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Probabilistic sequence learning supports the development of skills and enables predictive processing. It remains contentious whether
visuomotor sequence learning is driven by the representation of the visual sequence (perceptual coding) or by the representation of the
response sequence (motor coding). Neurotypical adults performed a visuomotor sequence learning task. Learning occurred incidentally
as it was evidenced by faster responses to high-probability than to low-probability targets. To uncover the neurophysiology of the
learning process, we conducted both univariate analyses and multivariate pattern analyses (MVPAs) on the temporally decomposed
EEG signal. Univariate analyses showed that sequence learning modulated the amplitudes of the motor code of the decomposed signal
but not in the perceptual and perceptual-motor signals. However, MVPA revealed that all 3 codes of the decomposed EEG contribute
to the neurophysiological representation of the learnt probabilities. Source localization revealed the involvement of a wider network
of frontal and parietal activations that were distinctive across coding levels. These findings suggest that perceptual and motor coding
both contribute to the learning of sequential regularities rather than to a neither–nor distinction. Moreover, modality-specific encoding
worked in concert with modality-independent representations, which suggests that probabilistic sequence learning is nonunitary and
encompasses a set of encoding principles.

Key words: electroencephalography; temporal decomposition; multivariate pattern analysis; sequence learning; statistical learning.

Introduction
Many parts of our lives depend on the predictive processes derived
from sequential information, such as playing an instrument or
using languages (Conway 2020). However, it remains a key ques-
tion how the perceptual and motor codes contribute to the detec-
tion, encoding, and retrieval of such regularities, and whether
neurophysiological coding levels work in an independent or con-
certed fashion (Frost et al. 2015; Conway 2020).

In the visual modality, sequence items are typically presented
continuously, while participants are asked to respond to a stim-
ulus feature (Howard and Howard 1997; Conway 2020). Unknown
to them, features change according to a predetermined sequence,
and the extraction of the sequential regularities leads to faster
responses to predictable than to unpredictable stimuli. The

question is how is learning driven by the representation of the
visual sequence (perceptual coding) and by the representation
of the response sequence (motor coding) (Deroost and Soetens
2006; Nemeth et al. 2009). Performing a visuomotor sequence
task or simply observing the visual stream of regularities can
lead to comparable learning effects (Remillard 2003; Song
et al. 2008). Therefore, sequence learning is possible without
motor coding. However, learning the response sequence can
also contribute to the learning performance independently of
perceptual processes (Goschke 1998; Conway 2020) as sensory
manipulations may affect perceptual but not motor sequence
learning (Song et al. 2008). Also, motor learning is more efficient
in stabilizing memories than perceptual learning (Hallgató
et al. 2013). Visual and motor codes during learning operate
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as overlapping but separable entities, working in concert with
domain-general memory processes that can link stimulus-based
perceptual and motor-based response coding systems (Frost et al.
2015; Conway 2020). Learning probabilistic sequences likely relies
on the concomitant coding of stimulus, response, and stimulus–
response translational information (Takács et al. 2021). The
question is not whether perceptual or motor codes contribute
to the learning of sequential regularities but how the perceptual
and motor codes work in concert.

Interestingly, similar questions were asked recently in the con-
text of stimulus–response binding. As the theory of event cod-
ing (TEC) posits (Hommel et al. 2001; Hommel 2019), stimuli
and responses are represented by their commonly coded fea-
tures, such as the color of the stimulus or the identity of the
response finger. Binding between stimulus and response features
creates event files, a representational format that encompasses
both stimulus-level (object files) and response-level (action files)
encoding. It was proposed that binding provides building blocks
for sequence learning (Eberhardt et al. 2017; Haider et al. 2020;
Takacs et al. 2021). Binding between stimulus and response fea-
tures can occur without a predictive relationship between the 2
(Hommel 2004; Frings et al. 2020). However, if they are embedded
in a stream of sequential information, sequence learning can rein-
force bindings (Takacs et al. 2021). A series of experiments showed
that it was possible to induce interference (Eberhardt et al. 2017)
or memory transfer (Haider et al. 2020) between stimulus location
(stimulus feature-based) and response location (response feature-
based) sequences. Thus, according to behavioral data, sequential
regularities were coded not only in a modality-specific fashion
but also in abstract feature codes. The functional connections
between event file binding and sequence learning (Takacs et al.
2021) pose the question of whether TEC’s assumption on the
nature of coding levels (Hommel et al. 2001; Hommel 2004; Frings
et al. 2020) and the methods to study them (Takacs, Mückschel,
et al. 2020; Takács et al. 2022) can be applied to sequence learning.

The simultaneous nature of coding levels presents a method-
ological challenge when their effects need to be studied
separately. This challenge is even more vexing on the level of
neurophysiological mechanisms (Ouyang and Zhou 2020). In
binding studies (Opitz et al. 2020; Takacs, Mückschel, et al. 2020;
Takacs, Zink, et al. 2020; Takacs et al. 2021; Eggert et al. 2022),
temporal decomposition was used to disentangle the concomitant
coding levels. The separation of simultaneous coding levels is
possible in the neurophysiological (EEG) signal by using temporal
decomposition, such as the residue iteration decomposition
(RIDE) (Ouyang et al. 2015a; Ouyang and Zhou 2020; Takács et al.
2022). RIDE distinguishes between concomitantly coded stimulus-
related (S-cluster), response-related (R-cluster), and stimulus–
response translational information (C-cluster) in the EEG signal.
The decomposed clusters represent coding levels with different
latency variability, that is, temporal dynamics that can be locked
and closely related to stimulus presentation (S-cluster), response
execution (R-cluster), and variable latency that is not locked to
markers but detected by template matching (C-cluster) (Ouyang
et al. 2011, 2015b; Verleger et al. 2014; Ouyang and Zhou 2020).
Previous studies linked the response-related signal to action file
processes (Stürmer et al. 2013; Takacs et al. 2021), while the
stimulus–response translational information in the EEG reflected
event file binding studies (Opitz et al. 2020; Takacs, Mückschel,
et al. 2020; Takacs, Zink, et al. 2020; Eggert et al. 2022). Thus, the
TEC’s predictions could be mapped onto the separation of the
neurophysiological coding levels. Importantly, the RIDE data were
also successfully used in multivariate pattern analysis (MVPA)

(Takacs, Mückschel, et al. 2020; Eggert et al. 2022) to decode event
files in the decomposed clusters. RIDE has been validated against
other temporal decomposition methods and has been compared
with independent component analysis (ICA) (Ouyang et al. 2015b).
Crucially, RIDE showed an advantage when subcomponents
partially overlap but originate from different temporal lockings
(Ouyang et al. 2015b; Ouyang and Zhou 2020). Therefore, a
combination of temporal decomposition and MVPA was chosen
as a method to investigate the contributions of perceptual
(S-cluster), motor (R-cluster), and abstract or not modality-
specific (C-cluster) coding levels in the development of sequential
memory representations.

A previous study (Takács et al. 2021) found that event-related
potentials (ERPs), both in the stimulus–response translational
and stimulus clusters, reflected sequence learning; however, the
response cluster did not. Importantly, Takacs et al. (2021) used
cues in the sequence to distinguish between intentionally (cued)
and incidentally (uncued) learnt information. However, the inten-
tion to learn might have altered the weight of perceptual and
motor coding in sequence learning (Rüsseler and Rösler 2000).
Therefore, probabilistic sequence learning in the current study
remained uncued to ensure the learning was incidental (Howard
and Howard 1997; Song et al. 2008). Yet, a univariate analysis of the
decomposed ERPs presupposes that ERPs are sensitive markers
of sequence learning and the effects are focal (i.e. specific to
a channel, channel pair, or a pool of channels). As we are not
aware of evidence that these requirements are all fulfilled, we
also employed a data-driven, multivariate approach. We used a
protocol to combine temporal signal decomposition with MVPA
to investigate configurations in the neurophysiological signal that
are related to the perceptual, motor, and translational codes of
sequence learning (Takács et al. 2022).

We expected that sequential regularities could be decoded
from the decomposed EEG, and the decoded representation would
be stable in all 3 clusters, albeit with distinctive time courses.

Moreover, we compared their neural sources to evaluate the
distinctiveness of coding levels (Southwell and Chait 2018; Takács
et al. 2021). While sequence learning is rooted in the basal gan-
glia (Janacsek et al. 2019, 2022), it also taps into a wide net-
work consisting of the lateral occipital cortex, angular gyrus, pre-
cuneus, anterior cingulate cortex, and superior frontal gyrus (Park
et al. 2022). Of note, EEG-based source localization is not suitable
to uncover learning-related activity changes in all the struc-
tures listed above, particularly in the basal ganglia. We expected
learning-related activation modulations in the precuneus, the
angular gyrus, the anterior cingulate cortex, the inferior frontal,
and the superior frontal gyri (Takács et al. 2021; Park et al. 2022).

Materials and methods
Participants
Participants were right-handed young adults with normal or
corrected-to-normal vision. None of the participants reported
any neurological or psychiatric disorder at the time of the
study. Complete data were available for 44 participants. After
preprocessing, 43 participants remained in the final sample (24
female, 19 male, Mage = 22.46 years, SD = 2.89). All participants
provided written informed consent before enrolment and received
financial compensation for their participation (20 e/h). The
study protocol was approved by the relevant institutional board
(“Comité de Protection des Personnes Est I,” ID RCB 2019-A02510-
57), and the experiment was carried out in agreement with the
declaration of Helsinki.
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Experimental procedure
The experiment started with 5 min of resting-state EEG recording
with eyes open. Resting-state recordings were routinely collected
as part of a larger project and have not been analyzed in the
current study. During the resting state, a white fixation cross
appeared in front of a black background, and participants were
instructed to fixate on the cross without moving. Afterward,
participants performed the alternating serial reaction time (ASRT)
task (Fig. 1). During the task, yellow arrows appeared in the middle
of the screen consecutively, and participants were instructed to
press a key corresponding to the spatial direction of the upcoming
arrow on a Cedrus RB-530 response pad (Cedrus Corporation,
San Pedro, CA). Participants were asked to keep their thumbs
and index fingers above the 4 response keys. First, participants
completed 3 blocks of 85 stimuli each in which arrows pointed in
randomly selected directions to familiarize participants with the
response keys (practice blocks). After the practice blocks, 25 blocks
(85 stimuli/block) of ASRT were completed by the participants
(see details below). After a set of 5 blocks, ∼5 min of rest was
inserted during which EEG impedance was verified and improved
if necessary.

Task and stimuli
Probabilistic sequence learning was measured by the ASRT task,
modified to fit the EEG measurements. In the task, a yellow arrow
appeared at the center of the screen and in front of a black back-
ground for 200 ms. The arrow pointed in either the left, up, down,
or right direction. After that, a white fixation cross was presented
on the screen for 500 ms. If the participant pressed the response
key corresponding to the direction of the arrow during this time
window, the fixation cross remained on the screen for another
750 ms. To enhance learning, visual feedback was presented for
incorrect or missing responses: If an incorrect response or no
response was given, an “X” or an exclamation mark was presented
on the screen for 500 ms and then the fixation cross appeared for
250 ms. Unbeknownst to the participants, the order of appearance
of the arrows follows a predetermined alternating sequence. In
this 8-element sequence, pattern (P) and pseudo-random ele-
ments (r) alternated (e.g. r-2-r-4-r-3-r-1, where numbers represent
a spatial position predetermined by the sequence [1 = left, 2 = up,
3 = down, 4 = right], and rs denote a pseudo-random position).
With the permutation of the four possible spatial directions, 24
different 8-element alternating sequences can be formed (e.g.
r-2–r–1–r–3–r–4; r-1–r–2–r–3–r–4; r-1–r–2–r–4–r–3). However, only 6
unique permutations exist, as, for instance, the sequence of r-2–
r–4–r–3–r–1 is indistinguishable from r-3–r–1–r–2–r–4. The triplets
that cannot be formed by 2 pattern elements and 1 random ele-
ment in the middle appear with a lower probability. For instance,
2-1-3, as “cannot be formed” in a P-r-P structure, as the first and
the third elements, “2” and “3,” are not 2 consecutive pattern
elements in the sequence of r-2-r-4-r-3-r-1. We refer to these types
of triplets as “low-probability triplets.” It is important to note that
the terms high-probability and low-probability triplets also refer
to the predictability of the final (third) element of a triplet: the
third element of a high-probability triplet is more predictable
from the first element of the triplet than in the case of a low-
probability triplet (second-order transitional probabilities).

Each trial of the ASRT task can be categorized as the third
element of a high- or low-probability triplet depending on the
2 preceding trials. As a result of the 8-element sequence, 64
different triplets could be formed. If we know the first 2 elements
of the triplet (e.g. 2-1), there are 4 possible outcomes for the

third element: The triplet could end in either 1, 2, 3, or 4. Only
1 of the 4 could result in a high-probability triplet: Using the
above example (r-2-r-4-r-3-r-1), only the “4” as the third element
will result in a high-probability triplet (in that case, the triplet
will be 2-1-4). Therefore, from the 64 possible triplets, 16 will be
high-probability triplets, and 48 of them will be low-probability
triplets. As every other trial results in a high-probability triplet
(as every other element is part of the pattern, P-r-P structure),
50% of triplets will be high-probability triplets. However, 1 of the
4 triplets with an r-P-r structure will also be a high-probability
triplet (50%/4 = 12.5%). Therefore, the 16 high-probability triplets
will occur 5 times more (50% + 12.5% = 62.5% of the cases) than
the 48 low-probability triplets (37.5% of the cases).

Stimuli were presented in blocks of 85 trials. Each block started
with 5 warm-up trials (arrows appeared at random positions)
and then the 8-element sequence was repeated 10 times. The
sequence remained the same for the entire session. Response
times and response accuracy were recorded. After each block,
participants received feedback on their performance in the given
block (mean reaction time [RT] and accuracy). The feedback mes-
sage remained on the screen for 5,000 ms. Then, a 15,000-ms long
mandatory rest was inserted, and participants could continue
with the next block whenever they were ready. The task was
completed bimanually.

Behavioral data analysis
Due to the more probable appearance of high-probability triplets,
participants typically become faster for these types of trials as the
task progresses. Thus, we could measure probabilistic sequence
learning by the difference between responses to high- versus low-
probability trials: A greater difference between high- and low-
probability trials indicates greater learning.

Only trials with correct responses were considered for the
behavioral analysis. Trills (e.g. 1-2-1) and repetitions (e.g. 1-1-1)
were also removed, as participants often show preexisting ten-
dencies for these types of trials (Nemeth, Janacsek, and Fiser 2013;
Éltető et al. 2022). The first 7 trials (the first 5 warm-up trials plus
the next 2 that are the first 2 elements of the first triplet) were also
removed from the analysis. The remaining trials were categorized
as the last element of a high- or a low-probability triplet. The
trials of the ASRT task were collapsed into 5 larger units (bins) of
analysis, each of them consisting of 425 trials (blocks 1–5 vs. blocks
6–10 vs. blocks 11–15 vs. blocks 16–20 vs. blocks 21–25). For each
participant and each unit of analysis, we calculated the median
RT separately for high- and low-probability trials. The statistical
learning score was calculated by subtracting the median RTs for
the high-probability trials from the RTs for the low-probability
trials.

Task reliability was considered in the analyses. It was reported
that the ASRT has larger test–retest reliability than the nonprob-
abilistic SRT (Stark-Inbar et al. 2017). Moreover, visuomotor ASRT
has a larger internal consistency than auditory versions of the
task (Arnon 2020). For our analyses, learning scores in the ASRT
are considered to be reliable in a neurotypical adult population
from the sample size of n = 21 (Stark-Inbar et al. 2017). Addition-
ally, learning scores in the ASRT are considered to be reliable from
25 blocks of task length according to internal consistency and
split-half reliability measures (Farkas et al. 2023). Both sample size
and task length fulfilled the reliability criteria.

EEG recording
EEG was recorded in an electrically shielded and acoustically
attenuated room. Sixty-four actiCAP slim active electrodes were
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Fig. 1. Task and design. Participants saw an arrow in the middle of the screen, and they were asked to press the response key that corresponds to the
direction of the arrowhead. A) The timing of the stimulus presentation. B) The stimulus presentation followed an 8-element sequence in which pattern
and random elements alternated. C) As a result of the 8-element sequence, 64 different triplets (runs of 3 consecutive elements) could be formed.
Each trial of the ASRT task could be categorized as the third element of a high- or low-probability triplet. Numbers indicate the direction of the arrows
(1 = left, 2 = up, 3 = down, 4 = right); numbers in large circles represent pattern elements, while numbers in partial circles indicate random elements.
D) Some triplets were more probable in the task than others. High-probability triplets could either end with a pattern or with random elements, while
low-probability triplets always end with a random element.

placed on the scalp according to the international 10–20 system
mounted in an elastic cap using BrainAmp DC EEG amplifiers
(BrainProducts GmbH, Gilching, Germany). The sampling rate was
500 Hz. The electrode AFz was used as ground, and the reference
electrode was placed on the right side of the nose. No online filters
were applied. The impedance of the electrodes was kept <25 kΩ.

EEG data preprocessing and segmentation
EEG preprocessing was performed by using Automagic (Pedroni
et al. 2019) and EEGLAB (Delorme and Makeig 2004) in Matlab
2019a (The MathWorks Corp.). First, flat channels were removed if
necessary, and the data were rereferenced to an average reference.
Next, the PREP preprocessing pipeline (Bigdely-Shamlo et al.
2015) was used to remove line noise at 50 Hz with a multitaper
algorithm and remove contamination by bad channels on the
average reference. After that, the clean_rawdata pipeline was

used to (i) detrend the data using a FIR high-pass filter of 0.5 Hz
(order of 1,286, stop-band attenuation of 80 dB, and transition
band of 0.25–0.75 Hz). In this step, flat-line, noisy, and outlier
channels were detected and removed. Next, time windows that
showed abnormally strong power (>15 SDs relative to calibration
data) were reconstructed using Artifact Subspace Reconstruction
(burst criterion: 15) (Mullen et al. 2013). Time windows that could
not be reconstructed were removed. A low-pass filter of 40 Hz
(sinc FIR filter; order: 86) (Widmann et al. 2015) was applied.
EOG artifacts were removed using a subtraction method (Parra
et al. 2005). Muscular and remaining eye-movement artifacts
were automatically classified and removed by using an ICA-
based Multiple Artifact Rejection Algorithm (Winkler et al. 2011,
2014). Components reflecting cardiac artifacts were identified
using ICLabel (Pion-Tonachini et al. 2019) and were removed
consecutively. Finally, all channels that were removed by
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Automagic were interpolated using the spherical method. The
preprocessed data were segmented according to time-on-task
(bin information) and experimental conditions (probability
information). Specifically, segments were created separately for
high-probability and low-probability conditions throughout the
task. Additionally, segments were created separately for each
unit of analysis (bin 1: blocks 1–5, bin 2: blocks 6–10, bin 3:
blocks 11–15, bin 4: blocks 16–20, and bin 5: blocks 21–25) and
high-probability and low-probability conditions within each bin.
Segments started −200 ms and ended 750 ms relative to stimulus
onset. Only segments with correct responses were included.
Current-source density (CSD) transformation with 4 orders of
splines was applied to the segmented data (Perrin et al. 1989;
Kayser and Tenke 2015). CSD serves as a reference-free spatial
filter to highlight scalp topography. Of note, separate datasets
were also created without CSD transformation specifically for
the source localization analyses. Next, the segmented data were
baseline-corrected based on the 200-ms long interval before the
stimulus onset.

Residue iteration decomposition
Temporal signal decomposition was performed by using RIDE
(Ouyang et al. 2011, 2015a, 2015b; Ouyang and Zhou 2020) in
Matlab 2019a (The MathWorks Corp.) as part of the RIDE-MVPA
protocol (Takács et al. 2022) based on numerous previous studies
(Takacs, Mückschel, et al. 2020; Petruo et al. 2021; Prochnow et al.
2021; Yu et al. 2022). RIDE estimates clusters with different latency
information (variable vs. static) and then uses a nested iteration
scheme to self-optimize the cluster solution. The procedure is
based on segmented single-trial EEG data and was performed
on each channel separately. RIDE was used to estimate 3 clus-
ters: C-cluster (“central cluster”) covers intermediate or transla-
tional processes between stimulus and response, such as retrieval,
decision-making, or response selection; R-cluster (“response clus-
ter”) refers to motor preparation and execution; and S-cluster
(“stimulus cluster”) collects information on stimulus-related pro-
cesses, such as perception and attention (Ouyang and Zhou 2020).
In each step of the iteration, the decomposition module estimates
S, C, and R (Ouyang et al. 2015b). Specifically, to estimate a cluster,
RIDE subtracts the other 2 clusters from the single-trial EEG
and aligns the residuals from every trial to the latency of the
estimated cluster. As a result, the estimated cluster represents the
median waveform. This procedure is iterated until monotonicity
is violated. That is, once the estimated latency value changes
direction between the iteration steps, convergence is reached, and
the final cluster configuration can be analyzed. Several previous
studies have shown that RIDE provides a conceptually meaning-
ful separation of concomitant codings in the neurophysiological
signal (Wolff et al. 2017; Opitz et al. 2020; Ouyang and Zhou
2020). The approach has been validated in different paradigms,
such as oddball (Verleger et al. 2014), flanker (Bluschke et al.
2017), emotional Stroop (Schreiter et al. 2018), event file bind-
ing (Friedrich et al. 2020; Opitz et al. 2020; Takacs, Zink, et al.
2020), response inhibition (Stürmer et al. 2013), and response
planning tasks (Takacs et al. 2021). The decomposition into 3
clusters requires predefined time windows for the initial cluster
estimations. We have selected these time windows based on a
previous study that used RIDE in EEG data with a modified ASRT
paradigm (Takács et al. 2021): 150–600 ms after stimulus presen-
tation for the C-cluster, the time window between 300 ms before
and 300 ms after the response markers for the R-cluster and
0–500 ms after stimulus onset for the S-cluster. Please note, that
overlap between the initial search windows for RIDE clusters is a

common practice, as the iterative comparison between cluster
solutions was designed with the assumption of overlapping pro-
cesses (Ouyang et al. 2011, 2015a, 2015b; Ouyang and Zhou 2020).
The separation of the clusters is illustrated in the Supplemen-
tary Fig. S1. Next, EEG potentials and their topographies were
inspected visually in the high- and low-probability conditions
separately for the 3 clusters. Based on previous ERP studies with
the ASRT paradigm (Kóbor et al. 2018, 2019; Takács et al. 2021),
we constrained the search to a frontal/frontocentral negative
deviation (N2) and a central/centroparietal positive deviation (P3).
Specifically, frontal and frontocentral electrodes were inspected
for an N2-like deviation. In the S-cluster, a negative deflection
was detected between 240 and 340 ms after stimulus onset with a
maximum at electrode FCz (“S-N2”). In the R-cluster, a negative
deflection was detected between 320 and 440 ms after stim-
ulus onset with a maximum at electrode FCz (“R-N2”). In the
C-cluster, there was no observable N2-like component. Next, cen-
tral, centroparietal, and parietal channels were inspected for a P3-
like deviation. In the C-cluster, a positive deflection was detected
between 250 and 380 ms after stimulus onset with a maximum at
electrode P3 (“C-P3”). In the R-cluster, a positive deflection was
detected between 460 and 580 ms after stimulus onset with a
maximum at electrode C2 (“R-P3”). In the S-cluster, there was
no observable P3-like component. Within these identified time
windows, the mean amplitude was quantified and exported at the
single-subject level as an averaged ERP for “univariate” analyses
and as single-trial data for “multivariate” analyses.

Univariate analyses
Statistical analyses were performed in JASP 0.16.2. (JASP Team)
and followed the procedure of analyzing ASRT data (Howard
and Howard 1997; Song et al. 2008). Learning was quantified
as a difference between high- and low-probability conditions.
That is, shorter RTs for high-probability than for low-probability
trials mean learning of the probabilistic sequence information.
This learning process was analyzed as the probability (high- vs.
low-probability) by time-on-task (blocks 1–5, blocks 6–10, blocks
11–15, blocks 16–20, and blocks 21–25) ANOVAs on the RT and
RIDE decomposed mean amplitude data. The Greenhouse–Geisser
correction was used when sphericity was violated. Partial eta-
squared measure was used as an effect size. Post hoc pairwise
comparisons were Bonferroni-corrected.

Multivariate pattern analysis
MVPAs of the RIDE-decomposed data were performed by using
the MVPA-light toolbox (Treder 2020) in Matlab 2019a (The
MathWorks Corp.). For more details, see the RIDE-MVPA protocol
(Takács et al. 2022). First, the classes of high-probability and
low-probability across all bins were decoded separately for the
3 RIDE-decomposed clusters to identify the potential neuro-
physiological representation of stimulus probability. Second,
temporal generalization was calculated based on the high- and
low-probability class differences in the decomposed clusters
to analyze the temporal dynamics and the representational
stability of stimulus probability. While in binary decoding, the
training and testing were performed on the same time points,
in temporal generalization, the time points of the training were
also tested on all other time points as well. Since the behavioral
analysis showed that the probability effect was not modulated
by time-on-task (bins), MVPA was performed on the whole
task length. Nevertheless, decoding and temporal generalization
analyses separately for each bin and each cluster can be found in
Supplementary Figs. S2–S4. The number of trials in the 2 classes
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was balanced with undersampling to avoid overfitting (Treder
2020). Classification features consisted of EEG amplitude data at
the 64 channels in both stimulus classes. Decoding and temporal
generalization were performed for each individual and each RIDE-
cluster, while the parameters were kept the same.

For the decoding between high and low probabilities, an L1-
support vector machine (SVM) was used as a classifier. SVM
performs better than the default linear discriminant analysis if
the data are non-Gaussian, noisy, or prone to outliers (Treder
2020). Classifications with SVM were crossvalidated with 5-fold.
That is, data were divided into 5 equal parts. In every iteration
step, 1 of them was used for testing and the rest for training. After
each fold had been used for testing, the average of the iterations
was calculated. To identify the time interval with the difference
between the high-probability and low-probability classes, the area
under the curve (AUC) was used as a measure of decoding per-
formance and was compared to the chance level of AUC = 0.5.
Wilcoxon tests were performed against the chance level for each
time point across participants. Cluster-based permutation (1,000
permutations) was used as a method of statistical correction. The
time windows indicated by significant decoding at the group level
were used to investigate the correlations between neurophysi-
ological classification and behavioral results. AUC values were
averaged in significantly above-chance time windows at the single
subject level separately for each RIDE cluster. Two-tailed Pearson’s
correlations between individual AUCs and behavioral measures of
sequence learning were reported.

Source localization
Source localization was performed in the standardized low-
resolution brain electromagnetic tomography (sLORETA) software
package (Pascual-Marqui et al. 2002), which has been shown
to provide reliable source estimations coinciding with the
TMS and high-resolution MR scanning (Dippel and Beste 2015;
Ocklenburg et al. 2018). sLORETA employs a 3-shell spherical
head model (MNI152 template) where the intracerebral volume
is partitioned into 6,239 voxels using a spatial resolution of
5 mm. The standardized current density is calculated for
every voxel of the model. sLORETA provides a single linear
solution for the inverse problem without localization bias
(Pascual-Marqui et al. 2002; Marco-Pallarés et al. 2005; Sekihara
et al. 2005). We used the contrast between high-probability and
low-probability conditions for the statistical analyses. Voxel-
wise randomization with 5,000 permutations in the statistical
nonparametric mapping procedures (SnPM) was used to correct
for multiple comparisons. To identify functional neuroanatomical
regions showing significant learning effects in the univariate
analyses, sLORETA was performed at each time point. In case
of a significant probability or bin by probability interaction of the
mean amplitude data (see Univariate analyses), the maximum
activity within the ERP components time window was selected. To
identify the sources of significant learning effects as revealed by
the multivariate analyses, time windows with significantly above-
chance decoding were averaged for the sLORETA comparable to
previous studies (Petruo et al. 2021; Prochnow et al. 2021). This
was necessary due to the broad time windows in the MVPA (see
Multivariate results).

Results
Behavioral results
Overall accuracy was high in the entire sample (the range was
between 93% ± 0.006 in blocks 21–25 low probability condition

to 94% ± 0.005 in blocks 21–25 high-probability condition). Thus,
no participant had to be excluded based on low task perfor-
mance. Learning effects were analyzed on the RT data of correct
responses (Fig. 2). The probability (high- vs. low probability) by
bin (blocks 1–5, blocks 6–10, blocks 11–15, blocks 16–20, and
blocks 21–25) ANOVA on the median RT showed a significant
main effect of probability (F(1, 42) = 35.66, P < 0.001, ηp

2 = 0.459).
Participants responded faster to high- (357.94 ms ± 3.9) than to
low-probability trials (361.70 ms ± 4.0). Thus, participants learnt
to differentiate between trials based on their nonadjacent transi-
tions. The main effect of bin was also significant (F(4,168) = 5.57,
ε = 0.677, P = 0.002, ηp

2 = 0.117). Participants were faster in blocks
6–10 (359.44 ms ± 4.0, P = 0.017), blocks 11–15 (358.50 ms ± 3.9,
P = 0.002), blocks 16–20 (358.23 ms ± 3.7, P = 0.001), and blocks 21–
25 (358.48 ms ± 4.1, P = 0.002) than in blocks 1–5 (364.44 ms ± 4.5).
None of the other pair-wise differences was significant after Bon-
ferroni correction (Ps > 0.999). Thus, the general response speed
increased between the first phase and the rest of the task irre-
spective of the probability levels. Finally, the probability by bin
interaction was not significant (F(4, 168) = 1.97, ε = 0.790, P = 0.119,
ηp

2 = 0.045).

Neurophysiological results
Univariate results
Learning effects were analyzed on the mean amplitude data
separately for the temporally decomposed clusters. The main ERP
results are presented in Fig. 3. Additionally, all amplitudes that
were used for the statistical tests are displayed in Supplementary
Fig. S5.

In the C-cluster, the probability (high vs. low probability) by
bin (blocks 1–5, blocks 6–10, blocks 11–15, blocks 16–20, and
blocks 21–25) ANOVA on the mean amplitude of the 250–380-
ms time window (C-P3) over channel P3 showed that the main
effects of probability (F(1, 42) = 0.07, P = 0.799, ηp

2 = 0.002), bin (F(4,
168) = 2.66, P = 0.053, ε = 0.721, ηp

2 = 0.060), and the interaction
between them were not significant (F(4, 168) = 0.14, P = 0.945,
ε = 0.821, ηp

2 = 0.003).
In the S-cluster, the probability (high- vs. low-probability) by bin

(blocks 1–5, blocks 6–10, blocks 11–15, blocks 16–20, and blocks 21–
25) ANOVA on the mean amplitude of the 240–340-ms time win-
dow (S-N2) over channel FCz showed that the main effect of prob-
ability (F(1, 42) = 3.42, P = 0.071, ηp

2 = 0.075) was not significant.
However, the main effect of bin was significant (F(4, 168) = 3.33,
P = 0.012, ηp

2 = 0.074). The mean amplitude of the S-N2 was
smaller (less negative) in the blocks 16–20 (−6.78 μV/m2 ± 1.06,
P = 0.029) and blocks 21–25 (−6.66 μV/m2 ± 1.06, P = 0.015) than in
blocks 1–5 (−8.60 μV/m2 ± 1.06). None of the other pair-wise com-
parisons between bins was significant (Ps > 0.304). The interaction
between probability and bin was not significant (F(4, 168) = 0.91,
P = 0.461, ηp

2 = 0.021).
In the R-cluster, the probability (high- vs. low-probability) by

bin (blocks 1–5, blocks 6–10, blocks 11–15, blocks 16–20, and blocks
21–25) ANOVA on the mean amplitude of the 320–440-ms time
window (R-N2) over channel FCz showed a significant main effect
of probability (F(1, 42) = 5.99, P = 0.019, ηp

2 = 0.125). The R-N2 was
larger (more negative) in the high-probability (−4.03 μV/m2 ± 0.98)
than in the low-probability condition (−3.13 μV/m2 ± 0.98). The
main effect of bin (F(4, 168) = 2.59, ε = 0.729, P = 0.058, ηp

2 = 0.058)
and the interaction between probability and bin were not signif-
icant (F(4,168) = 0.41, ε = 0.847, P = 0.769, ηp

2 = 0.010). Thus, more
probable trials elicited a larger N2-response than did less proba-
ble trials throughout the task. The sLORETA analysis (see Fig. 3)
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Fig. 2. Behavioral results: individual and group RTs as a function of probability and bin. In the top left corner, group-level RTs are presented as a
line graph. Error bars denote the standard error of the mean. Individual RTs are presented as scatterplots and group-level distribution information is
visualized as boxplots separately for probability levels in each of the 5 bins (blocks 1–5 vs. blocks 6–10 vs. blocks 11–15 vs. blocks 16–20 vs. blocks 21–25).
High: high-probability; low: low-probability.

showed that this probability effect was reflected by activation
modulations in the left superior frontal gyrus (BA10).

The probability (high- vs. low-probability) by bin (blocks 1–5,
blocks 6–10, blocks 11–15, blocks 16–20, and blocks 21–25) ANOVA
on the mean amplitude of the 460–580-ms time window (R-P3)
over channel C2 showed a significant main effect of probability
(F(1, 42) = 18.64, P < 0.001, ηp

2 = 0.307). The R-P3 was larger (more
positive) in the low probability (5.43 μV/m2 ± 0.61) than in the
high-probability condition (4.81 μV/m2 ± 0.61). The main effect
of bin (F(4,168) = 0.72, ε = 0.536, P = 0.500, ηp

2 = 0.017) and the
interaction between probability and bin were not significant (F(4,
168) = 1.70, ε = 0.853, P = 0.653, ηp

2 = 0.039). Thus, less probable
trials elicited a larger P3 response than more probable trials
irrespective of the time-on-task through the bins. The probability
effect on the P3 amplitude was related to activation modulations
in the middle frontal gyrus (BA6).

Multivariate results
Group-level decoding results
Figure 4A presents the decoding performance between high-
and low-probability conditions separately for the C-cluster,
S-cluster, and R-cluster data. In the C-cluster, the classification
was significantly above chance from between 150 and 680 ms
after stimulus presentation. This time window was associated
with activation differences in the left precentral gyrus (BA6). In
the R-cluster, the classification was significantly above chance
between 240 and 620 ms after the stimulus onset. This time
window was associated with activation in the left precuneus
(BA19) and the left superior parietal lobule (BA7). In the S-cluster,
high- and low-probability conditions were decoded above-chance
level between 100 and 640 ms relative to stimulus presentation.
This period was associated with the right superior frontal gyrus
(BA9). Thus, in all 3 RIDE-clusters, decoding analyses provided

successful classifications, suggesting that neurophysiological
representations of stimulus probability can be observed at all
3 decomposed coding levels. Notably, classifications in the 3
decomposed signal clusters occurred in partially overlapping
time windows. Therefore, source localization analyses were also
performed in parts of the time windows that were either specific
to a single cluster or shared with at least another one (see Fig. 4B).
Specifically, the period of 100–150 ms was decoded above-chance
level only in the S-cluster. This time window was associated with
the right medial frontal gyrus (BA9). The next period, between
150 and 240 ms, was decoded both in the S-cluster and the
C-cluster. In the S-cluster, it was associated with the left pre-
central gyrus (BA6), while in the C-cluster, it was associated with
the right inferior frontal gyrus (BA9). The remaining significant
above-chance time windows of the S-cluster (240–640 ms) and
the C-cluster (240–680 ms) showed activation differences in the
left postcentral gyrus (BA2) and the left precentral gyrus (BA6),
respectively.

Temporal generalization results
Figure 4C presents the temporal generalization results separately
for the C-cluster, S-cluster, and R-cluster data. In the C-cluster,
decoding accuracy was highest (i.e. AUC > 0.7) along the diagonal
between 200 and 600 ms after stimulus presentation. Moving from
the axis, the above-chance classification gradually decreased but
remained significant except for the edges of the matrix. Impor-
tantly, the training window of 300–400 ms (i.e. the period cor-
responding to response selection and execution response, see
Behavioral results) generalized to the entire trial length of the
test time points. In the S-cluster, decoding accuracy was high-
est (i.e. AUC > 0.7) along the diagonal between 200 and 480 ms
after stimulus presentation. This diagonal classification was not
only shorter than in the C-cluster, but the related off-diagonal
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Fig. 3. Univariate results: ERPs and source localization. A) N200 waveforms on channel FCz. Time point 0 represents the stimulus presentation. The
analyzed time window (320–420 ms) is marked with a shaded area. The N200 is organized into 2 conditions: high-probability and low-probability. B) The
scalp topography plots show the distribution of the mean activity of the two probability levels. C) Results of the sLORETA source localization based on
the analyzed time window. The scales denote t-values. D) P3 waveforms on channel C2. Time point 0 represents the stimulus presentation. The analyzed
time window (460–580 ms) is marked with a shaded area. The P3 is presented as a function of probability levels: high-probability and low-probability.
E) The scalp topography plots show the distribution of the mean activity of the high- and low-probability conditions. F) Results of the sLORETA source
localization based on the analyzed time window. The scales denote t-values.

classification was also less pronounced, suggesting a more tran-
sient probability representation at the stimulus coding level than
at the stimulus–response translational level. Additionally, 2 off-
diagonal decoding patterns were observed in the S-cluster that
were not the direct continuation of the diagonal one. Namely,
the training period of ∼100–300 ms was generalized to the test
period of ∼550–700 ms. Similarly, the training period of ∼550–
700 ms was generalized to the test period of ∼100–300 ms. Finally,
in the R-cluster, high decoding accuracy (AUC > 0.7) was observed
along the diagonal between ∼ 250 and 600 ms that gradually
decreased toward the edges of the matrix. Importantly, the train-
ing time window of 300–500 ms, which corresponds to the average
response time in the task, generalized between 100 and 700 ms
in the test time points. Thus, decoding between probability levels
showed distinctive generalizability in the 3 decomposed clusters.
In all 3 analyses, decoding performance was the highest along the
diagonal when training and testing were performed on the same
time points. This central pattern was shortest in the S-cluster and
longest in the C-cluster. Similarly, off-diagonal generalization was
shortest in the S-cluster and longest in the C-cluster.

Connecting the levels of neurophysiological
decoding and behavior
Since training time windows in periods that are implicated
in response preparation and execution showed long-lasting

generalizations both in the C- and R-cluster data, we have
analyzed the possible linear relationship between classification
accuracy at the individual level and behavioral learning scores. In
the C-cluster, summed learning across bins (r = −0.297, P = 0.056)
and change of learning between the first and the last bins (blocks
1–5 vs. blocks 21–25) (r = 0.024, P = 0.881) did not correlate signifi-
cantly with decoding accuracy. Similarly, In the S-cluster, summed
learning (r = −0.203, P = 0.196) and change of learning (r = −0.175,
P = 0.268) did not correlate significantly with decoding accuracy.
In the R-cluster, decoding accuracy did not correlate significantly
with summed learning (r = −0.276, P = 0.077), however, the
correlation was significant with the change of learning (r = 0.313,
P = 0.044). Thus, participants who showed a bigger change in
learning between the beginning and the end of the task (i.e.
a steeper learning curve) were better classified based on the
R-cluster data.

Discussion
This study investigated the concomitant coding of sequential
regularities in perceptual, motor, and perceptual-motor informa-
tion of the neurophysiological signal. Previous studies suggested
that modality-specific encoding in either the perceptual or motor
domains is sufficient to develop the representation of sequential
regularities (Song et al. 2008), while other accounts assumed
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Fig. 4. Multivariate results: decoding, temporal generalization, and source localization. A) Classification performance between high- and low-probability
classes represented as AUC separately for the RIDE decomposed C-, R-, and S-cluster EEG data. Time 0 denotes the presentation of the target stimulus.
Thicker lines indicate significant time windows (P < 0.05; 2-sided cluster-based permutation). The earliest decoding occurred in the S-cluster (100 ms–
640 ms). The C-cluster decoding started later and lasted longer (150–680 ms). Finally, in the R-cluster, decoding was significantly above chance for
the shortest period (240–620 ms) among the 3 clusters. B) Results of sLORETA source localization for significant time windows as indicated by letters
(a–c) in the AUC plots. Color scales denote t-values. C) Temporal generalization matrices separately for the RIDE decomposed C-, R-, and S-cluster EEG
data. The plots show the degree to which the classifier when trained on a given time point (y-axis) generalizes to time points in the trial (x-axis). The
scales indicate the classifier performance. The diagonal (bottom left to top right) shows classification performance when the classifier is trained and
tested on the same time points. C-cluster (left): Sustained decoding pattern along the diagonal extended to off-diagonal parts of the matrix in a jittered
fashion. R-cluster (middle): Similar sustained pattern but with shorter off-diagonal extensions. S-cluster (right): A single sustained activation around
the diagonal that extended to the off-diagonal parts of the matrix with jittered edges. Additionally, 2 off-diagonal decoding patterns were also observed
that suggest generalization between early (100–300 ms) and late parts (550–700 ms) of the trial’s time window.

the existence of a simultaneous modality-independent coding
principle (Frost et al. 2015; Bogaerts et al. 2022). Participants
performed a visuomotor sequence learning task in which
nonadjacent relations predicted the upcoming target either with
high or low probability (Howard and Howard 1997). A combination
of temporal decomposition and multivariate decoding methods
(Takács et al. 2022) revealed the representation dynamics of prob-
ability information at the perceptual (stimulus-related), motor
(response-related), and central (stimulus–response translational)
levels. We found evidence of learning in the behavioral data and

the decomposed motor cluster ERPs but not in the perceptual
or central levels. MVPA confirmed that probabilistic regularities
can be decoded based on perceptual and translational codes
too. Thus, motor coding does not have a privileged role in the
neurophysiology of sequence learning. Instead, both perceptual
and response codes contribute to the neurophysiological coding of
sequential regularities. Moreover, the C-cluster decoding results
confirmed an abstract, modality-independent coding of sequence
information. The perceptual and translational contributions
to probability representations were revealed by using the
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multivariate protocol (Takács et al. 2022) but would have
remained hidden with univariate tools.

Motor coding alone seemed to be sufficient for incidental
sequence learning since, in the univariate analyses, the probabil-
ity effect was observed only in the R-cluster. Interestingly, in a pre-
vious study (Takács et al. 2021), when visuomotor sequences were
learnt either incidentally or intentionally, N2 and P3 amplitudes
in the S-cluster and the C-cluster showed learning effects but
not in the R-cluster. It was suggested that the incidental/implicit
nature of the task could switch learning toward motor encoding
as opposed to perceptual-motor encoding in intentional/explicit
learning (Rüsseler and Rösler 2000). Thus, it is possible that, due
to the incidental learning scenario in the current study, only the
R-cluster was sensitive enough to detect learning-related ERP
differences. Specifically, the R-N2 was larger in high-probability
than in low-probability conditions, which likely reflects the more
pronounced motor activation before high-probability than before
low-probability stimuli (Mückschel et al. 2017). Additionally, the R-
P3 was larger in the low-probability than in the high-probability
stimuli. This corroborates a previous ERP study (Kóbor et al. 2019)
that used the same paradigm: They found larger amplitudes for
less probable than for more probable trials both in the undecom-
posed stimulus-locked and response-locked P3s. It is conceivable
that the R-P3 in the current study implies the same probability
effect as the response-locked undecomposed P3 (Kóbor et al.
2019). Namely, larger P3 amplitude in the low-probability con-
dition reflects the increased effort needed to retrieve the less
frequently used response association. To sum up, the learning
effect was observed in the motor code ERPs but not when stimulus
information was involved (C- and S-clusters), suggesting that the
motor modality alone is sufficient to develop probability repre-
sentations in visuomotor sequence learning.

However, the multivariate analyses drew a different picture.
Classification based on the high- and low-probability trials was
successful in all 3 clusters: Significant above-chance decoding
was observed in partially overlapping time windows between
C-, R-, and S-cluster analyses. Thus, probability levels were rep-
resented not only in the motor code but also in the perceptual
and central levels. Moreover, the earliest decoding was detected
in the S-cluster, which suggests that probability representation
is accessible as early as 100 ms after the stimulus onset. Addi-
tionally, the perceptual coding preceded the motor 1 with 120 ms.
Importantly, before the motor decoding, but after the percep-
tual time window, the C-cluster showed a sustained represen-
tational pattern (starting from 150 ms). As the C-cluster is not
related to modality-specific coding, this raises the possibility of
a modality-independent coding of probability information with
an early onset of accessibility. Curiously, overlapping representa-
tions between clusters resemble both decoding evidence (Takacs,
Mückschel, et al. 2020) and theoretical accounts (Hommel 2004;
Takacs et al. 2021) of event file coding. In event file coding,
C-cluster decoding was suggested to reflect the abstract feature
codes, which enables generalization to overlapping events and
modality-specific representations of stimulus and response fea-
tures (Takacs, Mückschel, et al. 2020; Eggert et al. 2022). Testing
TEC’s predictions in sequence learning yielded new insights both
in the past (Eberhardt et al. 2017; Haider et al. 2020) and in
the current study. Similarly, distinguishing between the roles of
binding per se and retrieval of binding-related memory traces
became a central topic in event file coding (Frings et al. 2020;
Hommel and Frings 2020; Eggert et al. 2022). Connecting the
fields of event file coding and sequence learning has potential for
both research communities (Takacs et al. 2021). Considering the

functional relevance of event files in sequence learning, C-cluster
decoding in the current study also suggests an abstract, modality-
independent coding level.

Decoding in all 3 clusters is in line with the notion that
learning probabilistic information is not a unitary phenomenon
but a set of concerted mechanisms: Some of them are subject to
modality-specific constraints, while some operate in a domain-
general manner (Frost et al. 2015; Bogaerts et al. 2022). Moreover,
these coding levels work simultaneously and in overlapping
time windows. This nested structure suggests information
sharing between coding levels (Bogaerts et al. 2022). As the
overlap between the domain-general (C-cluster) and perceptual
(S-cluster) coding preceded the motor time window (from 240 ms),
abstract probability representations could develop without the
contribution of motor coding (Song et al. 2008). Nevertheless, in
the current visuomotor experiment, the observed generalization
patterns were similar across the 3 clusters: A sustained decoding
pattern along the diagonal extended to off-diagonal parts of
the matrix in a jittered fashion. Thus, the onset and offset of
the representational patterns were gradual. In sum, sequence
learning requires a concerted effort between parallel coding of
modality-dependent and modality-independent codes (Frost et al.
2015; Conway 2020; Bogaerts et al. 2022).

The current study is in line with the multifaceted nature of
learning (sequentially coded) statistical information (Thiessen
and Erickson 2013; Daltrozzo and Conway 2014; Arciuli 2017;
Arciuli and Conway 2018; BCs et al. 2021; Maheu et al. 2022). It
was proposed that the ability to learn probabilistic information
relies on partially distinguishable multiple components, and
each of them can tap differently into encoding, consolida-
tion, and abstraction of memories (Arciuli 2017; Arciuli and
Conway 2018). Understanding the mechanistic role of these
components is particularly challenging, given their functional
and temporal overlap. The simultaneous modality-specific
and modality-independent encoding could have contributed
to the difference between univariate and multivariate results.
Similarly, the univariate-multivariate mismatch might reflect the
difference between focal (electrode-specific ERPs) and spatially
not restricted (all electrodes were used as features in the MVPA)
effects. Furthermore, the lack of ERP effects in the S- and
C-clusters highlights the limitations of univariate methods to
uncover EEG signatures of probabilistic sequence learning. We
propose that the combined RIDE-MVPA protocol could be used
in future studies to uncover remaining questions on the coding
of probability information. For instance, how do the S-cluster
and C-cluster dynamics evolve if the sequence is observed but
no motor response is required? How do the decomposed coding
levels contribute to the consolidation, reactivation, or rewiring of
the memory traces?

The current study investigated the roles of visual and motor
modalities in probabilistic sequences. The presented method can
be applied to other crossmodal designs as well. The possibility
of transfer between auditory and visual/visuomotor sequence
representations is still contentious (Kemény and Lukács 2019;
Conway 2020; Han and Reber 2021; Feng et al. 2023). Further-
more, analyzing neurophysiological coding levels of incidentally
acquired memories from different paradigms would dovetail our
understanding of how encoding and retrieval of procedural repre-
sentations might differ across learning scenarios. Different tasks
and even different measures from the same task can lead to
diverging results (Lukács and Kemény 2015; Arciuli 2017; Arciuli
and Conway 2018; Takács et al. 2018; BCs et al. 2021; Takacs et al.
2021). The ASRT was selected in the current study as it (i) has
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good reliability indices (Stark-Inbar et al. 2017; Arnon 2020; Farkas
et al. 2023); (ii) provides information on the temporal dynamics of
learning (Howard and Howard 1997; Nemeth, Janacsek, and Fiser
2013; Éltető et al. 2022); and (iii) is well adapted to an EEG setting
(Kóbor et al. 2018, 2019; Takács et al. 2021).

Interestingly, the temporal aspect of learning (i.e. the learning
curve) has contributed to the results only partially. According
to the RT data, learning occurred early in the task and did not
show significant development later. This was also reflected by
the time-invariant results of the univariate ERP and the multivari-
ate decoding analyses (see Supplementary Figs. S2–S4). However,
the significant correlation between MVPA and behavioral data
revealed that participants with a steeper learning curve were
better classified based on the R-cluster data. Thus, individual
differences in the behavior could be mapped to classification
of the motor code but not to the perceptual or central coding.
This pattern could be explained by the similarity between RT-
based learning scores and RT-informed decomposition of the
R-cluster (Petruo et al. 2021). Alternatively, the perceptual and
central decodings might be related to different facets, such as
consolidation or abstraction. It was recently suggested that cross-
modal transfer between sequences require an abstract temporal
template (Feng et al. 2023), which might be reflected by the central
coding level. Conversely, given the C-cluster’s prominent role in
inhibition (Bluschke et al. 2017; Mückschel et al. 2017; Schreiter
et al. 2018; Opitz et al. 2020; Prochnow et al. 2021), it is feasible that
behavioral correlations would show in the presence of competing
sequences. Further studies needed to understand how different
coding levels contribute to individual differences not only in
learning but also in consolidation, memory transfer, and memory
interference.

The importance of distributed processing was further corrobo-
rated by the source localization results, which implicated a wider
network of frontal and parietal activations. Frontal sources were
identified in the early time windows (medial frontal gyrus and
precentral gyrus) and the complete span (superior frontal gyrus)
of S-cluster decoding and in the early (inferior frontal gyrus) and
entire periods (precentral gyrus) of the C-cluster decoding. The
widespread frontal activity in stimulus (S-cluster) and stimulus–
response (C-cluster) coding levels could be related to the inverse
relationship between frontally rooted executive functions and
probabilistic sequence learning (Nemeth, Janacsek, Polner, et al.
2013; Janacsek et al. 2015; Ambrus et al. 2020; Horváth et al. 2022;
Park et al. 2022). The superior frontal gyrus was suggested as one
of the main hubs of sequence learning (Park et al. 2022). It was
proposed that decoupling between superior frontal and parietal
regions is crucial for learning (Tóth et al. 2017; Lum et al. 2022;
Park et al. 2022). Moreover, the inferior frontal gyrus has been
previously linked to the detection and learning of nonadjacent
probabilistic regularities (Barascud et al. 2016; Southwell and
Chait 2018; Takács et al. 2021). Activation in the inferior frontal
gyrus was localized on the right side. This supports the notion
of right hemisphere advantage in the processing of visuomotor
sequences (Janacsek et al. 2015; Takács et al. 2021). Curiously,
parietal sources were linked only to the R-cluster. It was suggested
(Gottlieb 2007; Gottlieb and Snyder 2010) that the parietal cortex
is essential in binding stimulus and response information and
plays an important part in rule-dependent response selection
processes. This parietal role is highlighted when the bottleneck
of response selection faces a challenging environment (Stock et al.
2014; Vahid et al. 2022). From the 2 parietal sources, the precuneus
has also been identified as a hub in the sequence learning-
network (Park et al. 2022). This result in the R-cluster data might

be surprising when considering that BA19 is mainly related to
visual processes (Kanwisher and Yovel 2006). However, please note
that the precuneus was implicated as part of a larger parietal
signal that also encompassed the BA7. As opposed to the parietal
sources in the R-cluster decoding, the R-N2 and R-P3 deflections
were related to frontal activation differences (superior frontal
and middle frontal gyrus, respectively). The difference between
neural sources of univariate and multivariate effects within the
same cluster corroborates the idea that the 2 approaches tapped
into different neurophysiological signatures of sequence learning
(Southwell and Chait 2018; Takács et al. 2021).

Conclusion
In sum, we have shown evidence that perceptual, motor, and
perceptual-motor coding levels all contribute to the neurophys-
iology of probabilistic sequence learning. The role of the 3 coding
mechanisms could be uncovered with multivariate methods only
due to the overlap between the motor (R-cluster), perceptual
(S-cluster), and translational (C-cluster) representations. In all 3
cases, the neurophysiological representations of probability lev-
els were stable, sustained, and could be generalized to other
time points as well. Thus, neither perceptual nor motor encod-
ing have privileged roles in sequence learning (Song et al. 2008;
Conway 2020; Takács et al. 2021). Instead, probability can be
represented simultaneously in multiple coding levels, including
a not-modality-specific one (C-cluster). Successful decoding at
the perceptual-motor level suggests that modality-specific encod-
ings work in concert with more abstract, modality-independent
sequence learning (Conway 2020).

Data sharing and code accessibility
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