of the task. A drawing of the head of a dog appeared as a
target stimulus in one of four horizontally arranged locations. The stimuli followed a probabilistic sequence, where every other trial
was a part of a four-element fixed sequence (pattern elements) interspersed with random elements. B, The formation of triplets in
the task. In the eight-element probabilistic sequence, pattern (green) and random (orange) trials alternated. Numbers 1–4 represent
the location of the four circles from left to right. Every trial was categorized as the third element of three consecutive trials (i.e., a tri-
plet). Because of the probabilistic sequence structure, some triplets appeared with higher probability (high-probability triplets) than
others (low-probability triplets). The ratio of high-probability triplets was higher (62.5% of all trials) than that of low-probability trip-
lets (37.5% of all trials). The eight-element alternating sequence was repeated 10 times in a learning block. C, Study design. Each
block contained 80 trials. The between-blocks rest period was 30 s (30 s group), 15 s (15 s group), or a self-paced duration (self-
paced group).
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that one sequence throughout the task. Because of the
probabilistic sequence structure, some runs of three
consecutive stimuli (triplet) appeared with higher proba-
bility (high-probability triplets) because the third ele-
ment of such triplets can be predicted by the first trial
with a greater probability (62.5% of all trials) compared
with third elements of other triplets that can be predicted
by the first trial with a lower probability (low-probability trip-
lets, 37.5% of all trials). We can sort every item according
to whether they are the third element of a high-probability
or a low-probability triplet. Statistical learning was defined
as the increase of reaction time (RT) difference between
trials that were the third element of a high-probability tri-
plet or low-probability triplet. General skill learning was
defined as the overall speeding up on the task (i.e., small-
er RTs in later blocks), regardless of the probability of the
occurrence of items.

Process dissociation procedures task
To determine whether the learning of statistical reg-

ularities occurred implicitly, we administered a task
based on the process dissociation procedure (PDP;
Jacoby, 1991), which is a widely used method to disen-
tangle the explicit–implicit processes in memory tasks
(Destrebecqz and Cleeremans, 2001; Destrebecqz et
al., 2005; Jiménez et al., 2006; Fu et al., 2010). In the
first part of the task, we asked participants to try to cre-
ate a sequence with the help of the same four response
keys as used in the ASRT task (inclusion instruction).
After that, we asked participants to generate new se-
quences that differed from the learned sequence (ex-
clusion condition). Both parts consisted of four runs,
and each run lasted up to 24 button presses, equivalent
to three rounds of the eight-element alternating sequence
(Kóbor et al., 2017; Horváth et al., 2020). The runs where
.50% of participants’ key presses were either repetitions
or trills were removed from the analysis. As a result, seven
participants from the self-paced group, three participants
from the 15 s group, and three participants from the 30 s
group were removed entirely from the analysis, as their an-
swers only contained trills and repetitions in the exclusion
condition.
We assessed the implicitness of the participants’

knowledge by calculating the ratio of high-probability
triplets in the sequence of responses. The chance level
of generating high-probability triplets was considered
25% because, after two consecutive button presses, the
chance for the third button press to form a high-probability tri-
plet with the two preceding button presses is 1/4=25%. We
also compared the percentages of the high-probability
triplets across conditions (inclusion and exclusion
condition) and groups (self-paced, 15 s, 30 s) (see also
https://doi.org/10.5281/zenodo.7253644).

Procedure
We used the Gorilla Experiment Builder (https://www.

gorilla.sc) to host our experiment (Anwyl-Irvine et al.,
2020), which allows accurate stimulus and response tim-
ing in online experiments (Anwyl-Irvine et al., 2021). Data

were collected between April 13, 2021, and October 31,
2021 (experiment material is available on Gorilla Open
Materials, https://app.gorilla.sc/openmaterials/397611).
Participants were randomly assigned to one of three ver-
sions of the task, which differed only in the duration of
between-block rest periods. The between-block rest pe-
riods were either (1) 15 s breaks, (2) 30 s breaks, or (3)
self-paced (i.e., participants were allowed to continue
the task with the next block whenever they were ready).
The participants performed two practice blocks, then
continued with 25 learning blocks, which took ;25min
to complete. Each block consisted of 80 trials, corre-
sponding to the eight-element sequence repeated 10
times. Accuracy and RT were recorded for each trial.
After accomplishing the ASRT task we tested the partici-
pants’ awareness of the hidden structure with a short
questionnaire and a task based on the process dissociation
procedure, which enables us to differentiate explicit and im-
plicit processes in memory tasks (Jacoby, 1991). Finally,
they performed 0-back and 2-back tasks (Kirchner, 1958) to
assess their working memory capacity (see https://doi.org/
10.5281/zenodo.7100178). Data are available on OSF
(https://osf.io/ukbfz/).

Quality control of data
We have set up exclusion criteria before the analysis of

the data. Participants were deemed unreliable and were
excluded if (1) they did not reach 80% accuracy on the
ASRT task (34 participants were excluded for this reason),
as in laboratory experiments the general accuracy on the
ASRT task is typically.90% (Janacsek et al., 2012); or (2)
they performed the 0-back task with ,60% accuracy (8
participants), (3) did not complete the n-back tasks cor-
rectly (i.e., did not press response keys during the task;
16 participants), or (4) had quit the experiment and re-
started later (4 participants); or (5) indicated that they
had already taken part in an ASRT experiment (8 partici-
pants); and (6) had not started blocks on time after the
rest period expired (21 participants). We fixed this limit at
1500ms after the end of the rest period in at least five
blocks, and we also excluded the participants whose av-
erage RT for the first trials of blocks was .1000ms (9
participants in the 15 s group; 12 participants in the 30 s
group). In addition to the participants excluded accord-
ing to the predetermined exclusion criteria, as the age
range was wide and unequal among the groups, outly-
ing participants (age.35 years) were also excluded
(11 participants).

Quantification of statistical learning and general skill
Inaccurate responses, trills (e.g., 1–2–1) and repetitions

(e.g., 1–1–1), and trials with an RT of .1000ms were ex-
cluded from the analysis. There was a total of 535,994 tri-
als, from which a total of 49,927 (9.31%) incorrect trials
were excluded. Regarding triplets, 48,715 (9.09%) were
trills (e.g., 1-2-1), and 16,302 (3.04%) were repetitions
(e.g., 1-1-1). Furthermore, there were 1304 trials (0.24%
of all trials) with RTs .1000ms. As there were overlaps
between the trials with different exclusion criteria (e.g.,
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from the 48,715 trills, 7544 were also incorrect trials), the
total number of excluded trials is not the sum of the num-
bers of the different types of excluded trials. We excluded
a total amount of 108,344 trials (20.22% of all trials).
To facilitate data processing and filter out noise, the

blocks of ASRT were organized into units of five consecu-
tive blocks (Bennett et al., 2007; Barnes et al., 2008;
Nemeth et al., 2010), for which we calculated statistical
learning and general skill learning scores. Each task trial
was categorized as the third element of a low-probability
or a high-probability triplet (except the first two trials of
each block that could not have been categorized as the
third element of a high-probability or low-probability tri-
plet). To measure the degree of implicit statistical learning,
we calculated a statistical learning score by subtracting
the median RT of the high-probability triplets from the me-
dian RT of the low-probability triplets. Then, to control the
difference in base RTs between groups, we divided this
learning score by the mean RT (standardized statistical
learning scores). To measure general skill learning, the
median RTs of each unit of five blocks were calculated re-
gardless of the probability of the occurrence of items.

Quantification of online and offline changes
Further scores were calculated to compare the online

and offline general skill learning and statistical learning
changes. Each block of 80 trials was divided into five bins
(each containing 16 consecutive trials). For each bin, we
calculated the difference between high-probability and
low-probability triplets, resulting in a single learning score
for each bin for each block. To calculate the online change
in statistical learning, we subtracted the learning score of
the first bin from that of the last bin of the same block (the
change from the beginning to the end of the block).
Twenty-five scores were obtained corresponding to the
online changes of learning in the 25 blocks. We averaged
the 25 online learning scores to obtain a single online
learning score for each participant. To calculate the offline
change of statistical learning, we subtracted the learning
score of the last bin from the first bin of the next block (the
change from the end of the block and the beginning of the
next block). Twenty-four scores were obtained corre-
sponding to the offline changes of learning in the 25
blocks (henceforth referred to as “change scores”). We
averaged over the 24 offline learning scores to obtain a
single offline learning score for each participant. The
same procedure was repeated to obtain the online and
offline changes for general skill learning, except that
scores were obtained from median RTs independent of
the probability of items.

Statistical analysis
Statistical analysis was performed in JASP 0.16.

Before conducting the statistical analyses of the main
hypotheses, we calculated the mean and median rest
duration of the self-paced group. The mean rest period
in the self-paced group was 16.67 s (SD = 25.48), and
the median rest period was 10.58 s. One-sample t
tests revealed that the mean rest duration of the self-

paced group did not differ significantly from the rest
duration of the 15 s group (t(87) = 0.62, p = 0.54) but sig-
nificantly differed from the rest duration of the 30 s
group (t(87) = �4.91, p, 0.001).
The learning blocks of the ASRT task were grouped into

five larger units of analysis (blocks 1–5, blocks 6–10,
blocks 11–15, blocks 16–20, and blocks 21–25). Mixed-
design ANOVAs on median RTs and statistical learning
scores were performed to compare general skill learning
and implicit statistical learning between groups, respec-
tively. Offline and online changes were also compared with
mixed-design ANOVAs separately for statistical learning
and general skill learning. To evaluate the PDP task, we
used one-sample t tests to compare the proportion of
high-probability triplets in the inclusion and exclusion con-
dition to the chance level and conducted mixed-design
ANOVA to compare the proportions between groups and
conditions. Greenhouse–Geisser corrections were applied
if necessary. For ANOVAs, significant main effects and in-
teractions were further analyzed using Bonferroni-cor-
rected post hoc comparisons and/or one-sample t tests.
In addition to the classical frequentist approach,

Bayesian ANOVAs were also performed with the same
factors as described above. Here, we report the exclu-
sion Bayes factors (BFs) of Bayesian model averaging
across all matched models. BFexclusion indicates the
amount of evidence for the exclusion of a given factor.
Accordingly, the higher the BFexclusion value (.1), the
more it supports the exclusion of the given factor,
and, vice versa, the smaller the BFexclusion value (,1),
the more evidence for inclusion.

Results
Did rest period duration influence statistical learning?
To test whether the duration of rest periods between

learning blocks affected statistical learning, we conducted a
mixed-design ANOVA with the within-subjects factor of
Blocks (blocks 1–5 vs blocks 6–10 vs blocks 11–15 vs
blocks 16–20 vs blocks 21–25) and the between-subjects
factor of Group (self-paced, 15 s breaks, 30 s breaks) on the
learning scores. The analyses revealed a gradual increase of
learning scores in each group, regardless of the rest period
duration (main effect of Blocks: F(4,1060) =25.68, p, 0.001,
hp

2 = 0.09, BFexclusion , 0.001). According to pairwise com-
parisons, there was no significant increase in learning be-
tween blocks 6–10 and blocks 11–15 (p=0.82), between
blocks 6–10 and blocks 16–20 (p=0.06), between blocks
11–15 and blocks 16–20 (p, 0.99), and between blocks
16–20 and blocks 21–25 (p=0.19). All other paired compari-
sons of block arrays were significant (all p,0.01). Thus, the
consecutive learning units did not significantly differ from
each other but learning could be discovered between tem-
porally more distant parts of the task. Importantly, the three
experimental groups did not differ in statistical learning
(main effect of Group: F(2,265) =0.65, p=0.53, hp

2 , 0.01,
BFexclusion = 31.39). The Blocks � Group interaction was
also nonsignificant (F(8,1060) =0.28, p=0.97, hp

2 , 0.01,
BFexclusion = 3 262.88); thus, the three groups did not differ in
the time course of statistical learning either (Fig. 2A,C). To
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see Results without age-based exclusion, check Extended
Data Figure 2-1. Original high-probability and low-probabil-
ity variables can be seen in Extended Data Figure 2-3.

Did rest period duration influence the performance of
general skill learning?
To test whether the overall speedup on the task differed

between groups (i.e., whether the duration of rest periods
between learning blocks affected general skill learning), we
conducted a mixed-design ANOVA with the within-sub-
jects factor of Blocks (blocks 1–5 vs blocks 6–10 vs blocks
11–15 vs blocks 16–20 vs blocks 21–25) and the between-
subjects factor of Group (self-paced, 15 s breaks, 30 s
breaks) with median RT as the dependent variable. We
found a gradual decrease in RTs throughout the task (main
effect of Blocks: F(2.73,723.72) = 275.21, p, 0.001, hp

2 =
0.51, BFexclusion , 0.001). Based on pairwise comparisons,
each epoch significantly differed from each other (all
p, 0.01), with increasing learning through all blocks. The
three groups significantly differed in response times
(main effect of Group: F(2,265) = 8.69, p, 0.001, hp

2 =0.06,
BFexclusion = 0.01), with the self-paced group being slower
than the 15 and 30 s groups. The Blocks � Group interac-
tion was also significant (F(8,1060) = 2.33, p=0.04, hp

2 =

0.02, BFexclusion = 5.25). Pairwise comparisons revealed
significantly higher RTs in the self-paced compared with
the 30 s group in blocks 6–10, blocks 11–15, blocks 16–20,
and blocks 21–25 (all p, 0.01). The self-paced group also
showed significantly higher RTs compared with the 15 s
group in blocks 6–10, blocks 11–15, blocks 16–20, and
blocks 21–25 (all p, 0.01). Thus, the three groups showed a
similar speed in the first learning unit, but the self-paced
group began to slow down compared with the other two
groups starting from the second learning unit (Fig. 2B,D).
However, the BFexclusion score of the interaction is .3, which
indicates moderate evidence for the lack of interaction; thus,
the interaction is deemed unreliable. For results without age-
based exclusion, see Extended Data Figure 2-2.

How did break duration affect offline and online
statistical learning?
A mixed-design ANOVA was run with the within-sub-

jects factor of Learning Phase (offline vs online) and the
between-subject factor of Group (self-paced, 15 s
breaks, and 30 s breaks) on the change scores of statistical
learning. The ANOVA revealed an interaction between
Learning Phase and Group factors (F(2,265) = 3.51, p=0.03,
hp

2 = 0.03, BFexclusion = 0.05). Bonferroni-corrected post

Figure 2. The effect of manipulating rest period duration on statistical learning and general skill learning. Error bars represent the
SEM. The x-axes indicate the blocks of experiment/experimental groups; the y-axes represent the statistical learning score/reaction
time. A, The temporal dynamics of statistical learning scores in the three groups. All groups showed a significant increase in statisti-
cal learning throughout the experiment, but the learning of the three groups did not differ. To see the original variables that statistical
learning score were calculated from, see Extended Data Figure 2-3. B, The temporal dynamics of general skill learning in the three
groups. All groups showed a decrease in RT over the course of the experiment, suggesting the learning of general skills. The self-
paced group showed slower RTs compared with the 15 and 30 s groups. C, Individual data of the overall statistical learning scores
(one dot represents the mean statistical learning score for one participant). Boxplots and violin plots visualize the distribution of sta-
tistical learning scores in the three groups. D, Individual data of the general RT scores (one dot represents the mean general RT for
one participant). Boxplots and violin plots visualize the distribution of general RTs in the three groups. These results stayed intact
without age-based exclusion (Extended Data Figs. 2-1, 2-2).
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hoc comparisons revealed that online and offline changes
differed in the 15 s break group (p=0.04): the offline
changes were significantly smaller than the online changes.
No main effect of Group (F(2,265) = 1.60, p=0.20, hp

2 = 0.01,
BFexclusion = 42.28] or Learning Phase (F(2,265) = 2.50,
p=0.12, hp

2 , 0.001, BFexclusion = 0.97) was found (Fig. 3).
For results without aged-based exclusion, check Extended
Data Figure 3-1. To see how offline and online learning
scores dynamically change across blocks, check
Extended Data Figure 3-3.
To clarify whether offline and online learning occurred in

the whole sample as well as in the three groups, one-sam-
ple t tests were conducted. We have found that on the
whole sample, the online learning scores were signifi-
cantly different from zero (t(267) = 2.05, p, 0.05), while the
offline learning score was not (t(267) = 1.11, p=0.27). In the
self-paced group, neither the online learning score (t(87) =
�0.17, p=0.86) nor the offline learning scores (t(87) = 0.92,
p=0.36) differed from zero. Similarly, in the 30 s group,
neither the online learning scores (t(89) = 0.61, p=0.55) nor
the offline learning scores (t(89) = �0.05, p=0.96) differed
from zero. However, both learning scores differed from
zero in the 15 s group: the online learning scores were
higher than zero (t(89) = 3.50, p, 0.001), while the offline
learning scores were below zero (t(89) = �3.39, p, 0.01).
We can conclude that in this group, participants learned
online and forgot offline. We suggest that the reason be-
hind the lack of online and offline learning in the other two
groups can be explained by the balanced ratio of positive

and negative learning scores within the groups (Fig. 4A–C).
The distribution of high positive (�5) and high negative (�5)
offline and online learning scores can be seen in Extended
Data Figures 4-1 and 4-2.

How did break duration affect offline and online
general skill learning?
A mixed-design ANOVA was run on the change scores

of general skill learning, with the within-subjects factor of
Learning Phase (offline vs online) and the between-subject
factor of Group (self-paced, 15 s breaks, 30 s breaks). We
found the main effect of Learning Phase (F(2,265) =920.49,
p,0.001, hp

2 = 0.77, BFexclusion , 0.001), with a slowing
down of RT during the blocks, while an acceleration of RTs
occurred after the rests. No main effect of Group was found
(F(2,265) =0.02, p=0.98, hp

2 , 0.001, BFexclusion = 45.61). The
interaction between the Learning Phase and Group
factors was significant (F(2,265) = 4.38, p = 0.01, hp

2 ,
0.03, BFexclusion = 0.01). However, no differences survived
Bonferroni-corrected between-group comparisons for on-
line and offline changes (all comparisons between groups
revealed p. 0.17; Fig. 3). For results without age-based ex-
clusion, see Extended Data Figure 3-2.
One-sample t tests revealed that participants learned on-

line (t(267) =29.14, p, 0.001) and forgot offline (t(267) =
�30.60, p, 0.001) the general skill in the whole sample.
This pattern was observed in all three groups. Online learn-
ing of the general skill took place in the self-paced group

Figure 3. The offline versus online changes in statistical learning/general skill. The x-axes indicate the three groups, and the y-axes
represent the mean offline/online changes in milliseconds. The filled halves of the violin plots indicate offline changes, whereas the
striped halves show the online changes. A, In the 15 s group, the offline and online changes differed from each other in statistical
learning: the online changes were significantly higher than the offline changes. The group-level online changes were positive (indi-
cating online improvement in statistical learning), whereas the offline changes were negative (indicating forgetting; for dynamic
change of the original variables, see Extended Data Fig. 3-3). B, Changes in general skills were similar in the three groups: accelera-
tion after the offline periods and deceleration during the online period. These results stayed intact without age-based exclusion
(Extended Data Figs. 3-1, 3-2).
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(t(87) =15.87, p, 0.001), in the 15 s group (t(89) = 16.35,
p, 0.001), as well as in the 30 s group (t(89) =19.18,
p, 0.001). During the offline periods, participants’ general
skill performance decreased in the self-paced group (t(87) =
�17.16, p, 0.001), the 15 s group (t(89) = �16.78, p, 0.001,
and the 30 s group (t(89) =�20.21, p, 0.001; Fig. 4D–F).

Was statistical learning implicit in the three groups?
Last, we tested whether learning occurred implicitly in

the three experimental groups. We compared the per-
centage of high-probability triplets generated in the
PDP task to the chance level (25%) in the three groups.
Participants in the self-paced group generated more
high-probability triplets both in the inclusion and exclu-
sion conditions than would occur at chance level (inclu-
sion condition: mean 6 SD = 31.5 6 0.8%, t(80) = 7.79,
p, 0.001, BF01 = 0.001; exclusion condition: mean 6
SD= 29.2 6 1%, t(80) = 3.06, p , 0.001, BF01, 0.001).
It was the same in the 15 s group (inclusion condition:

mean 6 SD=31.1 6 0.8%, t(86) =7.54, p=0.001, BF01,
0.001; exclusion condition: mean6SD=27.56 1%, t(86) =
2.62, p=0.001, BF01,0.001), and in the 30 s group (inclusion
condition: mean6SD =30.36 0.7%, t(86) = 6.57, p,0.001,
BF01, 0.001; exclusion condition: mean 6 SD = 29.0 6
1%, t(86) = 3.30, p=0.001, BF01, 0.001). Thus, we can con-
clude that learning can be considered implicit in all groups.
Furthermore, we explored the potential differences be-

tween groups with a 2 (condition: inclusion vs exclusion)� 3
(group: self-paced vs 15 s vs 30 s) ANOVA. The main effect
of the condition was significant (F(1,252)=15.027, p=0.001,
hp

2= 0.06, BFexclusion = 0.01), indicating that participants per-
formed better in the inclusion condition. The group main ef-
fect did not reach significance (F(2,252) =0.13, p=0.88,
hp

2=0.001, BFexclusion = 28.02), indicating that the three
groups performed equally on the tasks. The interaction
of the condition and group factors was also nonsignifi-
cant F(2,252) = 1.03, p= 0.36, hp

2 = 0.01, BFexclusion = 9.35),
revealing that the lack of difference between groups was

Figure 4. Dynamics of offline/online statistical learning/general skills and forgetting in the different groups. The y-axes indicate off-
line and online learning in milliseconds; the x-axes show the mean offline/online learning score of each participant. A–F, The differ-
ent figures depict the individual data of offline and online statistical learning scores in the self-paced group (A), the 15 s group (B),
and the 30 s group (C), and the individual data of offline and online general skill learning scores in the self-paced group (D), the 15 s
group (E), and the 30 s group (F). The exact distribution of positive and negative offline and online learning scores can be seen in
Extended Data Figures 4-1 and 4-2.
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not influenced by the task condition. Together, the re-
sults indicate that the knowledge of the three groups re-
mained equally implicit.

Discussion
Our study aimed at testing whether the duration of short

rest periods, when neural replay occurs, influences statis-
tical learning and general skill learning. To measure these
two aspects of learning independently, we used an implic-
it sequence-learning task, the ASRT task (Howard et al.,
2004). We varied the lengths of rest periods across partic-
ipants: 15 s (15 s group) or 30 s (30 s group) between the
learning blocks or participants could decide when to re-
sume the task (self-paced group). We wondered (1)
whether the three groups differed in the extent of general
skill learning and statistical learning and (2) whether rapid
consolidation emerged during between-block rest peri-
ods in general skill learning and statistical learning. Break
duration affected general skills and statistical learning dif-
ferently. We observed that the self-paced group was gen-
erally slower than the other two groups. However, all
groups showed a similar degree of statistical learning.
Because of the same proportion of those who learned or
forgot offline/online, group-level offline and online learn-
ing could not be detected in the self-paced and 30 s
groups, while the 15 s group showed mainly online im-
provement and offline forgetting.
Our results suggest that the duration of rest periods is

not necessarily decisive in statistical learning over the en-
tire task. This result seems to be inconsistent with the re-
sults of the study by Bönstrup et al. (2019). They showed
that short, 10 s rest periods could facilitate motor skill
learning, and this improvement could continue with even
shorter rest periods (Bönstrup et al., 2020). In contrast,
previous studies that also measured pure statistical learn-
ing are consistent with our results (Fanuel et al., 2022).
The task used in the study of Bönstrup et al. (2020) does
not allow the differentiation of subprocesses of learning
and mixes general skill learning with statistical learning;
therefore, it is difficult to decide which was the determin-
ing factor in this result.
According to the results of Buch et al. (2021), we ex-

pected that the longer rest period (i.e., 30 s) would result in
better learning compared with the shorter rest period (i.e.,
15 s), because it may contain more replays, which is the
neural basis of rapid consolidation. However, we measured
only one learning session, and it is conceivable that the ben-
eficial effect of an expanded rest period would appear in-
stead in the longer run. On the other hand, the length of rest
periods used in our study might not have been suitable to
capture the critical period when rapid consolidation is bene-
ficial in statistical learning. These questions should be fur-
ther explored using a much more comprehensive range of
rest periods and introducing delayed testing of implicit sta-
tistical learning.
In general skill learning, participants showed longer RTs

in the self-paced condition where they were allowed to
decide about the rest period duration, compared with
those conditions where rest period duration was fixed (i.e.,
15 and 30 s). How could we interpret the longer RTs in the

self-paced group? On the one hand, this difference could
be because of a difference in the rest period duration in the
self-paced group compared with the two fixed rest period
groups. On the other hand, it could be because of the
specificity of the self-paced condition. The mean rest pe-
riod in the self-paced group was similar to the rest period
duration of the 15 s group, but the two groups still signifi-
cantly differed in overall speed. However, the high SD
shows considerable variability in the time the participants
decided to rest between blocks. We suggest that it is not
the duration of the rest period that is critical in the perform-
ance of general skill learning, but the nature of the expiry of
the rest period (voluntary or compulsory). The knowledge
that the rest period will be limited might have urged partici-
pants to complete the task as soon as possible, which re-
sulted in faster RTs.
Our results about the offline and online changes in gen-

eral skill learning are in accordance with previous studies
with the same sequence-learning task (Quentin et al.,
2021; Fanuel et al., 2022): during practice, the speed de-
creases, and between blocks, it increases. However, our
results only partially replicated previous findings on statis-
tical learning. Previously, it was shown that statistical
learning mainly occurs during blocks, and forgetting oc-
curs between blocks. In our study, this pattern was only
detectable for the 15 s group: in the 30 s and self-paced
groups, such strong dissociation could not be seen in the
online versus offline changes. It is possible that the 30 s
and the self-paced groups took enough break time to
benefit from both online learning and rapid consolidation
(potentially allowing more replay to occur in the offline pe-
riods), but the fixed 15 s length was not enough for the lat-
ter. This hypothesis could be supported by the results of
the study by Prashad et al. (2021), who found offline im-
provement in probabilistic sequence learning with 2-min-
long breaks between the learning blocks. However, as the
differences in break durations are relatively large between
these two studies, it is still a pending question to establish
the minimum length of a between-block break for rapid
consolidation. Studies that directly manipulate the number
of neural replays between block periods are warranted.
Another possible explanation might be that our study

was completed online: participants completed the task
in their environment, where the stress level is possibly
smaller than in laboratory settings. The limited rest period
could have increased the stress level during the experi-
ments, creating similar circumstances that participants
experienced in the laboratory. As statistical learning is af-
fected by stress levels (Tóth-Fáber et al., 2021), this could
have prompted participants to maximize their perform-
ance during practice and benefit more from rest periods.
However, no difference in learning outcomes was found
between the groups, suggesting that different lengths of
the rest periods only change the learning dynamics; they
do not affect the outcomes of statistical learning.
Together, we observed that the manipulation of the

length of the rest periods—indirectly the neural replay—af-
fects general speed on a sequence-learning task. In con-
trast, statistical learning seems to be independent of the
length of the rest period. The length of rest periods did not
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affect the outcome of statistical learning, but did affect
the dynamics of learning (i.e., whether learning occurs on-
line or offline): if we do not have enough time during
breaks for offline consolidation, we might compensate by
increasing online learning performance. Thus, our results
suggest that the length of short rest periods has a different
effect on separate learning and consolidation processes.
Also, from a methodological perspective, our results show
the importance of measuring the temporal dynamics of
learning, and do not provide only a general measure of the
overall learning across the task.
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