
HAL Id: hal-04755998
https://hal.science/hal-04755998v1

Preprint submitted on 28 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization with First Order Algorithms
Charles Dossal, Samuel Hurault, Nicolas Papadakis

To cite this version:
Charles Dossal, Samuel Hurault, Nicolas Papadakis. Optimization with First Order Algorithms. 2024.
�hal-04755998�

https://hal.science/hal-04755998v1
https://hal.archives-ouvertes.fr

Optimization with First Order Algorithms

Charles Dossal1, Samuel Hurault2, and Nicolas Papadakis3

1IMT, Univ. Toulouse, INSA Toulouse, Toulouse, France
2ENS Paris - CNRS

3Univ. Bordeaux, CNRS, INRIA, Bordeaux INP, IMB, UMR 5251,
F-33400 Talence, France

Contents
1 Introduction 3

2 Definitions and background 3
2.1 Existence of minimizers for convex functions 4
2.2 L-smoothness . 5

3 Optimization of smooth convex functions 6
3.1 Properties of gradient of smooth functions 6
3.2 Gradient descent algorithm . 9

3.2.1 Gradient descent operator . 9
3.2.2 Gradient descent with fixed stepsize 10
3.2.3 Strongly convex function . 11

3.3 Convergence rates of the gradient descent algorithm 12
3.4 Other gradient descent algorithms . 14

3.4.1 Gradient descent with optimal stepsize 14
3.4.2 Newton’s method . 14
3.4.3 Gradient descent with backtracking 15
3.4.4 Implicit gradient descent with fixed stepsize 15
3.4.5 Projected gradient . 16

1

4 Optimization of non smooth convex functions 17
4.1 Properties of subdifferentials . 18
4.2 Proximal operator . 20

4.2.1 Firm nonexpansiveness . 22
4.2.2 Strongly convex functions . 24

4.3 Proximal algorithms . 25
4.3.1 Proximal Point algorithm . 25
4.3.2 Forward-Backward algorithm (FB) 25
4.3.3 Fast Iterative Shrinkage Thresholding Algorithm (FISTA) . . 27
4.3.4 Douglas-Rachford algorithm (DR) 30
4.3.5 Parallel ProXimal Algorithm (PPXA) 34
4.3.6 Alternating Direction Method of Multipliers (ADMM) 35

5 Duality 37
5.1 Properties of convex conjugates . 37
5.2 Primal-Dual Algorithms . 40

5.2.1 Saddle-point problem . 40
5.2.2 Chambolle-Pock algorithm (CP) 42
5.2.3 Condat algorithm . 45

5.3 Equivalence between proximal splitting algorithms 46
5.3.1 Chambolle-Pock and Douglas-Rachford equivalence 46
5.3.2 ADMM and Douglas-Rachford equivalence 47

6 Extension to nonconvex optimization 49
6.1 From convex to nonconvex optimization, the case of gradient descent 49
6.2 Single-point nonconvex convergence of Forward-Backward 50

6.2.1 Nonconvex subdifferential and critical points 51
6.2.2 Kurdyka-Łojasiewicz (KŁ) property 52
6.2.3 Nonconvex Forward-Backward single-point convergence 54

6.3 Other proximal splitting algorithms 56
6.3.1 Nonconvex Douglas-Rachford and ADMM 56
6.3.2 Nonconvex primal version of the Chambolle-Pock algorithm . 57
6.3.3 Nonlinear Chambolle-Pock algorithm 58

7 Various imaging problems, various optimization algorithms 58

A Convergence of Chambolle-Pock algorithm 62

2

1 Introduction
These notes focus on the minimization of convex functionals using first-order op-
timization methods, which are fundamental in many areas of applied mathematics
and engineering. The primary goal of this document is to introduce and analyze the
most classical first-order optimization algorithms. We aim to provide readers with
both a practical and theoretical understanding in how and why these algorithms
converge to minimizers of convex functions.

The main algorithms covered in these notes include gradient descent, Forward-
Backward splitting, Douglas-Rachford splitting, the Alternating Direction Method
of Multipliers (ADMM), and Primal-Dual algorithms. All these algorithms fall into
the class of first order methods, as they only involve gradients and subdifferentials,
that are first order derivatives of the functions to optimize. For each method, we
provide convergence theorems, with precise assumptions and conditions under which
the convergence holds, accompanied by complete proofs.

Beyond convex optimization, the final part of this manuscript extends the anal-
ysis to nonconvex problems, where we discuss the convergence behavior of these
same first-order methods under broader assumptions. To contextualize the theory,
we also include a selection of practical examples illustrating how these algorithms
are applied in different image processing problems.

We mention the books [4, 5] for more complete results and proofs, as well as the
lecture notes [49, 44], the handbook [22] including stochastic aspects and the review
paper [17] that contains many details on primal-dual algorithms.

Organization In section 2, we give the necessary background on convex func-
tions, non expansive operators and smooth (differentiable) functions, that will used
all along the document. Section 3 focuses on the minimization of smooth convex
functions with gradient descent schemes. Section 4 is dedicated to non smooth con-
vex functions and proximal splitting algorithms. We introduce duality tools and
primal dual algorithms in section 5. Section 6 explores the extension of previous
algorithms to the optimization of nonconvex functionals. Finally, examples of the
application of proximal splitting algorithms to imaging problems are presented in
section 7.

2 Definitions and background
We recall that the objective of this document is to present algorithm computing
minimizers of functions f . We first introduce the main notations and definitions in
section 2.1 in order to give condition for the existence of minimizers of f . As we
will consider the optimization of smooth and non smooth functions, we finally give
definitions related to differentiable functions with Lipschitz gradient in section 2.2.

3

2.1 Existence of minimizers for convex functions

In the whole document, E is an Euclidean vectorial space of finite dimension,
equipped with an inner product ⟨·, ·⟩ and a norm ||.|| = ⟨·, ·⟩ 1

2 . We can typically
consider that E = Rd.

Definition 1 (Domain). Let f be a function defined from E to R̄ = R ∪ +∞, we
denote the domain of f as dom(f) = {x ∈ E such that f(x) ̸= +∞}.

Definition 2 (Coercivity). A function f is coercive if lim
∥x∥→+∞

f(x) = +∞.

Definition 3 (Lower semi-continuity, l.s.c). A function f defined from E to R∪+∞
is lower semi-continuous (l.s.c) if, ∀x ∈ E, lim inf

y→x
f(y) ⩾ f(x).

Remark 1. For later use, we recall interesting properties related to lower semi-
continuous functions:

• Lower semi-continuity is stable by sum.

• Continuous functions are lower semi-continuous.

• The characteristic function ιC(x) of a closed convex set C is lower semi-
continuous.

• If f is l.s.c, for all α ∈ R, the sets

{x ∈ E, f(x) ⩽ α} and {(x, α) ∈ E × R such that f(x) ⩽ α}

are closed.

Definition 4 (Proper). A function f from E to R̄ = R∪{±∞} is proper if ∃x ∈ E
such that f(x) < +∞ and f(x) > −∞, ∀x ∈ E.

Definition 5 (Convexity). Let f be a function defined from E to R̄, f is convex iff
for all pairs (x, y) ∈ E×E and ∀λ ∈ [0, 1], f(λx+(1−λ)y) ⩽ λf(x)+ (1−λ)f(y).
If the inequality is strict, then f is strictly convex.

Proposition 1. Let f be a convex, proper, l.s.c and coercive function defined on E
with values in R̄, then f is bounded from below and admits at least one minimizer.
If f is strictly convex then the minimizer is unique.

Proof. For all r ∈ R, the set Hr = {x ∈ E such that f(x) ⩽ r} is closed since f is
l.s.c and bounded since f is coercive. Then for all r ∈ R, the set Hr is compact. The
set H =

⋂
r∈R

Hr is an intersection of nested compact sets. As f is proper, H = ∅ and

there exists r0 ∈ R such that Hr0 is empty. As a consequence, r0 is a lower bound
of f .

Next, as f is proper, there exists x0 ∈ E such that f(x0) < +∞ and f(x0) ̸= −∞.
The set H = {x ∈ E such that f(x) ⩽ f(x0)} is closed since f is l.s.c and bounded
as f is coercive. H is thus compact as the dimension of E is finite. We have

4

inf
x∈E

f(x) = inf
x∈H

f(x) > −∞ since f is lower bounded. Let (xn)n∈N be a minimizing

sequence of elements of H such that lim
n→∞

f(xn) = inf
x∈H

f(x). This sequence admits a
subsequence converging to an element x∞ of H. Since f is l.s.c, we get on a

lim inf
n→∞

f(xn) ⩾ f(x∞).

As lim
n→∞

f(xn) = inf
x∈H

f(x), we deduce that f(x∞) = inf
x∈H

f(x) = inf
x∈E

f(x). The unique-
ness of the minimizer finally comes with the strict convexity.

Using the notion of convexity, we can also define strong and weak convexity.
Strong convexity allows better local control of the function to minimize.

Definition 6 (α-strong and weak convexity). Let f be a function defined from E
to R ∪ {+∞} and α > 0. We say that the function f is α−strongly convex, or
α−convex (resp. α−weakly convex) if the function g defined by g(x) = f(x)− α

2
∥x∥2

(resp. g(x) = f(x) + α
2
∥x∥2) is convex.

By definition, if f is convex and y is an element of E, the function x 7→ f(x) +
1
2γ
∥x − y∥2 is 1

γ
-strongly convex. Strong convexity involves strict convexity and

ensures the uniqueness of the minimizer.

2.2 L-smoothness

In this document, we consider the minimization of smooth and non-smooth func-
tions. We will refer to a smooth function as soon as it is differentiable.

Definition 7 (Differentiability). A function f defined from E to R∪+∞, is differ-
entiable at point x ∈ E if there exists a unique point lx ∈ E such that

lim
h∈E,||h||→0

f(x+ h)− f(x)− ⟨lx, h⟩
||h||

= 0.

The gradient of f at point x is then denoted as ∇f(x) = lx.
A function is said differentiable as soon as it is differentiable ∀x ∈ E. A function

f is called non-smooth when it is not a differentiable function.

Definition 8 (Lipschitz continuity). A function T defined from E to E is said to
be L−Lipschitz (or L−Lipschitz continuous) if for all (x, y) ∈ E2, we have

∥T (x)− T (y)∥ ⩽ L∥x− y∥.

Definition 9 (L-smoothness). A smooth function f with L-Lipschitz gradient ∇f
is called a L-smooth function.

A classical theoretical framework ensuring L−smoothness is the case of twice
differentiable functions f . If we are able to bound the operator norm of the Hessian
matrix of f by L, then we deduce that the gradient of f is L−Lipschitz (see Remark 3
in the next section).

5

3 Optimization of smooth convex functions
We consider the general problem:

min
x∈E

f(x) (1)

where f is a real valued, convex, coercive, L-smooth function defined on a closed,
convex set E. As f is differentiable, it is lower semi-continuous and proper by
definition. Following Proposition 1, these hypotheses ensure that the optimization
problem (1) admits at least one solution. Additionally, if f is strictly convex, then
the solution is unique.

The minimizers x∗ of a convex, differentiable function f defined on E are simply
characterized by the Euler equation:

∇f(x∗) = 0. (2)

A different way to formulate this is that all the critical points of a convex function
are global minima. To estimate such critical points, we will rely on the gradient
descent algorithm:

xn+1 = xn − γ∇f(xn). (3)

This algorithm consists in applying recursively from a point x0 ∈ E the gradient
descent operator Id−γ∇f , defined for a strictly positive real number γ called step-
size.

The organization of this section is as follows. We first give general properties
on the gradient of differentiable convex functions f in section 3.1. Then we study
in section 3.2 the properties of the gradient descent operator Id−γ∇f and exploit
this operator to find fixed points of (3) satisfying the optimality condition (2) and
thus minimizing problem (1). We provide an analysis of the convergence rate of
the gradient descent scheme in section 3.3 and finally discuss several variants and
accelerations of this algorithm in section 3.4.

3.1 Properties of gradient of smooth functions

We here recall important properties related to differentiable and L-smooth functions.

Proposition 2. Let f be a convex, differentiable function defined from E to R.
Then for all (x, y) ∈ E2, we have

f(y) ⩾ f(x) + ⟨∇f(x), y − x⟩ (4)

Proof. By convexity of f , we have for all λ ∈]0, 1[,

f(x+ λ(y − x)) ⩽ (1− λ)f(x) + λf(y).

which can be rewritten

f(x+ λ(y − x))− f(x)

λ
⩽ f(y)− f(x).

6

By letting λ go to zero we obtain

⟨∇f(x), y − x⟩ ⩽ f(y)− f(x)

By applying this proposition to two different points x and y, we deduce that the
gradient of f is monotone.

Definition 10 (Monotonicity). Let T be a function defined from E to E. We say
that T is monotone if for all (x, y) ∈ E2,

⟨T (x)− T (y), x− y⟩ ⩾ 0.

Corollary 1. Let f be a convex, differentiable function defined from E to R. Then
the gradient of f is monotone, for all (x, y) ∈ E2:

⟨∇f(x)−∇f(y), x− y⟩ ⩾ 0.

Proof. The result is given by summing the inequality in Proposition 2 taken in (x, y)
and (y, x).

Remark 2. Note that Corollary 1 is in fact an equivalence [4, Proposition 17.10].
As the monoticity result is directly obtained by the inequality in Proposition 2, we
get that, for f : E → R differentiable, the following points are equivalent:

(i) f is convex.

(ii) ∀(x, y) ∈ E2, we have f(y) ⩾ f(x) + ⟨∇f(x), y − x⟩

(iii) ∇f is monotone.

Moreover, if f is twice-differentiable, this is also equivalent to [4, Proposition 17.10]

(iv) for all (x, y) ∈ E2, we have ⟨∇2f(x)y, y⟩ ≥ 0

We just saw that convex and differentiable functions are bounded from below by
their affine approximations. In addition, if the gradient of f is L-Lipschitz, we can
obtain an upper bound of f regardless of its convexity.

Lemma 1 (Descent Lemma). Let f be a L-smooth function (i.e. differentiable with
L-Lipschitz gradient) defined from E to E. Then for all (y, z) ∈ E2, we have

f(z) ⩽ f(y) + ⟨∇f(y), z − y⟩+ L

2
∥z − y∥2. (5)

Proof. Let g be a differentiable function on R such that g′ is K−Lipschitz (see
Definition 8). Then we have

g(1) = g(0) +

∫ 1

0

g′(t)dt = g(0) + g′(0) +

∫ 1

0

(g′(t)− g′(0))dt ⩽ g(0) + g′(0) +
K

2
.

7

Let (y, z) ∈ E2. For all t ∈ [0, 1], we set v = z−y, yt = y+ t(z−y) and g(t) = f(yt).
The function g is differentiable and g′(t) = ⟨∇f(yt), v⟩. According to the hypotheses
on f , g′ is K-Lipschitz with K = L∥v∥2.
From this we deduce that for all (y, z) ∈ E2,

f(z) ⩽ f(y) + ⟨∇f(y), z − y⟩+ L

2
∥z − y∥2.

Remark 3. Using Remark 2, we have that the descent lemma equation (5) is equiv-
alent to x → L

2
∥x∥2 − f being convex. And if f is twice differentiable, this is also

equivalent to: for all (x, y) ∈ E2, ⟨∇2f(x)y, y⟩ ≤ L.

Next we recall a useful inequality for convex and L-smooth functions.

Lemma 2 (Co-coercivity). Let f be a convex L-smooth function, then

∀(x, y) ∈ E2, ⟨∇f(x)−∇f(y), x− y⟩ ⩾ 1

L
∥∇f(x)−∇f(y)∥2. (6)

This property is called co-coercivity of the function ∇f .

Proof. Using inequality (5) with z = x− 1

L
∇f(x) and y = x, we obtain

1

2L
∥∇f(x)∥2 ⩽ f(x)− f

(
x− 1

L
∇f(x)

)
⩽ f(x)− f(x∗).

where x∗ is a minimizer of f . We also have, for all x ∈ E,

1

2L
∥∇f(x)∥2 ⩽ f(x)− f(x∗). (7)

Let (x, y) ∈ E2 and introduce the functions h1(z) = f(z)− ⟨∇f(x), z⟩ and h2(z) =
f(z)− ⟨∇f(y), z⟩. These two functions are convex and respectively admit the min-
imizers x and y. Applying inequality (7) to these two functions and obtain

h1(x) ⩽ h1(y)−
1

2L
∥∇h1(y)∥2 and h2(y) ⩽ h2(x)−

1

2L
∥∇h2(y)∥2.

By adding these two inequalities we obtain the result of the lemma.

Let us finally mention that we can obtain a lower bound for f when the function
f is also α-strongly (or weakly) convex,

Lemma 3. Let α ∈ R, let f be a smooth and α-convex function defined from E to
E. Then for all (y, z) ∈ E2, we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2
∥y − x∥2 (8)

so that
⟨∇f(x)−∇f(y), y − x⟩ ≥ α∥y − x∥2. (9)

8

Proof. The function f(x) − α
2
∥x∥2 is smooth and convex, from the Definition 6 of

α-strong convexity. Using Proposition 2, we have for all (x, y) ∈ E2

f(y)− α

2
∥y∥2 ⩾ f(x)− α

2
∥x∥2 + ⟨∇f(x)− αx, y − x⟩, (10)

which gives (8). Switching the roles of x and y in (8) and summing both relations,
we obtain (9).

3.2 Gradient descent algorithm

In this section we describe the most classical method using the gradient of a convex
and differentiable function f , to approach a solution of problem (1):

min
x∈E

f(x). (11)

3.2.1 Gradient descent operator

In order to compute minimizers of problem (11), we now introduce the gradient de-
scent operator Id−γ∇f , defined for a strictly positive real number γ called stepsize.
In this section, we analyze the properties of this operator using the characteristics
of L-smooth functions studied in section 3.1. First of all, notice that the gradient
descent operator allows to characterize minimizers of (1).

Proposition 3. Let f be a convex, proper and differentiable function defined in E,
then for all γ ̸= 0:

Fix (Id−γ∇f) = argmin f.

Proof. x = (Id−γ∇f)(x) ⇔ ∇f(x) = 0 ⇔ x ∈ argmin f .

The idea behind gradient descent algorithms is to find fixed points of the gradient
descent operator, as these fixed points correspond to minimizers of f . In that
perspective, it is interesting to note that for a suitable choice of the stepsize γ, the
gradient descent operator enjoys non expansive properties.

Definition 11 (Non expansive operators and contractions). We recall that a func-
tion T defined from E to E is said to be L−Lipschitz (or L−Lipschitz continuous)
if for all (x, y) ∈ E2, we have

∥T (x)− T (y)∥ ⩽ L∥x− y∥.

If T is 1-Lipschitz we say that T is non expansive and if T is L−Lipschitz with
L < 1 we say that T is L-contracting or just a contraction.

Proposition 4. Let f be a convex, differentiable function with a L−Lipschitz gra-
dient. For γ > 0 we note T = Id−γ∇f . If γ ⩽ 2

L
, the operator T is 1-Lipschitz.

9

Proof. Taking (x, y) ∈ E2 and using Lemma 2 on the co-coercivity of ∇f , we get

||x− γ∇f(x)− (y − γ∇f(y))||2

= ||x− y||2 + γ2||∇f(x)−∇f(y)||2 − 2γ⟨x− y,∇f(x)−∇f(y)⟩

≤ ||x− y||2 + γ

(
γ − 2

L

)
||∇f(x)−∇f(y)||2.

We deduce that Id−∇f is 1-Lipschitz for γ ≤ 2
L
.

3.2.2 Gradient descent with fixed stepsize

The gradient descent method with fixed stepsize consists in applying recursively the
gradient descent operator Id−γ∇f . Considering a strictly positive real number γ
called stepsize and an element x0 ∈ E, the gradient descent algorithm writes ∀n ∈ N:

xn+1 = xn − γ∇f(xn). (12)

If we note T the operator defined from E to E by

Tx = x− γ∇f(x) = (Id−γ∇f)(x),

the sequence (xn)n∈N is simply defined by xn+1 = Txn.
If no specific hypothesis is made on the gradient of f , the method (12) may not

converge to a minimizer of f . The algorithm may indeed oscillate and diverge if γ
is chosen too large. On the other hand, if the gradient of f is L-Lipschitz, we now
show that the algorithm (12) converges to a minimizer of f for a correct choice of γ.

Theorem 1 (Gradient descent algorithm). Let f be a convex, differentiable function
with a L−Lipschitz gradient, admitting a minimizer. If γ < 2

L
then for all x0 ∈ E,

the sequence defined ∀n ∈ N by xn+1 = (Id−γ∇f)xn converges to a minimizer of f .

There exist several proofs for this convergence result. The one we propose is based
on the nonexpansiveness of the operator T and the following lemma. Such a sketch
of proof will be useful to prove the convergence of other algorithms in this document.

Lemma 4. Let T be a 1-Lipschitz operator defined from E to E admitting a fixed
point. Let x0 ∈ E and let (xn)n∈N be the sequenced defined by xn+1 = Txn. If
limn→∞ ∥xn+1 − xn∥ = 0 then the sequence (xn)n∈N converges to a fixed point of T .

Proof. Let y be a fixed point of T . As T is 1-Lipschitz,

∥xn+1 − y∥ = ∥T (xn)− T (y)∥ ≤ ∥xn − y∥,

the sequence (∥xn − y∥)n∈N is decreasing and therefore bounded. The sequence
(xn)n∈N is thus bounded. As E is of finite dimension, the sequence (xn)n∈N admits an
adherent point (or closure point) z ∈ E. As limn→∞ ∥xn+1 − xn∥ = 0, this adherent
point satisfies Tz = z and it is a fixed point of T . The sequence ∥z − xn∥ is
thus decreasing and admits a subsequence that goes to zero. Hence the sequence
converges to zero.

10

Proof of Theorem 1. We just have to show that the operator T = Id−γ∇f satis-
fies all the hypotheses of Lemma 4. The fact that T is 1-Lipschitz is the result of
Proposition 4. Furthermore, we may note from Proposition 3 that there is an equiv-
alence between being a fixed point of T and being a minimizer of f , as Tx = x is
equivalent to ∇f(x) = 0. Theorem 1 assumes the existence of such a minimizer and
thus the existence of a fixed point of T . To finish the proof, it is sufficient to show
that limn→∞ ∥xn+1−xn∥ = 0. This result is obtained by applying the inequality (5)
satisfied by L-smooth functions (Lemma 1) to the points y = xn and z = xn+1. We
then have z − y = γ∇f(xn) and thus

f(xn+1) ⩽ f(xn)−
1

γ
∥xn+1 − xn∥2 +

L

2
∥xn+1 − xn∥2. (13)

If γ < 2
L
, we get

f(xn+1) +

(
2− γL

2γ

)
∥xn+1 − xn∥2 ⩽ f(xn). (14)

As the sequence (f(xn))n∈N is bounded from below, we deduce that limn→∞ ∥xn+1−
xn∥ = 0, which concludes the proof of the theorem.

The gradient descent method with fixed stepsize is a descent method, i.e. the
value of f(xn) decreases. In the next section, we will see that it is possible to
control the rate at which f(xn) − f(x∗) decreases towards zero, where x∗ refers to
an arbitrary minimizer of f .

3.2.3 Strongly convex function

If the function f is L-smooth and α-strongly convex, the following result shows that
the gradient descent operator is a contraction for τ < 1

L
, so that Banach’s Theorem

directly ensures the convergence of the gradient descent method (12) to a fixed point
of the gradient descent operator, which is a global minimizer of problem (11).

Proposition 5. Let f be a α-strongly convex function. If f is L-smooth, then
Id−γ∇f is a

√
1− γα-Lipschitz application for τ < 1

L
.

Proof. We here rely on Lemmas 1 and 3. If f is α-strongly convex, then relation (8)
states that ∀x, y ∈ E2

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2
∥y − x∥2. (15)

If f is L-smooth, we also have from relation (5) that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2,

so that α < L. Combining the co-coercivity property (6) with the strong convexity
proper (9), we get:

11

||x− y||2 − ||(Id−γ∇f)(x)− (Id−γ∇f)(y)||2

= 2γ⟨∇f(x)−∇f(y), x− y⟩ − γ2∥∇f(x)−∇f(y)∥2

= γ
(
⟨∇f(x)−∇f(y), x−y⟩−γ∥∇f(x)−∇f(y)∥2+⟨∇f(x)−∇f(y), x−y⟩

)
≥ γ

(
1

L
− γ

)
∥∇f(x)−∇f(y)∥2 + γα∥y − x∥2.

(16)

We conclude that for all γ < 1
L
:

||(Id−γ∇f)(x)− (Id−γ∇f)(y)||2 ≤ (1− γα)||x− y||2,

so that Id−γ∇f is a
√
1− γα-Lipschitz application. One can also check that since

α < L, it implies that γα < 1 for γ < 1
L
.

3.3 Convergence rates of the gradient descent algorithm

The decay rate on f of the gradient descent depends on the hypothesis made on f .
If f is convex and differentiable, the decay is O(1

n
). If f is strongly convex or even

if f satisfies a quadratic growth condition, then the decay may be exponential. We
give here two theorems based on the inequality (14) with γ = 1

L
proved in section

3.2.1:
f(xn+1) +

L

2
∥xn+1 − xn∥2 ⩽ f(xn), (17)

that is satisfied by the sequence defined by xn+1 = xn− 1
L
∇f(xn). The first theorem

provides a decay of O(1
n
) for differentiable convex functions.

Theorem 2. If f is convex differentiable and ∇f is L−Lipschitz, having at least
one minimizer x∗. The sequence xn defined by x0 ∈ E and

xn+1 = xn −
1

L
∇f(xn) (18)

satisfies

f(xn)− f(x∗) ⩽
L

2n
∥x0 − x∗∥2. (19)

Proof. The proof uses a Lyapunov analysis, i.e. a sequence Sn is defined such that
it is bounded along the trajectory. As it is usually the case for Lyapunov analysis,
the sequence we define is non-negative and non-increasing:

Sn := n(f(xn)− f(x∗)) +
L

2
∥xn − x∗∥22. (20)

Notice that in practice, x∗ and f(x∗) may be unknown and the Lyapunov sequence
can not be computed. We first show that there exists n0 such that (Sn)n⩾n0 is
non-increasing :

Sn+1−Sn = (n+1)(f(xn+1)−f(xn))+f(xn)−f(x∗)+
L

2
∥xn+1−x∗∥22−

L

2
∥xn−x∗∥22.

12

Using (17) we get

Sn+1−Sn ⩽ −(n+1)
L

2
∥xn+1−xn∥2+f(xn)−f(x∗)+

L

2
⟨xn+1−xn, xn+1+xn−2x∗⟩

and then

Sn+1 − Sn ⩽ −n
L

2
∥xn+1 − xn∥2 + f(xn)− f(x∗) + L⟨xn+1 − xn, xn − x∗⟩.

Using the fact that xn+1 − xn = − 1
L
∇f(xn), we get

Sn+1 − Sn ⩽ −n
L

2
∥xn+1 − xn∥2 + f(xn)− f(x∗)− ⟨∇f(xn), xn − x∗⟩.

’Using the convexity of f we finally obtain that Sn+1 − Sn ⩽ 0. Then we deduce
that for all n ∈ N, Sn ⩽ S0 and thus

f(xn)− f(x∗) ⩽
L

2n
∥x0 − x∗∥2. (21)

If additional assumptions, such as strong convexity, are made on f , a better
convergence can be achieved. To prove this, we need the following lemma.

Lemma 5. If f is α-strongly convex and differentiable, we have for all x ∈ E

f(x)− f(x∗) ⩽
1

2α
∥∇f(x)∥2, (22)

where x∗ is the unique minimizer of f .

Proof. For any x ∈ E, we define the function

ϕx(y) := f(x) + ⟨∇f(x), y − x⟩+ α

2
∥y − x∥2.

Lemma 3 ensures that for any (x, y) ∈ E2,

f(y) ⩾ ϕx(y).

For any x, ϕx is a quadratic function whose minimizer is x − 1
α
∇f(x). Taking the

minimum value in the above inequality, we get

f(x∗) ⩾ ϕx(x− 1

α
∇f(x)) = f(x)− 1

2α
∥∇f(x)∥2, (23)

which ends the proof of the Lemma.

With this lemma we can now state the following Theorem.

Theorem 3. If f is a L-smooth and α-strongly convex function, then the sequence
generated by the gradient descend with γ = 1

L
satisfies

f(xn)− f(x∗) ⩽
(
1− α

L

)n
(f(x0)− f(x∗)). (24)

13

Proof. The inequality (17) can be written

f(xn+1)− f(x∗) ⩽ f(xn)− f(x∗)− 1

2L
∥∇f(xn)∥2. (25)

Using Lemma 5 we have

f(xn+1)− f(x∗) ⩽ f(xn)− f(x∗)− α

L
(f(xn)− f(x∗)). (26)

which concludes the proof of the Theorem.

Notice that the strong convexity assumption does not improve the convergence
rate already given by the so-called quadratic growth condition (17).

3.4 Other gradient descent algorithms

We now describe some variants and accelerations of the gradient descent algorithm.

3.4.1 Gradient descent with optimal stepsize

The gradient descent with optimal stepsize consists in adapting the descent stepsize
γ at each iteration in order to have a maximal decrease of the value of the functional
f . We define a sequence for x0 ∈ E and for all n ∈ N:

xn+1 = xn − γn∇f(xn) with γn = argmin
γ>0

f(xn − γ∇f(xn)) (27)

This method converges to the unique minimizer of f if f is α−strongly convex. It
has the advantage of converging faster than the gradient descent method with fixed
stepsize in terms of number of iterations, but each iteration requires the resolution
of an optimization problem that is not simple to solve in general. A close form
expression of the optimal parameter γ is available in few cases, including quadratic
functions f .

3.4.2 Newton’s method

Newton’s method was originally intended for approching a regular zero of a function
F of class C2 defined from E to E. We say that x is a regular zero of F if

F (x) = 0 and F ′(x) is invertible. (28)

Newton’s method is based on a first order Taylor development in the neighbourhood
of a zero of F : F (xn+1) = F (xn) + ⟨F ′(xn), xn+1 − xn⟩. In order to find xn+1 that is
a zero of F , it builds, from an element x0 ∈ E, a sequence defined for all n ∈ N by

xn+1 = xn − (F ′(xn))
−1F (xn). (29)

In order for this sequence to be defined the matrix F ′(xn) has to be invertible. This
is guaranteed as soon as the departure point x0 is close enough to the zero of F .

14

In the case of the minimization of a smooth function f

min
x

f(x), (30)

the Newton’s method corresponds to a gradient descent algorithm with an optimized
(non scalar) step. Recalling that an optimum x∗ of problem (30) is characterized by
∇f(x∗) = 0, Newton’s method can be applied to find a zero of ∇f . Assuming that
f is C2, the algorithm writes

xn+1 = xn −H−1
f (xn)∇f(xn),

where Hf (xn) is the Hessian matrix of f taken at point xn. If f is convex, such a
sequence is guarantee to converge to a global minima of f .

3.4.3 Gradient descent with backtracking

We showed in Theorem 1 that the gradient descent algorithm xn+1 = xn− γ∇f(xn)
applied to the minimization of a convex L-smooth function f converges for γ < 2/L.
This global upper bound may be suboptimal locally: there exists points xn for
which larger stepsizes γ can be safely considered. Moreover, the constant L may
be unknown in real use cases. The idea of backtracking is to consider a gradient
descent with a potentially too large stepsize, and to reduce it until a sufficient
decrease condition is met. The decrease condition is built from relation (5) that
writes, for x = xn and y = xn − γ∇f(xn):

f(xn)− f (xn − γ∇f(xn)) ≥ γ

(
1− γL

2

)
||∇f(xn)||2. (31)

Given a parameter a large stepsize γ0 > 2/L and a parameter β ∈]0; 1[, back-
tracking consists in performing, at each point xn a gradient descent with stepsize γ0

and to update it with γℓ+1 = γℓβ until

f(xn)− f
(
xn − γℓ∇f(xn)

)
>

γℓ

2
||∇f(xn)||2.

In the worst case, we obtain γℓ < 2/L and backtracking gets back to standard
gradient descent. This simple approach generally performs well. When the constant
L is large, gradient descent relies on a small parameter γ < 2/L. With backtracking,
the number of iterations n required by xn to reach the neighborhood of a global
minimizer x∗ may be drastically reduced. Backtracking may also be considered to
optimize smooth functions whose gradients are not Lipschitz. In this case, the choice
of the initial point is essential.

3.4.4 Implicit gradient descent with fixed stepsize

The implicit gradient descent with fixed stepsize can be expressed as the explicit
method, but it raises a practical problem of solving an implicit problem at each step.

15

We consider a strictly positive real number γ called stepsize and an element
x0 ∈ E. For all n ∈ N we define:

xn+1 = xn − γ∇f(xn+1). (32)

Without hypothesis on f this relation does not guarantee the existence and unique-
ness of xn+1, and the resolution of this implicit equation can be practically compli-
cated. The convexity of f ensures the existence and uniqueness of xn+1, as we may
note that xn+1 is the unique minimizer of a strongly convex and coercive function:

xn+1 = argmin
x∈E

f(x) +
1

2
∥xn − x∥2 (33)

Thus xn+1 is the unique element of E such that xn+1 + γ∇f(xn+1) = xn, which
allows us to write xn+1 = (Id+γ∇f)−1(xn), becoming xn+1 = Txn by introducing
T = (Id+γ∇f)−1.

We will later see that this second definition of xn+1s that does not take into
account the gradient at all, can be generalized to any convex, proper, lower semi-
continuous function without making any hypothesis of differentiability.

We will show that the implicit gradient descent method constructs a minimizing
sequence, regardless of the choice of x0 and γ > 0. This method has the advantage
over the explicit method of not having a condition on γ, but the disadvantage of
requiring the resolution of a possibly difficult problem at each iteration.

Theorem 4. Let f be a convex, differentiable function, admitting a minimizer.
Then for all x0 ∈ E, the sequence defined for all n ∈ N by xn+1 = (Id+γ∇f)−1xn

converges to a minimizer of f .

We do not prove this result as it is a particular case of more general algorithms,
called Proximal Point and Forward-Backward algorithms, that will be treated in
sections 4.3.1 and 4.3.2.

3.4.5 Projected gradient

We now consider the following constrained optimization problem:

min
x∈C

f(x), (34)

where K is a closed, convex set and f is differentiable with an L−Lipschitz gradient.
In this case, we characterize the minimizers in the following way.

Theorem 5. Let f be a convex and smooth function defined from E to R and C ⊂ E
a closed, convex set. Then x∗ is a solution to (34) if and only if for all y ∈ C,

⟨∇f(x∗), y − x∗⟩ ⩾ 0. (35)

16

Proof. ⇒ Let (x∗, y) ∈ C2. For all t ∈ [0; 1], x∗ + t(y − x∗) ∈ C as C is convex. If
x∗ minimizes f on C, then

f(x∗ + t(y − x∗))− f(x∗) ≥ 0

lim
t→0

f(x∗ + t(y − x∗))− f(x∗)

t
≥ 0

⟨∇f(x∗), y − x∗⟩ ≥ 0.

⇐ From Proposition 2, we know that for a convex function

f(y) ≥ f(x∗) + ⟨∇f(x∗), y − x∗⟩.

Assuming that ⟨∇f(x∗), y − x∗⟩ ≥ 0, we deduce that for all y ∈ C,

f(y) ≥ f(x∗) + ⟨∇f(x∗), y − x∗⟩ ≥ f(x∗),

which implies that x∗ ∈ K solves problem (34).

The result below states that it is possible to adapt the gradient descent method
with fixed step (12) to solve the constrained problem (34).

Theorem 6. Let f be a convex, differentiable function such that ∇f is L−Lipschitz.
Let K be a closed, convex set and γ < 2

L
. Then for all x0 ∈ E, the sequence defined by

xn+1 = ProjK(xn − γ∇f(xn)) (36)

converges to a solution of problem (34).

We do not prove this result for two reasons. First, it is a simple adaptation
of the convergence proof for the gradient descent method with fixed step. Second,
the projected gradient method is a particular case of the more general Forward-
Backward algorithm, that will be treated in section 4.3.2.

4 Optimization of non smooth convex functions
In this part we consider non smooth convex optimization problems, i.e. the func-
tion that we want to minimize is non-differentiable. A particular case that we will
consider is the case of the sum of two convex functions where at least one (let say g
is non-differentiable:

min
x∈E

f(x) + g(x). (37)

The problem of minimizing a differentiable function f under convex constraints (34)
can be rewritten in this form, by using the indicator function of the convex set K:

min
x∈C

f(x) ⇐⇒ min
x∈E

f(x) + iK(x), (38)

where
iK(x) =

{
0 if x ∈ K
+∞ otherwise.

17

However, this is not the only situation we will consider. For example, in image
processing, it is common to minimize functionals of the form of a sum of two terms;
a data fidelity part and a regularization part, the latter being chosen to promote
certain characteristics to the image to be reconstructed. Such a regularity prior is
often non-differentiable, as in the case of an ℓ1 regularization, that promotes sparsity,
or the total variation regularization, that promotes piecewise constant images.

In this section, we will introduce proximal splitting algorithms, that are designed
to solve problem (37). We first recall the key concept of subdifferentials ∂f of convex
functions f in section 4.1. In section 4.2, we introduce and study the properties of
the proximal operator (Id+γ∂f)−1, which can be seen as the implicit equivalent of
the explicit gradient descent operator. In section 4.3, we finally present different
proximal splitting algorithms to solve problem (37). Such algorithms minimize the
sum of (non-differentiable) functions by alternating elementary explicit (Id+γ∇f)
and/or implicit (Id+∂f)−1 gradient operations on each function separately. In par-
ticular, we will analyze the Forward-Backward algorithm and its acceleration, the
Alternating Direction Method of Multipliers and the Douglas-Rachford algorithm.

4.1 Properties of subdifferentials

Definition 12 (Subdifferential). Let f be a function from E to R ∪ {+∞}. The
subdifferential of f is the multivalued operator that to each x ∈ E associates the set
of slopes

∂f(x) = {u ∈ E such that ∀y ∈ E, ⟨y − x, u⟩+ f(x) ⩽ f(y)}. (39)

Remark 4. We recall the following properties related to subdiffrentials:

• An element p ∈ ∂f of the subdifferential is called a subgradient.

• The subdifferential of a function at a point x can be either empty or a convex
set, possibly reduced to a singleton.

• If f is convex and differentiable in each point x ∈ E, the subdifferential is
reduced to the singleton {∇f(x)}, the gradient of f in x.

• The subdifferential of the function x 7→ −x2 is empty in each point of E, even
though f is differentiable in each point. In this example f is not convex.

• It can be shown that in each point x of the relative interior of the domain of a
convex function f , the subdifferential ∂f(x) is non-empty.

• On the boundary of the domain things are a somewhat more complicated. The
function f defined from R to R ∩+∞ by

f(x) =

{
−
√
x si x ⩾ 0

+∞ si x < 0

is convex, takes a finite value in 0 but does not admit a subdifferential in zero.

18

The importance of the subdifferential is made clear through Fermat’s rule, as
defined by the following theorem.

Theorem 7. Let f be a proper function defined from E to R ∪+∞. Then

argmin f = zer ∂f = {x ∈ E such that 0 ∈ ∂f(x)}.
Proof.

x ∈ argmin f ⇔ ∀y ∈ E, ⟨y − x, 0⟩+ f(x) ⩽ f(y) ⇔ 0 ∈ ∂f(x).

In order to minimize a functional we thus have to find a zero of its subdifferential.
If by lower semi-continuity and coercivity, we know that a functional admits at least
one minimum, then we know that in this minimum, the subdifferential is non-empty
and contains 0. This rule is an extension of the well known fact that in the global
minimum of a differentiable function, the gradient is zero.

We end this paragraph by some rules on the sum of subdifferentials.

Lemma 6 (Proof in Rockafellar [39]). Let (fi)i⩽p be a family of proper, lower semi-
continuous functions and let x ∈ E. Then

∂(

p∑
i=1

fi)(x) ⊃
p∑

i=1

∂fi(x).

Additionally, if ⋂
1⩽i⩽p

inter(dom(fi)) ̸= ∅

then we have equality between the subdifferential of the sum and the sum of subdif-
ferentials.

The hypothesis ensuring equality is not very constraining. In the majority of
interesting practical cases, it is satisified.

Remark 5. If J is the sum of a convex differentiable function f and a convex
function g, then under the hypotheses of Lemma 6,

∂J = ∇f + ∂g.

Remark 6. The constrained optimization problem (34) can be reformulated as

min
x

f(x) + ιC(x),

where f is a smooth and convex function and ιC is the characteristic function of
a close convex set C, that is to say ιC(x) = 0 if x ∈ C and +∞ otherwise. The
optimality condition thus gives

0 ∈ ∂(f + ιC)(x
∗) ⇔ −∇f(x∗) ∈ ∂ιC(x

∗).

We deduce from the subdifferential definition (39) that ⟨∇f(x∗), x−x∗⟩ ≥ 0 ∀x ∈ C,
which corresponds to the characterization of minimizers shown in Theorem 5.

19

4.2 Proximal operator

In order to minimize non smooth convex functions, we now define the proximal (or
proximity) operator of a convex function.

Definition 13 (Proximal operator). Let g be a convex, lower semi-continuous and
proper function from E to R∪+∞. The proximity operator of g, denoted proxg and
also called "prox of g" is the operator defined from E to E by

proxg(x) = argmin
z∈E

g(z) +
1

2
∥x− z∥22 (40)

Remark 7. The function z 7→ g(z) + 1
2
∥x − z∥22 that defines the prox is convex,

proper, lower semi-continuous and coercive, and thus admits at least one minimizer.
The uniqueness of the minimizer comes from the strict convexity of the function
y 7→ 1

2
∥x− z∥2.

The proximal operator can be interpreted as a generalization of the concept of
projecting onto a convex set in the sense that if f is the indicator of a closed convex
set C then proxf (x) is the projection of x onto C. From now on we will say that
a function f is simple when its proximity operator can be computed easily.

If f is not convex, the proximity operator may not be defined or it may be multi-
valued. The convexity of f is a sufficient condition for the existence and uniqueness
of the proximity operator, but it is not a necessary condition.

Example 1. We here present the proximal operator of functions used in many prob-
lems coming from statistics and image processing.

• Separable functions. If a function f is separable, the proximity operator may
be computed by blocks or even component by component. Hence if x = (x1, x2)
and if f(x) = f1(x1) + f2(x2) then

proxf (x) = argmin
z=(z1,z2)∈Rn

f1(z1) + f2(z2) +
1

2
∥z − x∥22

= argmin
z=(z1,z2)∈Rn

f1(z1) +
1

2
∥z1 − x1∥22 + f2(z2) +

1

2
∥z2 − x2∥22

it follows that
proxf (x) = (proxf1(x1), proxf2(x2))

This remark also applies to a sum of M functions f(x) =
∑M

i=1 fi(xi), the
proximity operator of f at the point x is a vector whose components pi are
proxfi(xi). A classical application of this rule is the proximal operator of
f(x) = λ∥x∥1 which is given by the component-wise "soft thresholding" op-
eration with threshold λ:

proxf (x) =


0 if |x| ≤ λ

x− λ if x > λ
x+ λ if x < −λ

20

• Quadratic functions. Standard data fidelity terms in imaging write f(x) =
λ
2
∥Ax− b∥22. There is an explicit form for the proximal operator of such func-

tions:
proxf (x) = (Id+λA∗A)−1(x+ λA∗b). (41)

Thus the computation of this proximity operator amounts to invert of a system
of linear equations. In any cases the matrix Id+λA∗A is real and symmetric
and a conjugate gradient may be used to solve such a problem. It can also
happen that the matrix A is not available, and we may only be able to apply
A and A∗. It also exist situations in imaging where the linear problem can be
solved exactly:

– If A is a circular convolution by a filter h. In the Fourier domain
(Id+λA∗A)−1 is a simple multiplication by (1 + λ|ĥ(k)|2)−1.

– If A is a derivative operator like a discrete gradient, then if the derivative
is circular, that may create strange boundary effect, it actually is a con-
volution and one may apply the previous formula. If the derivative is not
shift invariant, the inversion in the Fourier domain is only an approxi-
mation and a conjugate gradient may provide more precise results.

– If A is a masking operator the operator (Id+λA∗A) is diagonal in the
domain and the inversion of the system is a simple pointwise division.

• Indicator functions of vectorial subspaces Let A a linear operator defined from
Rn to Rd and K = {(x1, x2) such that Ax1 = x2} a vectorial subspace of Rn+d.
The proximity operator of the indicator function ιK of K is defined by

(p1, p2) = proxιK (x1, x2) = argmin
(z1,z2)

1

2
∥z1−x1∥22+

1

2
∥z2−x2∥22+ ιK(z1, z2) (42)

It follows that p2 = Ap1 with

p1 = argmin
z1

1

2
∥z1 − x1∥22 +

1

2
∥Az1 − x2∥22 = (Id+A∗A)−1(x1 + A∗x2) (43)

Once again, the computation of this proximity operator may be fast or not
depending on A. For example if A = Id then p1 = 1

2
(x1 + x2) and p2 = p1.

If we are able to diagonalize the matrix I + A∗A, for circular convolutions or
circular derivative operators, the computation may be fast. If not, one needs
to use an algorithm to solve this linear system, like conjugate gradient.

The proximal operator has many remarkable properties that make it useful when
minimizing non-differentiable convex functions.

Proposition 6. Let f be a convex function on E. Then for all (x, p) ∈ E2, we have

p = proxf (x) ⇔ ∀y ∈ E, ⟨y − p, x− p⟩+ f(p) ⩽ f(y). (44)

Thus p = proxf (x) is the unique vector p ∈ E such that x− p ∈ ∂f(p).

21

This last characterization implies that the decomposition of x = p + z, as the
sum of one element p from E and one element from the subdifferential of f at the
point p, is unique. This property is the origin of the notation

proxf (x) = (Id+∂f)−1(x)

to which we can give a sense even though the map ∂f is multivalued.

Proof. ⇒ Suppose that p = proxf (x). Let α ∈]0, 1[and pα = αy + (1− α)p. Then,
by using the definition of proxf (x) and the convexity of f , we obtain

f(p) ⩽ f(pα) +
1

2
∥x− pα∥2 −

1

2
∥x− p∥2

⩽ αf(y) + (1− α)f(p)− α⟨y − p, x− p⟩+ α2

2
∥y − p∥2

and thus
⟨y − p, x− p⟩+ f(p) ⩽ f(y) +

α

2
∥y − p∥2.

By letting α go to zero we obtain the direct implication.
⇐ Conversely, suppose that ∀y we have ⟨y − p, x− p⟩+ f(p) ⩽ f(y). Then

f(p) +
1

2
∥x− p∥2 ⩽ f(y) +

1

2
∥x− p∥2 + ⟨x− p, p− y⟩+ 1

2
∥p− y∥2

⩽ f(y) +
1

2
∥x− y∥2

from which we deduce that p = proxf (x) by using the definition of proxf (x).

An important property of fixed points of the proximity operator is the following:

Proposition 7. Let f be a proper, convex function defined on E. Then

Fix proxf = argmin f.

Proof.

x = proxf (x) ⇔ ∀y ∈ E, ⟨y − x, x− x⟩+ f(x) ⩽ f(y) ⇔ x ∈ argmin f.

Thanks to this characterization, one can consider an iterative algorithm involving
the proximity operator of f to minimize a convex functional f .

4.2.1 Firm nonexpansiveness

To establish the convergence of proximal algorithms, we first show that the proximity
operator of convex functions is 1-Lipschitz. To do so, we rely on the notion of firm
nonexpansiveness, which implies 1-Lipschitzity.

22

Definition 14 (Firm nonexpansiveness). A function T is said to be firmly nonex-
pansive if for all (x, y) ∈ E2,

∥T (x)− T (y)∥2 + ∥x− T (x)− y + T (y)∥2 ⩽ ∥x− y∥2.

A classic example of a firmly nonexpansive function is the case of a projection
onto a closed convex set. nonexpansiveness will be a key ingredient to show the
convergence of the Douglas-Rachford algorithm.

Proposition 8. If f is a proper, convex function on E then the maps proxf and
Id− proxf are firmly nonexpansive; that is, for all (x, y) ∈ E2,

∥ proxf (x)− proxf (y)∥2 + ∥(x− proxf (x))− (y − proxf (y))∥2 ⩽ ∥x− y∥2

In particular, these two operators are nonexpansive (1-Lipschitz).

Proof. Let (x, y) ∈ E2. By noting p = proxf (x) and q = proxf (y), we have, by
definition of p and q:

⟨q − p, x− p⟩+ f(p) ⩽ f(q) and ⟨p− q, y − q⟩+ f(q) ⩽ f(p).

Adding these two inequalities gives

0 ⩽ ⟨p− q, (x− p)− (y − q)⟩

and we conclude by observing that

∥x− y∥2 = ∥p− q + (x− p)− (y − q)∥2

= ∥p− q∥2 + ∥(x− p)− (y − q)∥2 + 2⟨p− q, (x− p)− (y − q)⟩.

We underline that the gradient descent operator of a smooth convex function,
which is 1-Lipschitz for γ < 2

L
(see Proposition 4), is also nonexpansive with an

additional restriction on the stepsize γ.

Proposition 9. Let f be a differentiable, convex function defined on E with an

L−Lipschitz gradient. If γ <
1

L
, then the map Id−γ∇f is firmly nonexpansive.

Proof. The proof is based on determining the sign of a scalar product. Let (x, y) ∈
E2. We set u = γ(∇f(x)−∇f(y)) and v = x− γ∇f(x)− (y − γ∇f(y)). Hence we
have

∥x− y∥2 = ∥u+ v∥2 = ∥u∥2 + ∥v∥2 + 2⟨u, v⟩.
Showing that Id−γ∇f is firmly nonexpansive amounts to demonstrate that ⟨u, v⟩
is non negative. The result directly comes from the co-coercivity of ∇f shown in
Lemma 2 and the fact that γ < 1

L
:

⟨u, v⟩ = γ⟨x− y,∇f(x)−∇f(y)⟩ − γ2||∇f(x)−∇f(y)||2

≥ γ

(
1

L
− γ

)
||∇f(x)−∇f(y)||2.

23

4.2.2 Strongly convex functions

The proximal operator of a strongly convex function is a contraction.

Proposition 10. Let f be a α-strongly convex function, then proxγf is a 1
1+αγ

-
lipschitz application.

Proof. We recall that a α-strongly convex function f satisfies for all x, y and α ∈
[0; 1]:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− α(1− α)α

2
||x− y|||2.

Let p = proxγf (x), α ∈ (0, 1) and denote pα = αz+(1−α)p for some z ∈ Rn. From
the definition (40) of proxf (x) and the α-strong convexity of f , we have:

f(p)

≤f(pα) +
1

2γ
∥x− pα∥2 −

1

2γ
∥x− p∥2

≤αf(z) + (1− α)f(p− α(1− α)α

2
||z − p||2 − α

γ
⟨z − p, x− p⟩+ α2

2γ
∥z − p∥2,

and thus

1

γ
⟨z − p, x− p⟩+ f(p ≤ f(z) +

1

2

(
α

γ
− (1− α)α

)
∥z − p∥2.

For α → 0, we deduce that

1

γ
⟨z − p, x− p⟩+ f(p) ≤ f(z)− α

2
∥z − p∥2.

Taking z = q := proxγf (y) we get:

1

γ
⟨q − p, x− p⟩+ f(p) ≤ f(q)− α

2
∥q − p∥2

Switching the roles of x and y and summing both expressions we obtain:

⟨p− q, (x− p)− (y − q⟩ ≥ γα∥q − p∥2, (45)

and we get the co-coercivity property :

⟨p− q, x− y⟩ ≥ (1 + γα)∥p− q∥2 (46)

From (46), and recalling that p = proxf (x) and q = proxf (y), we get that proxγf is
1

1+γα
-Lipschitz and thus a contraction.

24

4.3 Proximal algorithms

We now present proximal optimization algorithms to solve nonsmooth convex min-
imization problems.

4.3.1 Proximal Point algorithm

In order to solve the problem
min
x∈E

g(x),

for a (nonsmooth) proper convex function g, the proximal point algorithm applies
recursively the proximity operator of the function γg. Choosing γ > 0 and x0 ∈ E,
this algorithms defines the sequence (xn)n∈N as

xn+1 = Txn = proxγg(xn). (47)

The fixed points of the proximity operator are minimizers of g (Proposition 7) and
this operator is 1-Lipschitz (Proposition 8). By construction, (47) gives that

g(xn+1) +
1

2γ
∥xn − xn+1∥2 ⩽ g(xn),

which implies that the sequence ∥xn − xn+1∥2 goes to zero. Applying Lemma 4, we
get that the sequence generated by the algorithm (47) converges to a minimizer of g.

In practice, this algorithm is barely used, in the sense that computing the prox-
imity operator may be just as difficult as minimizing g directly (by taking γ → 0).
In what follows, we will rather use the proximity operator as an ingredient in more
sophisticated splitting algorithms.

4.3.2 Forward-Backward algorithm (FB)

The Forward-Backward, also known as proximal Gradient Descent (PGD) is an
algorithm designed to solve the following optimization problem:

min
x∈E

J (x) = min
x∈E

f(x) + g(x) (48)

where f is a convex, differentiable function with an L−Lipschitz gradient and g is a
convex function. This algorithm consists in alternating an explicit gradient descent
step on f and a proximity operator on g.

The Forward-Backward algorithm is defined by an initial point x0 ∈ E and a
parameter γ > 0 as follows:

∀n ∈ N xn+1 = Txn = proxγg(xn − γ∇f(xn)) (49)

The algorithm results from the following proposition:

Proposition 11. Let J = f+g be a functional defined from E to R∪+∞ having the
form of a sum of two convex, proper, lower semi-continuous functions satisfying the
hypotheses of Lemma 6 (on the sum of subdifferentials), such that f is differentiable.
Let γ > 0, then

zeros(∂J) = Fix(proxγg(Id−γ∇f)). (50)

25

Proof.

0 ∈ ∂J (x) ⇔ 0 ∈ ∂γJ (x)

⇔ 0 ∈ ∇γf(x) + ∂γg(x)

⇔ −γ∇f(x) ∈ ∂γg(x)

⇔ x− γ∇f(x) ∈ (Id+∂γg)(x)

⇔ x = proxγg(x− γ∇f(x)).

Having an operator T whose fixed points are the minimizers of J does not
guarantee that the sequence (xn)n∈N converges to one of these minimizers if T is not
a contraction (take for instance xn+1 = −xn as a counterexample).

For convex functions f and g, the Forward-Backward operator is only nonexpan-
sive, and thus not a contraction, as the composition of 1-Lipschitz operators. We
indeed know from Propositions 4 and 8 that Id−τ∇f is 1-Lipschitz for τ < 2

L
and

proxτg is 1-Lipschitz for all τ > 0.
In the strongly convex case, convergence may directly be ensured. If f (resp. g)

is strongly convex, then Proposition 5 (resp. Proposition 10) states that Id−τ∇f
(resp. proxτg is a contraction for τ < 1

L
(resp. τ > 0). Combining a contraction

with a 1-Lipschitz operator preserves the contraction. Hence Banach’s Theorem
directly gives the convergence of the sequence generated by the Forward-Backward
algorithm in case f or g are strongly convex.

To show convergence of the iterates in the general case, we introduce the con-
cept of surrogate functions. The following lemma shows that at each iteration of
the algorithm, the value of the functional J decreases. Additionally, this decrease
ensures that the sequence with the general term ∥xn+1−xn∥2 is summable and thus
goes to zero when n goes to +∞.

Lemma 7. The sequence (xn)n∈N defined by xn+1 = proxγg(xn − γ∇f(xn)) satisfies
the following relation:

J (xn+1) +

(
1

γ
− L

2

)
∥xn+1 − xn∥2 ⩽ J (xn). (51)

We underline that relation (51), ensured by the Forward-Backward algorithm when
minimizing J = f + g, is the extension of the property (14) satisfied by the iterates
of the gradient descent algorithm when minimizing a differentiable function f .

Proof. By definition of xn+1, we have

xn+1 = argmin
x∈E

γg(x) +
1

2
∥x− xn + γ∇f(xn)∥2.

Note that xn+1 is also the minimizer of the following functional:

xn+1 = argmin
x∈E

g(x) + f(xn) + ⟨∇f(xn), x− xn⟩+
1

2γ
∥x− xn∥2. (52)

26

According to the inequality (5), we have, for all x ∈ E,

f(x) ⩽ f(xn) + ⟨∇f(xn), x− xn⟩+
L

2
∥x− xn∥2. (53)

The right hand-side is a function that bounds J from above, and it is equal to J in
the point xn. We call this function a surrogate function. The function in (52) being
1
γ
-strongly convex, we deduce from (52) that

g(xn+1) + f(xn) + ⟨∇f(xn), xn+1 − xn⟩+
1

2γ
∥xn+1 − xn∥2

⩽ J (xn)−
1

2γ
∥xn+1 − xn∥2.

By applying (53) to xn+1 and adding the previous inequality we obtain

J (xn+1) +
1

γ
∥xn+1 − xn∥2 ⩽ J (xn) +

L

2
∥xn+1 − xn∥2.

With all these elements, we can now show the convergence of the Forward-
Backward algorithm, also known in the literature as the Proximal Gradient Descent
(PGD) algorithm.

Theorem 8 (Forward-Backward algorithm). Let J = f+g be a sum of two convex,
coercive, lower semi-continuous functions that are bounded from below. We suppose

that f is differentiable with an L−Lipschitz gradient. Let γ <
2

L
and x0 ∈ E, and

let (xn)n∈N be the sequence defined for all n ∈ N by

xn+1 = proxγg(Id−γ∇f)(xn). (54)

Then the sequence (xn)∈N converges to a minimizer of J .

Proof. As for the proof of the gradient descent method, we use Lemma 4 to prove the
theorem. We first show that the operator T is 1−Lipschitz and then demonstrate
that the sequence ∥xn − xn+1∥ goes to zero.

The operator T is 1−Lipschitz as a composition of a proximity operator that
is 1-Lipschitz (Proposition 8) and an operator of the form Id−γ∇f that is also
1-Lipschitz under the condition that γ ⩽ 2

L
(Proposition 4). The second point is

then given by Lemma 7.

In the following section we will see that it is possible to control the speed of the
functional’s decrease towards its minimum.

4.3.3 Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

In the early 60’ Polyak introduced inertial methods in [38] to improve the conver-
gence rate of gradient descent algorithm for C2 strongly convex functions. The
goal of inertial methods is to accelerate the gradient descent algorithm without any
second order information on f , that is the Hessian of f .

27

Such an inertial algorithm uses the memory of the past trajectory at points xn

and xn−1 to compute xn+1. It is also known as Heavy Ball because the optimization
scheme can be seen as a discretization of an ODE describing the position of a ball
submitted to a force field ∇f with a friction proportional to its speed:

ẍ(t) + aẋ(t) +∇f(x(t)) = 0. (55)

If f is L-smooth and α-strongly convex, we have seen in Theorem 3 (relation (24))
that the sequence (xn)n∈N provided by the gradient descent satisfies

f(xn)− f(x∗) = O(e−
α
L
n).

If we also assume that f is C2, the Heavy Ball method provides a sequence (xn)n∈N
ensuring the following rate, that is better if α

L
<< 1, which is often the case for large

scale problems:
f(xn)− f(x∗) = O(e−4

√
α
L
n).

In this section we focus on two inertial algorithms inspired by the work of Polyak
to minimize composite functions:

min
x∈E

J (x) = min
x∈E

f(x) + g(x). (56)

The first one is FISTA by Beck and Teboulle [7]. This algorithm, based on an
original idea by Nesterov [35], is dedicated to convex functions. The second one,
called V-FISTA [6], can be seen as an adaptation of the original Heavy ball algorithm
to composite strongly convex functions.

FISTA for convex functions To minimize a convex function J = f+g where f is
convex and L−smooth and g is convex, the FISTA (Fast Iterative Soft Thresholding
Algorithm) algorithm [7] writes{

yn = xn +
tn−1
tn+1

(xn − xn−1)

xn+1 = proxγg(yn − γ∇f(yn)),
(57)

where γ ⩽ 1
L
, t1 = 1 and tn+1 =

1+
√

1+4t2n
2

. The following result shows that this
sequence generally performs better than Forward-Backward.

Theorem 9. The sequence generated by (57) satisfies

J (xn)− J (x∗) ⩽
2

γ(n+ 1)2
∥x0 − x∗∥2. (58)

Several remarks can be done before going any further.

• The convergence rate of FISTA, O(1
n2) is better than the rate O(1

n
) of Forward-

Backward (FB). Numerically it performs better, try it.

28

• FISTA should have been called Fast Forward Backward, but the authors pre-
fer a reference to ISTA (Iterative Soft Thresholding Algorithm) which is a
particular case of FB to get a better name...

• Y. Nesterov proposed the same scheme with T = Id − γ∇f to minimize a
differentiable function in 1983 with the same rate [35]. For this reason, FISTA
is also called a Nesterov’s acceleration of FB.

• The decay is optimal in the sense that no first order method (using only
gradient or subgradient) may provide a rate O(1

nδ) with δ > 2 [35]. Using
extra previous iterates xk with k < n− 1 does not help to get a better rate.

• With the original choice of the sequence (tn)n∈N∗ , there is no known proof of
the convergence of the sequence (xn)n∈N generated by FISTA.

The analysis of this algorithm with the sequence (tn)n∈N∗ defined in (57) was not
understood until the works of [11] and [45] who proposed a complete proof of con-
vergence for a modified sequence (tn)n∈N∗ , while noticing that FISTA can be seen
as a discretization of the following ODE

ẍ(t) +
3

t
ẋ(t) +∇f(x(t)) = 0. (59)

More precisely, the proof of Theorem 9 can be obtained by relying on a Lyapunov
analysis, by showing that the following sequence

Sn = t2n(f(xn)− f(x∗)) +
1

2γ
∥tn(xn − xn−1) + 2(xn − x∗)∥2 (60)

is non-increasing if
t2n+1 − tn+1 + t2n ⩽ 0. (61)

The choice in [35, 7] is to maximize tn at each step, to get the best decay. Other
definition of tn satisfying (61) can nevertheless be considered, to ensure both similar
asymptotic decay and weak convergence of the sequence (xn)n∈N∗ . As proposed
in [11], the following version of FISTA{

yn = xn +
n

n+β
(xn − xn−1)

xn+1 = proxγg(yn − γ∇f(yn))
(62)

ensures that
J (xn)− J (x∗) ⩽

β + 1

2γ(n+ 1)2
∥x0 − x∗∥2, (63)

for γ ⩽ 1
L

and β > 3. Unfortunately, there is no rule to choose β. In practice, if no
additional assumptions are made on J , i.e. J is only assumed convex, any value
β > 3 seems to be a good choice. When J is strongly convex, β must be chosen
depending on ε if ε is the numerical precision we want to reach [3].

29

V-FISTA for strongly convex functions. When the function J = f + g is
α−strongly convex and α is known, there exist several ways to improve the con-
vergence reached by the Forward-Backward algorithm. To avoid many complex
definitions, we only focus here on the strongly convex hypothesis, but this assump-
tion could be weaken. The analysis of Polyak in his seminal work [38] deals with C2

functions. The Heavy Ball has been extended to composite functions in [6], with an
inertial scheme that can be seen as a discretization of a Heavy Ball ODE (59) with
a different friction parameter a and a different stepsize γ = 1

L
:{

yn = xn +
√
L−

√
α√

L+
√
α
(xn − xn−1)

xn+1 = T (yn) := proxγg(yn − γ∇f(yn)).
(64)

This scheme provides a sequence such that

J (xn)− J (x∗) ⩽

(
1−

√
α

L

)n

(J (x0)− J (x∗)). (65)

We finally make two remarks on this result.

• The strong convexity parameter α must be known to fix the inertial parameter,
which is a difference between FISTA and V-FISTA.

• If α
L
<< 1, this rate is much better than Forward-Backward.

4.3.4 Douglas-Rachford algorithm (DR)

We now target the problem

min
x∈E

J (x) = min
x∈E

f(x) + g(x),

where the functions f and g are convex, proper, lower semi-continuous and where
J is bounded from below. The difference with the previous setting is that we do
not make any assumptions on the differentiablity of f . We also assume that we are
able to compute the proximity operators of both f and g. The first thing to notice
is that under these assumptions, there exists a minimizer of J .

As before, we can identify an operator that is 1−Lipschitz and whose fixed points
are associated to the minimizers of J . In the case of Forward-Backward, these fixed
point were the minimizers of J , whereas for the Douglas-Rachford algorithm, the
minimizers are the images of these fixed points through an operator. To introduce
this operator, we first need to define the reflected proximity operator.

Definition 15. The reflected prox or Rprox of a proper and convex function f is

Rproxf = 2proxf − Id .

The Douglas-Rachford algorithm is then based on the following proposition.

30

Proposition 12. Let J = f+g be a functional defined from E to R∪+∞, where the
two functions f and g are both convex, proper, lower semi-continuous and satisfying
the hypotheses of Lemma 6 (on the sum of subdifferentials), and let γ be a strictly
positive real number. Then we have

zeros (∂J) = proxγg
(
Fix(Rproxγf Rproxγg)

)
. (66)

Proof. Under the hypotheses of Lemma 6, we have

0 ∈ ∂J (x) ⇔ 0 ∈ ∂γJ (x)

⇔ 0 ∈ ∂γf(x) + ∂γg(x)

⇔ ∃z ∈ E such that − z ∈ ∂γf(x) and z ∈ ∂γg(x)

⇔ ∃y ∈ E such that x− y ∈ ∂γf(x) and y − x ∈ ∂γg(x)

We rewrite x− y ∈ ∂γf(x) as 2x− y ∈ (Id+∂γf)(x). The relation y − x ∈ ∂γg(x)
can also be rewritten as y ∈ (Id+γ∂g)(x) and thus x = proxγg(y), which gives

0 ∈ ∂J (x) ⇔ ∃y ∈ E such that 2x− y ∈ (Id+∂γf)(x) and x = proxγg(y).

By using the definition of the operator Rprox we obtain:

0 ∈ ∂J (x)

⇔∃y ∈ E such that x = proxγf (Rproxγg y) and x = proxγg(y)

⇔∃y ∈ E such that y = 2x− Rproxγg y = Rproxγf (Rproxγg y) and x = proxγg(y)

⇔∃y ∈ E such that y ∈ Fix
(
Rproxγf Rproxγg

)
and x = proxγg(y).

From this proposition we can define a minimization algorithm for J that esti-
mates a fixed point of the operator T = Rproxγf Rproxγg and then applies proxγf to
this fixed point to get a minimizer of J . In order to estimate such a fixed point, we
first give a key property of Rprox operators related to firm nonexpansiveness (see
Definition 14).

Lemma 8. Let T be an operator defined from E to E. The following two statements
are equivalent:

• T is firmly nonexpansive

• R = 2T − Id is nonexpansive (1-Lipschitz)

Proof. We show that these two properties are equivalent to the non negativeness of a
scalar product. Let (x, y) ∈ E2. By setting u = Tx−Ty and v = Tx−x− (Ty−y),
we have

∥x− y∥2 = ∥u− v∥2 = ∥u∥2 + ∥v∥2 − 2⟨u, v⟩

thus T is firmly nonexpansive if and only if ⟨u, v⟩ ⩾ 0. Additionally,

∥Rx−Ry∥2 = ∥u+ v∥2 = ∥u∥2 + ∥v∥2 + 2⟨u, v⟩ = ∥x− y∥2 + 4⟨u, v⟩

which shows that the nonexpansiveness of R is equivalent to ⟨u, v⟩ ⩽ 0.

31

Corollary 2. For any convex function f and parameter τ > 0, the operator Rproxτf
is nonexpansive.

Proof. The result follows from Lemma 8, given the definition of the Rprox operator
(Definition 15) and the fact that the proximal operator of a convex function is firmly
nonexpansive (Proposition 8).

The Rprox operator is thus nonexpansive (1-Lipschitz), but this is not sufficient
to show the convergence of xn+1 = Rproxγf Rproxγg(xn). Indeed, contrary to gra-
dient descent and Forward-Backward algorithms, we do not have a descent Lemma
ensuring that limn→∞ ∥xn+1 − xn∥ = 0 to apply Lemma 4. Hence we rather rely
on the Krasnosel’skii-Mann Algorithm that considers an averaging process to target
fixed-points of nonexpansive operators.

Theorem 10 (Krasnosel’skii-Mann Algorithm). Let D be a non-empty, closed and
convex subset of E and let T, D → D be a 1-Lipschitz operator such that the set of
fixed points of T is non-empty. Let (λn)n∈N be a sequence of real numbers in [0, 1]
such that

∑
n∈N λn(1− λn) = +∞, and take x0 ∈ D. We define

∀n ∈ N, xn+1 = xn + λn(Txn − xn).

Proof. Let y be a fixed point point of T (i.e. Ty = y) and n ∈ N, we have

∥xn+1 − y∥2 = ∥(1− λn)(xn − y) + λn(Txn − y)∥2

= (1− λn)∥xn − y∥2 + λn∥Txn − Ty∥2 − λn(1− λn)∥Txn − xn∥2

⩽ ∥xn − y∥2 − λn(1− λn)∥Txn − xn∥2,

where we used the following relation:

2⟨xn − y, Txn − y⟩ = ∥Txn − y∥2 − ∥Txn − xn∥2 + ∥xn − y∥2,

as well as the fact that T is non expansive for the last inequality. We deduce that∑
n∈N

λn(1− λn)∥Txn − xn∥2 ⩽ ∥x0 − y∥2. (67)

Also observe that

∥Txn+1 − xn+1∥ = ∥Txn+1 − Txn + (1− λn)(Txn − xn)∥
⩽ ∥xn+1 − xn∥+ (1− λn)∥Txn − xn∥
⩽ ∥Txn − xn∥

As
∑

n∈N λn(1− λn) = +∞ and as the sequence (∥Txn − xn∥)n∈N is non increasing
we deduce from (67) that (Txn−xn)n∈N converges to 0. The sequence ∥xn−y∥ being
non increasing, we get that all elements from the sequence (xn)n∈N belong to a close
ball of center y and radius ∥y−x0∥, which is a compact since E is finite-dimensional.
Hence we can extract a subsequence (xnk

)k∈N that converges to a point x ∈ E.

32

As Txn − xn converges to 0, the sequence (Txnk
− xnk

)k∈N goes to 0 too. We
deduce that the sequence (Txnk

)k∈N also converges to x. Since this sequence also
converges to Tx, we get that x = Tx is a fixed point of T . Finally, since x is a
fixed point of T , the sequence (∥xn − x∥)n∈N is non increasing. We can extract a
subsequence that converges to 0, which implies that (xn)n∈N converges to x a fixed
point of T .

We can now show the convergence of the Douglas-Rachford algorithm.

Theorem 11 (Douglas-Rachford algorithm). Let f and g be two convex, proper,
lower semi-continuous functions, bounded from below. Let (µn)n∈N be a sequence of
elements in [0, 2] such that

∑
n∈N µn(2 − µn) = +∞. Let γ > 0 and x0 ∈ E. Let

(xn)n∈N, (yn)n∈N and (zn)n∈N be the sequences defined by

∀n ∈ N


yn = proxγg(xn),
zn = proxγf (2yn − xn),
xn+1 = xn + µn(zn − yn),

(68)

which is equivalent to

xn+1 = xn +
µn

2
(Rproxγf Rproxγg(xn)− xn).

Then there exists x ∈ E minimizing (f + g) such that (xn)n∈N converges to x.

Proof. First observe that

xn+1 = xn + µn(zn − yn)

= xn + µn

(
proxγf (2yn − xn)− proxγg(xn)

)
= xn + µn

(
proxγf (Rproxγg(xn))− proxγg(xn)

)
= xn +

µn

2

(
2 proxγf (Rproxγg(xn))− 2 proxγg(xn) + xn − xn

)
= xn +

µn

2

(
Rproxγf (Rproxγg(xn))− Rproxγg(xn)− xn

)
= xn +

µn

2

(
Rproxγf (Rproxγg(xn))− xn

)
.

Corollary 2 states that the Rprox operator is 1-Lipschitz. We now define the
operator T = Rproxγf Rproxγg. We know that this operator is 1-Lipschitz as a
composition of two operators that are 1-Lipschitz. From Proposition 12, we also
know that the set of fixed points of T is equal to the image by the 1-Lipschitz
operator proxγf of the set of minimizers of f + g, which is non-empty according to
the hypotheses on f and g. We note that xn+1 = xn +

µn

2
(Txn − xn). We conclude

by applying Krasnoselsky-Mann’s algorithm presented in Theorem 10.

33

Other formulations of Douglas-Rachford The Douglas-Rachford algorithm
can be expressed in many forms in the literature. For example, it is frequent for the
parameters µn to be fixed to 1. The algorithm is then expressed in the following
way:

∀n ∈ N


yn = proxγg(xn),
zn = proxγf (2yn − xn),
xn+1 = xn + zn − yn

(69)

By omitting the variable zn we obtain the following description of the sequences
(xn)n∈N and (yn)n∈N:

∀n ⩾ 1

{
xn+1 = xn + proxγf (2yn − xn)− yn,
yn+1 = proxγg(xn+1).

(70)

We also mention the change of variables wn = yn−xn that appears in the literature:

∀n ⩾ 1


un+1 = proxγf (yn + wn)
yn+1 = proxγg(un+1 − wn),
wn+1 = wn + yn+1 − un+1.

(71)

This algorithm can also be adapted to the case where the minimization problem is
of the form:

min
x∈E

f(Ax) + g(x)

where A is a linear operator from E to F . Indeed, one can consider the equivalent
problem:

min
x,y∈E×F

f(y) + g(x) + ιAx=y(x, y),

and apply the Douglas-Rachford algorithm to minimize the sum of the two con-
vex functions functions f(y) + g(x) and ιAx=y(x, y), with respect to the augmented
variable v = (x, y).

4.3.5 Parallel ProXimal Algorithm (PPXA)

The PPXA algorithm (see Chapter 10 in [15]) adapts the Douglas-Rachford algo-
rithm to solve:

min
x∈E

M∑
i=1

fi(x), (72)

where the M function fi are convex proper and l.s.c. The PPXA algorithm increases
the dimension of the problem and it allows for the parallel computation of the
proximal operators proxfi . Let us denote as X a vector in EM that writes X =
(x1, x2, · · · , xM) with xi ∈ E for all i ⩽ M . PPXA then consists in reformulating
the problem (72) as an optimization problem in EM :

min
X=(xi)i⩽n∈EM

M∑
i=1

fi(xi) + ιD(X) (73)

where D = {X = (xn)k⩽M ∈ EM such that xn = x1, ∀k ⩽ M}.

34

Assuming that the optimization problem (72) has at least one solution, a min-
imizer of (72) can be obtained by applying the Douglas-Rachford algorithm to the
problem minX∈EM f̃(X) + g̃(X) with f̃(X) =

∑M
i=1 fi(xi) and g̃(X) = ιD(X). The

proximity operator of f̃ can be computed in a parallel way using the separability
of f̃ , following Example (1). One can also show that the proximity operator of the
indicator of the set D is a simple mean.

We finally provide the following observations about PPXA:

• Even when only M = 2 functions are involved, applying PPXA is different
from applying Douglas-Rachford. The computation of proximal operators is
parallel with PPXA, and it may be faster to use PPXA than Douglas-Rachford
for M = 2 functions.

• If the functions fi for i ⩾ 2 are composed with linear operators Li:

min
x∈E

f1(x) +
M∑
i=2

fi(Lix) (74)

a similar reformulation can be considered:

min
X=(xi)i⩽M∈En

M∑
i=1

fi(xi) + ιD2(X) (75)

where D2 = {X = (xi)i⩽M ∈ EM such that Lix1 = xi, ∀i ⩽ M}. To solve
problem (75) with the Douglas-Rachford algorithm, one needs to perform the
projection on D2. It exists a closed form for this projection, which is similar
to (43). If we denote (p1, p2, · · · , pn) = ProjD2(X) then ∀k ⩾ 2 we have
pk = Lkp1 and

p1 =

(
Id+

M∑
i=2

L∗
iLi

)−1(
x1 +

M∑
i=2

L∗
ixi

)
.

To perform the inversion in a general case (without assumptions on the oper-
ators Li), a conjugate gradient method can be considered.

4.3.6 Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm [21, 23] is designed to solve optimization problems of the
form:

min
(x,y)∈E×F,Ax+By=b

f(x) + g(y) (76)

where A and B are two linear operators taking values from E and F to G, b is
a vector in G and f and g are two convex, proper, lower semi-continuous functions.
It is a general formulation, containing cases such as y = x or y = Ax.

The Lagrangian associated to (76) to account for the constraint Ax + By = b
with a multiplier variable z ∈ G writes

L(x, y, z) = f(x) + g(y) + ⟨z, Ax+By − b⟩, (77)

35

and the augmented Lagrangian for γ > 0 is

Lγ(x, y, z) = L(x, y, z) +
γ

2
∥Ax+By − b∥2. (78)

Let (x0, y0) ∈ E × F , γ > 0 and z0 ∈ G. The ADMM introduces the sequences
(xn)n∈N, (yn)n∈N and (zn)n∈N defined ∀n ⩾ 0 as:

xn+1 = argmin
x

f(x) + ⟨zn, Ax⟩+ γ
2
∥Ax+Byn − b∥2

yn+1 = argmin
y

g(y) + ⟨zn, By⟩+ γ
2
∥Axn+1 +By − b∥2

zn+1 = zn + γ(Axn+1 +Byn+1 − b)

(79)

The ADMM is so called because it can be seen as a variant of an algorithm
known as the Augmented Lagrangian Method. If we replace the iterative updates
of x and y by a joint update step:

(xn+1, yn+1) = arg min
(x,y)∈E×F

f(x) + g(y) + ⟨zn, Ax+By⟩+ γ

2
∥Ax+By − b∥2,

we obtain the Augmented Lagrangian method that consists in penalizing the con-
straints with a Lagrange multiplier z and a quadratic term. One of the problems
with this method is that joint minimization is generally difficult to perform. The
ADMM separates this problem by optimizing with respect to the first variable x
first, and then the second variable y, while the variable z can be interpreted as a
Lagrange multiplier that is updated at each iteration.

Theorem 12 (ADMM algorithm). Let f and g be two proper, convex, coercive,
lower semi-continuous functions. Let the sequences (xn)n∈N, (xn)n∈N and (zn)n∈N be
defined as in the ADMM algorithm (79), then

1. The sequence (f(xn) + g(yn))n∈N converges to the minimum value of f + g.

2. The sequences (xn)n∈N and (yn)n∈N converge.

3. The sequence (Axn +Byn − b)n∈N goes to zero.

In the specific case where A = Id, B = − Id and b = 0 (i.e. x = y), the ADMM
algorithm (79) can be expressed using proximity operators:

xn+1 = proxf/γ(yn − zn/γ)
yn+1 = proxg/γ(xn+1 + zn/γ)
zn+1 = zn + γ(xn+1 − yn+1),

(80)

which, for γ = 1, is one of the forms of Douglas-Rachford, see (71).
To prove Theorem 12 in the general case, it is possible to show that applying

ADMM is equivalent to applying the Douglas-Rachford algorithm on a different
problem, called the dual problem of (76), and this independently of the choice of
the operators A and B. We will show an equivalence between both algorithms in
section 5.3.2, once the adequate material on duality has been introduced.

36

5 Duality
In this section we present optimization algorithms that rely on the dual formulations
of convex problems. In section 5.1, we first introduce the key dual notion of convex
conjugate f ∗ of a function f , and detail relevant properties of this transform. Then,
we study primal-dual algorithms in section 5.2. In section 5.3, we finally show equiv-
alence, in particular settings, between the Chambolle-Pock primal dual algorithm,
the Douglas-Rachford algorithm and the ADMM.

5.1 Properties of convex conjugates

There exist close relationships between convex conjugate, subdifferential and prox-
imal operators. These links will be useful to show the equivalence between primal
and dual problems.

Definition 16 (Convex conjugate). Let f be a function defined from E to R̄, the
convex (or Fenchel or Legendre-Fenchel) conjugate of f is the function defined from
E to R̄ by

f ∗(u) = sup
x∈E

(⟨x, u⟩ − f(x)). (81)

Remark 8. The function ⟨x, u⟩− f(x) is linear (and thus convex) in u. The supre-
mum of convex functions being convex, f ∗ is necessarily a convex function.

Conjugation offers a geometric interpretation of convex, proper and l.s.c func-
tions: at any point, f is equal to the supremum of all affine functions that are lower
bounds of f .

Example 2. Let us give examples of convex conjugates

• If f(x) = ⟨a, x⟩ − b then

f ∗(u) =

{
b if u = a
+∞ if u ̸= a.

• If f(x) = ∥x∥p where ∥ · ∥p is the ℓp norm, then f ∗ is the indicator function of
the unit ball for the dual norm ℓq (such that 1/p+1/q = 1), i.e f ∗(u) = iBq(u),
for Bq = {u, ∥u∥q ≤ 1}. Thus, for f(x) = ∥x∥1, we have

f ∗(u) =

{
0 if ∥u∥∞ ⩽ 1
+∞ if ∥u∥∞ > 1.

Next lemma gives a main relation between subdifferentials and convex conjugates.

Lemma 9. Let f be a function defined on E and x ∈ E , then

u ∈ ∂f(x) ⇔ f ∗(u) + f(x) = ⟨u, x⟩ (82)

37

Proof.

u ∈ ∂f(x) ⇔ ∀y ∈ E, f(y) ⩾ f(x) + ⟨y − x, u⟩.
⇔ ∀y ∈ E, ⟨x, u⟩ − f(x) ⩾ ⟨y, u⟩ − f(y).

⇔ ⟨x, u⟩ − f(x) = f ∗(u)

⇔ f ∗(u) + f(x) = ⟨x, u⟩.

One essential property of convex functions is equality to its biconjugate. First
we show a property of the biconjugate for a general, nonconvex function, and then
prove the equality between f and f ∗ ∗ is f is convex.

Lemma 10. Let f be a function defined from E to [−∞,+∞], for all x ∈ E,
f ∗∗(x) ⩽ f(x). Moreover, f ∗∗ is the largest convex lower semi-continuous envelope
of the function satisfying f ∗∗(x) ≤ f(x), for all x ∈ E

Proof. Let Σ ⊂ E × R the set of pairs (u, α) representing affine functions x 7→
⟨u, x⟩ − α that are upper bounded by f :

(u, α) ∈ Σ ⇔ f(x) ≥ ⟨u, x⟩ − α, ∀x ∈ E

⇔ α ≥ sup
x∈E

⟨u, x⟩ − f(x)

⇔ α ≥ f ∗(u), and u ∈ dom (f ∗).

Then we obtain, for all ∈ E:

sup
(u,α)∈Σ

⟨u, x⟩ − α = sup
u ∈ dom (f ∗)
−α ≤ −f ∗(u)

⟨u, x⟩ − α

= sup
u∈dom (f∗)

⟨u, x⟩ − f ∗(u) = f ∗∗(x).

Theorem 13 (Biconjugation). If f and is a proper l.s.c convex function defined
from E to [−∞,+∞], then f ∗∗ = f .

Proof. If f is convex proper and l.s.c then Lemma 10 ensures that f is equal to its
largest convex lower semi-continuous envelope, that is to say f ∗∗ = f .

We deduce from this theorem that a convex, proper and l.s.c function f satisfies
∀x ∈ E

f(x) = sup
u∈E

(⟨x, u⟩ − f ∗(u)) (83)

Remark 9. Computations in the proof of Lemma 10 show that the supremum in (81)
is reached at all points u ⊂ ∂f(x). Hence, if the subdifferential ∂f(x) is not empty,
which is the case in most practical applications, the supremum (sup) is a maximum
(max) in relation (81).

38

Remark 10. Relation (83) is useful when f is composed with an operator. For
instance, if K is a linear application from E to an another space F , we have ∀x ∈ E

f(Kx) = sup
u∈F

(⟨Kx, u⟩ − f ∗(u)) = sup
u∈F

(⟨x,K∗u⟩ − f ∗(u)). (84)

With such an expression, the operator K can be decoupled from the convex function
f . This is a key ingredient of the primal-dual algorithms detailed below.

Let us give a relevant properties between subgradients of conjugate functions.

Proposition 13. If f is a convex, proper and l.s.c function, then

u ∈ ∂f(x) ⇔ x ∈ ∂f ∗(u). (85)

Proof. Let (x, u) ∈ E2 such that u ∈ ∂f(x). Lemma 9 ensures that

u ∈ ∂f(x) ⇔ f ∗(u) + f(x) = ⟨u, x⟩.

As f is convex, proper and l.s.c, we have f = f ∗∗ so that

u ∈ ∂f(x) ⇔ f ∗(u) + f ∗∗(x) = ⟨u, x⟩

which implies u ∈ ∂f(x) ⇔ x ∈ ∂f ∗(u).

We now give a useful theorem involving convex conjugates and proximal operators.

Corollary 3 (Moreau’s identity [33]). If f is a convex, proper and l.s.c function,
then for all γ > 0

proxγf (x) + γ proxf∗/γ(x/γ) = x. (86)

that is to say, for γ = 1, proxf +proxf∗ = Id.

Proof. Using Proposition 6 and relation (85), we have

p = proxγf (x) ⇔ (x− p) ∈ γ∂f(p)

⇔ p ∈ ∂f ∗((x− p)/γ)

⇔ p/γ ∈ 1

γ
∂f ∗((x− p)/γ)

⇔ x/γ − (x− p)/γ ∈ ∂(f ∗/γ)((x− p)/γ)

⇔ (x− p)/γ = proxf∗/γ(x/γ)

⇔ proxγf +γ proxf∗/γ(./γ) = Id .

We finally give an equivalence between L-smoothness and strong convexity of
conjugate functions.

Proposition 14. Let f be a convex proper and l.s.c function, then the two following
assertions are equivalent: (i) f is 1/L-strongly ; (ii) f ∗ is L-smooth.

39

Proof. (i) ⇒ (ii): If f is 1/L- strongly convex, then we can extend relation (9) from
Proposition (5) to non smooth function using the definition of subdifferential (39).
For all (x, y) ∈ E2, p ∈ ∂f(x) and q ∈ ∂f(y), we obtain:

||p− q|| ≥ 1

L
||x− y||.

Using relation (85) it implies:

||p− q|| ≥ 1

L
||∂f ∗(p)− ∂f ∗(q)||,

so that ∂f ∗ has a L-Lipschitz continuous gradient.
(ii) ⇒ (i): If f ∗ is L-smooth, then the co-coercivity property (6) gives ∀(p, q) ∈ E2:

⟨∇f ∗(p)−∇f ∗(q), p− q⟩ ≥ 1

L
||∇f ∗(p)−∇f ∗(q)||2.

Denoting as x = ∇f ∗(p) and y = ∇f ∗(q), relation (85) leads to p = ∂f(x) and
q = ∂f(y). Hence we have

⟨x− y, ∂f(x)− ∂f(y)⟩ ≥ 1

L
||x− y||2

||∂f(x)− ∂f(y)|| ≥ 1

L
||x− y||,

and f ∗ is 1/L-strongly convex.

5.2 Primal-Dual Algorithms

We now consider the optimization problem:

min
x∈E

f(Kx) + g(x), (87)

where K is a linear operator from E to F and f and g are two convex proper l.s.c
functions defined from F (resp. E) to [−∞,+∞]. In the following, we assume that
the proximal operators of both f and g are simple to compute, but the proximal
operator of f ◦ K is not easily accessible. To tackle this issue, we consider the
primal dual formulation of problem (87). We first detail the corresponding saddle
point problem and then present algorithms dedicated to its resolution.

5.2.1 Saddle-point problem

If f is convex proper and l.s.c, we use conjugation

∀z ∈ F, f(z) = sup
y∈F

(⟨y, z⟩ − f ∗(y)) (88)

to rewrite the term f(Kx) as

∀x ∈ E, f(Kx) = sup
y∈F

(⟨y,Kx⟩ − f ∗(y)) = sup
y∈F

(⟨K∗y, x⟩ − f ∗(y)), (89)

where K∗ denotes the adjoint operator of K defined from F to E.

40

Introducing this reformulation into the initial problem (87), we obtain the primal-
dual problem

min
x∈E

sup
y∈F

⟨K∗y, x⟩ − f ∗(y) + g(x), (90)

defined for the primal unknown x and the dual variable y.
In the following, we assume that the above supremum is a maximum. As soon

as the subdifferential of f at point z is non empty, the supremum is reached at a
point y of the subdifferential ∂f(z) and the supremum is indeed a maximum. We
refer the reader to the book of R. Rockafellar [40] for further details. Having made
this assumption, we return to the following saddle point problem:

min
x∈E

max
y∈F

h(x, y) := ⟨K∗y, x⟩ − f ∗(y) + g(x), (91)

whose saddle-points (x∗, y∗) provide minimizers x∗ of problem (87). In the following
we assume that such saddle-points exist. Problems (87) and (91) are equivalent in
the following sense: if (x, y) solves (91) then x is a minimizer of problem (87).

Proposition 15. Let f and g be convex and proper functions respectively defined
from F and E to R, and K be an operator from E to F . If (x∗, y∗) is a saddle point
of (91), then x∗ is a solution of the primal problem (87). Moreover, the saddle
points (x∗, y∗) of (91) satisfy{

∀τ > 0, x∗ = proxτg(x
∗ − τK∗y∗)

∀σ > 0, y∗ = proxσf∗(y∗ + σKx∗).
(92)

Proof. Let us recall that h is the function defined over E × F by

h(x, y) = ⟨Kx, y⟩+ g(x)− f ∗(y). (93)

For (x∗, y∗) ∈ E × F , we introduce h1 and h2 the partial functions respectively
defined on E and F by h1(x) = h(x, y∗) and h2(y) = h(x∗, y). For any x∗ and y∗,
h1 is convex in x and h2 is concave in y (i.e. −h2 is convex).

Hence, one can observe that

(x∗, y∗) is a saddle-point of h ⇔
{
∀x ∈ E, h(x∗, y∗) ⩽ h(x, y∗)
∀y ∈ F, h(x∗, y) ⩽ h(x∗, y∗)

⇔
{
∀x ∈ E, h1(x

∗) ⩽ h1(x)
∀y ∈ F, −h2(y

∗) ⩽ −h2(y)

⇔
{
0 ∈ ∂h1(x

∗)
0 ∈ ∂h2(y

∗)

⇔
{
0 ∈ (K∗y∗ + ∂g(x∗))
0 ∈ (−Kx∗ + ∂f ∗(y∗))

⇔
{
−K∗y∗ ∈ ∂g(x∗)
Kx∗ ∈ ∂f ∗(y∗)

(94)

⇔
{
∀τ > 0, x∗ = proxτg(x

∗ − τK∗y∗)
∀σ > 0, y∗ = proxσf∗(y∗ + σKx∗).

To conclude on the fact that x∗ is a minimizer of problem (87), we first provide
the following lemma.

41

Lemma 11. Let f be a convex and close function defined from F to R and K be
an operator from E to F , then ∀y ∈ ∂f(Kx), K∗y ∈ ∂(f ◦K)(x).

Proof. Let y ∈ ∂f(Kx), then from definition (39), we have ∀x′ ∈ E:

f(Kx′) ≥ ⟨y,Kx′ −Kx⟩+ f(Kx)

(f ◦K)(x′) ≥ ⟨K∗y, x′ − x⟩+ (f ◦K)(x),

which is also equivalent to K∗y ∈ ∂(f ◦K)(x) from definition (39).

Using relation (85) to switch from f ∗ to f , as well as the previous lemma, we
obtain from (94):

∃y∗ ∈ F s. t.
{

−K∗y∗ ∈ ∂g(x∗)
Kx∗ ∈ ∂f ∗(y∗)

⇔ ∃y∗ ∈ F s. t.
{

−K∗y∗ ∈ ∂g(x∗)
y∗ ∈ ∂f(Kx∗)

⇒ ∃y∗ ∈ F s. t.
{

−K∗y∗ ∈ ∂g(x∗)
K∗y∗ ∈ ∂(f ◦K)(x∗)

⇔ 0 ∈ ∂(f ◦K)(x∗) + ∂g(x∗)

⇔ x∗ ∈ argminx∈E f(Kx) + g(x).

As a consequence from Proposition (15), algorithms dedicated to primal-dual
problems are looking for pairs of variables (x, y) satisfying relations (92).
In particular, the Arrow-Hurwicz algorithm computes, for a given x0 ∈ E, the
following pair of sequences (xn)n∈N and (yn)n∈N:{

yn+1 = proxσf∗(yn + σKxn)
xn+1 = proxτg(xn − τK∗yn+1).

(95)

The proof of convergence of this algorithm to a saddle-point of (91) requires
additional assumptions, such as the strong convexity of f or g to make the proximal
operators contractions (see Proposition 10). We now focus on generalizations of this
algorithm that involve minimal conditions.

5.2.2 Chambolle-Pock algorithm (CP)

Before presenting the algorithm proposed by Chambolle and Pock in [12], we first
give a fundamental property of saddle-points of problem (91), by introducing the
partial primal-dual gap:

GB1×B2(x, y) = max
y′∈B2

⟨y′, Kx⟩ − f ∗(y′) + g(x)− min
x′∈B1

⟨y,Kx′⟩+ g(x′)− f ∗(y), (96)

that is defined on bounded sets (B1 ×B2) ⊂ E × F .

42

Proposition 16. Let (x∗, y∗) ∈ B1×B2 be a solution to problem (91), then, ∀(x, y) ∈
B1 × B2, we have GB1×B2(x, y) ≥ 0, and this gap is zero if and only if (x, y) is a
solution of (91).

Proof. We recall that the function h is defined in (91) as h(x, y) = ⟨Kx, y⟩ +
g(x) − f ∗(y). A saddle point (x∗, y∗) of problem (91) thus satisfies: h(x∗, y∗) =
minx′∈B1 h(x

′, y∗) = maxy′∈B2 h(x
∗, y′), which implies that

GB1×B2(x
∗, y∗) = max

y′∈B2

h(x∗, y′)− min
x′∈B1

h(x′, y∗) = h(x∗, y∗)− h(x∗, y∗) = 0. (97)

Next we have

GB1×B2(x, y) = max
y′∈B2

h(x, y′)− min
x′∈B1

h(x′, y)

⩾ h(x, y∗)− h(x∗, y)

⩾ h(x, y∗)− h(x∗, y∗) + h(x∗, y∗)− h(x∗, y)

⩾ h(x, y∗)− min
x′∈B1

h(x′, y∗) + max
y′∈B2

h(x∗, y′)− h(x∗, y)

⩾ 0. (98)

We can now present the Chambolle-Pock algorithm [12], that is based on a
modification of the scheme (95) with a nonconvex update of xn.

Theorem 14 (Chambolle-Pock algorithm). Let f and g be two convex, proper,
lower semi-continuous functions, with f defined from F to R, g defined from E to
R and K a linear operator from E to F . Assume that the problem (91) admits a
solution (x∗, y∗). We denote L = ∥K∥ =

√
||K∗K||, and take σ and τ such that

τσL2 < 1. We choose (x0, y0) ∈ E × F and set x̄0 = x0 and define the sequences
(xn)n∈N, (yn)n∈N, and (x̄n)n∈N by

yn+1 = proxσf∗(yn + σKx̄n)
xn+1 = proxτg(xn − τK∗yn+1)
x̄n+1 = 2xn+1 − xn.

(99)

Setting xN = (
∑N

n=1 xn)/N and yN = (
∑N

n=1 yn)/N , then for each bounded set
(B1 ×B2) ⊂ E × F , the partial primal-dual gap satisfies

0 ≤ GB1×B2(x
N , yN) ⩽

1

N

(
||x0 − x∗||2

2τ
+

||y0 − y∗||2

2σ
− ⟨K(x0 − x∗), y0 − y∗⟩

)
.

This theorem illustrates the ergodic convergence rate of the primal-dual algo-
rithm [13]. For completeness, we provide in Appendix A the proof of [12], that
shows the convergence of the iterates (xn, yn) of algorithm (99) to a saddle-point
(x∗, y∗) of problem (91).

43

Proof. This demonstration is based on the works of [24, 32]. Let us first switch the
step order in algorithm (99):

xn+1 = proxτg(xn − τK∗yn+1)
x̄n+1 = 2xn+1 − xn

yn+1 = proxσf∗(yn + σKx̄n+1).
(100)

Using the characterization of proximal operators in Proposition 6, we have:{
−(xn+1−xn

τ
+K∗yn) ∈ ∂g(xn+1)

−(yn+1−yn
σ

−K(2xn+1 − xn)) ∈ ∂f ∗(xn+1)

⇔0 ∈
{ xn+1−xn

τ
+K∗yn + ∂g(xn+1)

yn+1−yn
σ

−K(2xn+1 − xn) + ∂f ∗(xn+1)

⇔0 ∈
[
Id
τ

0
0 Id

σ

] [
xn+1 − xn

yn+1 − yn

]
−
[
0 K∗

K 0

] [
xn+1 − xn

yn+1 − yn

]
+

[
∂g K∗

−K ∂f ∗

] [
xn+1

yn+1

]
⇔0 ∈

[
Id
τ

−K∗

−K Id
σ

] [
xn+1 − xn

yn+1 − yn

]
+

[
∂g K∗

−K ∂f ∗

] [
xn+1

yn+1

]
. (101)

Recalling that
h(x, y) = ⟨Kx, y⟩+ g(x)− f ∗(y),

and introducing the matrix

M =

[
Id
τ

−K∗

−K Id
σ

]
,

relation (101) can be written as

M

[
xn − xn+1

yn − yn+1

]
∈
[
∂xh(xn+1, yn+1)
−∂yh(xn+1, yn+1)

]
. (102)

In the following, we consider στ ||K∗K|| = στL2 < 1 to ensure that the matrix M is
positive-definite. Since h is convex (resp. concave) with respect to x (resp. y), we
get from the definition of subdifferential (12) that:

h(xn+1, yn+1) + ⟨∂xh(xn+1, yn+1), x− xn+1⟩ ≤ h(x, yn+1)

−h(xn+1, yn+1)− ⟨∂yh(xn+1, yn+1), y − yn+1⟩ ≤ −h(xn+1, y).

Summing both expressions and introducing wn+1 = M(zn − zn+1), we get from
relation (102)

h(xn+1, y)− h(x, yn+1) ≤ ⟨wn+1, zn+1 − z⟩ = ⟨zn − zn+1, zn+1 − z⟩M

≤ 1

2

(
||zn − z||2M − ||zn+1 − z||2M − ||zn+1 − zn||2M

)
≤ 1

2

(
||zn − z||2M − ||zn+1 − z||2M

)
,

44

where we used the fact that ||.||2M = ⟨M., .⟩ is a semi-norm since M is positive-
definite. Summing the previous expression from n = 1 to N and introducing xN =
(
∑N

n=1 xn)/N and yN = (
∑N

n=1 yn)/N , we obtain:

h(xN , y)− h(x, yN) ≤ 1

N

N∑
n=1

(h(xn, y)− h(x, yn)) ≤
1

2N
||z0 − z||2M .

Considering previous expression for a saddle point z∗ = (x∗, y∗), we get from Propo-
sition 16 that

0 ≤ GB1×B2(x
N , yN) ⩽

1

2N
||z0 − z∗||2M .

Remark 11. The work in [24] offers an alternative to the proof of convergence of
the primal-dual algorithm provided in Appendix A. The convergence of primal-dual
can indeed be obtained from the fact that the scheme (101) is an instance of the prox-

imal point algorithm of [41] applied to the variable z = (x, y) in which
[
∂g K∗

−K ∂f ∗

]
corresponds to a maximal monotone operator (a monotone operator T : H → H
satisfies ⟨T (z) − T (z′), z − z′⟩ ≥ 0 for all z, z′ ∈ H2 and it is maximal if and only
if range(T + Id) = H, with range(T) = {z ∈ H, such that ∃w ∈ H, satisfying z =
T (w)}. The iterates zn = (xn, yn) then converge if the matrix M is positive-definite,
which is the case as soon as στ ||K∗K|| = στL2 < 1.

5.2.3 Condat algorithm

The Condat algorithm generalizes the primal dual one to the minimization of prob-
lems involving more convex functions:

min
x∈E

f(x) + g(x) +
M∑
i=1

hi(Lix). (103)

where f is a convex differentiable function whose gradient is L-Lipschitz and the
functions g and hi are convex, and Lk are linear operators. For any initial points
x0 ∈ E and (ui

0)i⩽M initial dual variables, the Condat algorithm introduced in [16]
defines the sequences (x̃n)n∈N, (xn)n∈N, (ũn)n∈N, (un)n∈N as


x̃n+1 = proxτg (xn − τ∇f(xn)− τ

∑
i=1 L

∗
mu

i
n)

xn+1 = ρx̃n+1 + (1− ρ)xn

ũi
n+1 = proxσh∗

i
(ui

k + σLi(2x̃n+1 − xn)) for i = 1 . . .M

ui
n+1 = ρũi

n+1 + (1− ρ)ui
k for i = 1 . . .M.

(104)

For ρ ∈ (0, 1] and σ > 0, τ > 0 such that

τ

(
L

2
+ σ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

M∑
i=1

L∗
iLi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)

< 1, (105)

it is shown in [16] (the proof is not reproduced here) that the sequence (xn)n∈N
defined in (104) weakly converges to a minimizer of (103).

45

The Condat algorithm have the following properties:

• It allows to use an explicit gradient descend on the differentiable part, as the
Forward-Backward algorithm;

• It separates functions and operators, as done in the Chambolle-Pock algorithm;

• The computations of (ui
n)i⩽M are independent and can be done separately and

allow parallel computing as with PPXA.

5.3 Equivalence between proximal splitting algorithms

We now show that in particular cases, some proximal splitting algorithms are equiv-
alent. To that end, we consider the general problem

min
x∈E

f(Kx) + g(x), (106)

where the linear operator K is defined from E to F . For convex proper and l.s.c
functions f and g, this problem can be solved with the Douglas-Rachford algo-
rithm (70): {

wn+1 = wn + proxγf◦K(2vn − wn)− vn,
vn+1 = proxγg(wn+1).

(107)

We now detail the equivalence of this algorithm with the Chambolle-Pock and the
ADMM ones.

5.3.1 Chambolle-Pock and Douglas-Rachford equivalence

We show the equivalence between Chambolle-Pock and Douglas-Rachford algorithms
when the linear operator is the identity.

Proposition 17. Considering the primal problem (106), in the case K = Id and
setting

σ =
1

γ
and τ = γ, (108)

the Douglas-Rachford iterations (107) are recovered from the Chambolle-Pock itera-
tions (99) using {

xn+1 = vn+1,
γyn+1 = vn − wn+1.

(109)

Proof. The Chambolle-Pock algorithm with the above parameter reads:
yn+1 = proxf∗/γ(yn + x̄n/γ) = yn + x̄n/γ − 1

γ
proxγf (γyn + x̄n)

xn+1 = proxτg(xn − γyn+1),
x̄n+1 = 2xn+1 − xn,

⇔
{

−γyn+1 + γyn + 2xn − xn−1 = proxγf (γyn + 2xn − xn−1)
xn+1 = proxτg(xn − γyn+1)

46

Incorporating the change of variables (109), we obtain{
wn+1 − wn + vn = proxγf (2vn − wn)
vn+1 = proxτg(wn+1),

that corresponds to the Douglas-Rachford iterations (107).

5.3.2 ADMM and Douglas-Rachford equivalence

To show the equivalence between Douglas-Rachford and ADMM, we consider the
Fenchel-Rockafeller dual to the primal problem (106) that writes:

max
z∈F

− (g∗(−K∗z) + f ∗(z)) ⇔ min
z∈F

f ∗(z) + g∗(−K∗z), (110)

where we assume that the adjoint operator K∗ defined from F to E is injective.
This problem can be reformulated as

min
(x,y)∈F×E,K∗x+y=0

f ∗(x) + g∗(y). (111)

This corresponds to a particular form of the problem (76) for the two convex con-
jugate f ∗ and g∗ defined on F and E, the operators A = K∗, B = Id and the
vector b = 0. It can be solved with the Alternating Direction Method of Multipliers
(ADMM) algorithm presented in (79):

xn+1 = argmin
x

f ∗(x) + ⟨zn, K∗x⟩+ γ
2
∥yn +K∗x∥2

yn+1 = argmin
y

g∗(y) + ⟨zn, y⟩+ γ
2
∥K∗xn+1 + y∥2

zn+1 = zn + γ(yn+1 +K∗xn+1).

(112)

Introducing the proximal operator proxAγf with a metric induced by an injective
map A

proxAγf (x) = argmin
s

1

2γ
∥As− x∥2 + f(s). (113)

the ADMM iterations (112) can be rewritten using proximal maps
xn+1 = proxK

∗

f∗/γ(−yn − zn/γ),

yn+1 = proxg∗/γ(−K∗xn+1 − zn/γ),
zn+1 = zn + γ(yn+1 +K∗xn+1).

(114)

The following proposition, which was initially proved in [20], shows that applying
the ADMM algorithm to the dual problem (110) is equivalent to solving the pri-
mal (106) using the Douglas-Rachford algorithm. This result was further extended
by [19] which shows the equivalence of ADMM with the proximal point algorithm
and propose several generalizations.

Proposition 18. For f and g convex, the Douglas-Rachford iterations (107) are
recovered from the ADMM iterations (114) using

zn = −vn,
γyn = wn − vn,
−γK∗xn+1 = wn+1 − vn.

(115)

47

To show this proposition, we first require the following result [36].

Proposition 19. One has

proxAf/γ(x) = A+

(
x− 1

γ
proxγf∗◦A∗(γx)

)
, (116)

where A+ = (A∗A)−1A∗ is the pseudo-inverse of A. Note that in the case A = Id,
one recovers Moreau’s identity (86).

Proof. We denote U = ∂f the set-valued maximal monotone operator. One has
∂f ∗ = U−1, where U−1 is the set-valued inverse operator. We thus have ∂(f ∗ ◦A∗) =
A ◦ U−1 ◦ A∗ = V and proxγf∗◦A∗ = (Id+γV)−1, which is a single-valued operator.
Denoting x∗ = proxAf/γ(x), the optimality condition of (113) leads to

0 ∈ A∗(Ax∗ − x) +
1

γ
U(x∗) ⇔ x∗ ∈ U−1 (γA∗Ax∗ − γA∗x)

⇔ γAx∗ ∈ γV (γx− γAx∗) ⇔ γAx∗ ∈ (Id+γV) (γx− γAx∗) + γAx∗ − γx

⇔ γx ∈ (Id+γV) (γx− γAx∗) ⇔ γx− γAx∗ = (Id+γV)−1(γx)

⇔x∗ = A+

(
x− 1

γ
(Id+γV)−1(γx)

)
where we used the fact that A is injective.

Proof of Proposition 18. Denoting x̄n = −K∗xn ∈ Im(−K∗) (recall that K∗ is in-
jective) and using the result of Proposition 19, the iterates (114) write

x̄n+1 = yn + zn/γ + 1
γ
proxγf◦K (−γyn − zn) ,

yn+1 = x̄n+1 − zn/γ − 1
γ
proxγg (γx̄n+1 − zn)) ,

zn+1 = zn + γ(yn+1 − x̄n+1),

(117)

so that 
−zn + γ(x̄n+1 − yn) = proxγf◦K (−γyn − zn) ,
−zn + γ(x̄n+1 − yn+1) = proxγg (γx̄n+1 − zn)) ,
zn+1 = zn + γ(yn+1 − x̄n+1).

(118)

Considering the following change of variables (115):
zn = −vn,
γyn = wn − vn,
γx̄n+1 = wn+1 − vn,

relations (118) become
wn+1 = wn + proxγf◦K(2vn − wn)− vn,
vn+1 = proxγg(wn+1),
0 = 0,

(119)

that gives the Douglas-Rachford iterations (107).

Remark 12. For K = Id, the previous result remains true for f and g nonconvex
functions. Indeed, as already mentioned in Section 4.3.6, for K = Id, there is a
primal equivalence between ADMM (80) and DRS (71).

48

6 Extension to nonconvex optimization
We now study the application of previously introduced gradient based algorithms to
the optimization of nonconvex functionals. Without convexity, a lot of issues arise

• A local minimum is no longer necessarily global. The convergence to a (local)
minimum of the nonconvex function is not ensured. Iterative optimization
algorithms rather target the convergence to critical points of the function.

• The subdifferential may be reduced to an empty set at many points.

• The proximal operator may be undefined or multivalued.

• The identity between a function f and its biconjugate f ∗∗ is no longer valid
and can not be exploited in primal-dual formulations.

Despite these limits, we can still prove some convergence results. In particular, by
finding decreasing Lyapunov functions, we can show convergence to zero of the norm
between consecutive iterates. Then, assuming additional regularity on the optimized
function around its critical points, such as the Kurdyka-Łojaseiwicz property, one
can prove convergence of the iterates towards a critical point of the function.

In this section, we first provide preliminary results on the convergence of the
gradient descent scheme in the nonconvex setting in section 6.1. Next a detailed
analysis of the Forward-Backward algorithm for nonconvex problems is given in
section 6.2. In section 6.3, we present existing results relative to the use of Douglas-
Rachford, ADMM and Chambolle-Pock algorithms in the nonconvex setting.

6.1 From convex to nonconvex optimization, the case of gra-
dient descent

A part of the convergence results that were proved in the convex setting are still
valid on the nonconvex setting. As in Section 3, we consider

min
x∈E

f(x) (120)

with a nonconvex, L-smooth function f : E ⊆ Rd → R∪{+∞}. The main difference
with the convex case is that for minimizing a nonconvex function, there is usually no
hope to target a global minimum. The gradient of f is still defined and we instead
look for a stationary point of f , i.e. a point x such that ∇f(x) = 0. Notice that in
the nonconvex case, such a stationary point is not necessarily a global minimum.

We consider again the gradient-descent algorithm with stepsize γ > 0,

xn+1 = xn − γ∇f(xn). (121)

In the proof of convergence of the gradient-descent algorithm in the convex setting
in Theorem 1, without making use of the convexity of f and using the fact that f
is L-smooth, we proved the following sufficient decrease property:

f(xn+1) +

(
2− γL

2γ

)
∥xn+1 − xn∥2 ⩽ f(xn). (122)

49

Therefore, as soon as γ < 2
L
, the function f decreases along the iterates. As-

suming that f is lower-bounded, the sequence of function values f(xn) then con-
verges. Moreover, by summing (122), between n = 0 and n = N > 0, we get that
∥xn+1−xn∥ = ∥∇f(xn∥ converges to 0 with rate O(1/

√
N). Eventually, assuming f

of class C1, we get that any cluster point x∗ of the sequence (xn) verifies ∇f(x∗) = 0,
i.e. x∗ is a critical points of the objective function f . These results are summarized
in the following Proposition.

Proposition 20 (Nonconvex Gradient Descent). Assume f proper, lsc, bounded
from below and L-smooth. Then, for γ < 2/L, the iterates (xn) given by the Gradient
Descent algorithm (121) verify

(i) f(xn) is non-increasing and converges.

(ii) The sequence ∥xn+1 − xn∥ converges to 0 at rate minn<N ∥xn+1 − xn∥ =
O(1/

√
N)

(iii) All cluster points of the sequence (xn) are critical points of f .

It is important to note that this result does not guarantee the convergence of
the sequence (xn)n∈N itself, which could infinitely turn around a level set of f + g
that is not a local minima. In the following section, we will explain that under an
additional assumption on the geometry of the objective function around its critical
points, we can prove single-point convergence of the sequence (xn) towards a critical
point of f .

6.2 Single-point nonconvex convergence of Forward-Backward

Let’s consider again the more general problem

min
x∈E

f(x) + g(x) (123)

under the main assumption of a L-smooth function f . Note that even if the functions
f and/or g are nonconvex, the following Forward-Backward algorithm is well defined:

xn+1 ∈ proxγg (xn − γ∇f(xn)) . (124)

Note that, due to the nonconvexity of g, the output of the proximal operator may
not be unique. We consider this algorithm because it is more general than the Gra-
dient Descent algorithm. In particular, it allows to treat non-differentiable term g.

In this section, we study the point-wise convergence of the iterates of the Forward-
Backward algorithm (124) in the nonconvex setting. As the objective function is
not necessarily differentiable, we look for a zero of its subdifferential. We first
need to define the right notion of nonconvex subdifferential. Then, we introduce
the Kurdyka-Łojasiewicz property, a local property that characterizes the shape of
a function around its critical points. Finally, we prove iterate convergence of the
Forward-Backward algorithm (124) under this property.

50

6.2.1 Nonconvex subdifferential and critical points

We first define the notion of optimum for the nonconvex problem (123). For a
nonconvex function f , the usual notion of subdifferential from Definition 12 may not
be informative enough. Indeed, with this notion, with Fermat’s rule (Theorem 7),
the critical points of f , i.e. the zeros of the subdifferential ∂f corresponds to the
minimizers of f . Therefore, targeting a critical point comes back to looking for a
global minimum. We explained that this is out of reach when minimizing a general
nonconvex function. Instead, one can hope to reach a point that is critical for some
generalized notion of subdifferential.

To study the convergence of proximal iterative schemes for minimizing a noncon-
vex function, an adequate notion of subdifferential [2] is the limiting subdifferential,
also called general subgradient in [42]:

∂limf(x) =
{
ω ∈ E,∃xn → x, f(xn) → f(x), ωn → ω, ωn ∈ ∂̂f(xn)

}
(125)

with ∂̂f the Fréchet subdifferential of f (also called regular subgradient in [42])
defined as

∂̂f(x) =

{
ω ∈ E, lim inf

y→x

f(y)− f(x)− ⟨ω, y − x⟩
∥x− y∥

≥ 0

}
. (126)

The three introduced notions of subdifferential verify for x ∈ dom f

∂f(x) ⊂ ∂̂f(x) ⊂ ∂limf(x). (127)

For f convex, the three subdifferentials coincide [42, Proposition 8.12]. For f of
class C1 they also coincide with the usual concept of gradient ∂̂f(x) = ∂limf(x) =
{∇f(x)}. This generalized notion of subdifferential gives birth to generalized notions
of critical point or stationary point i.e. x ∈ E such that

0 ∈ ∂limf(x). (128)

A necessary (but not sufficient) condition for x ∈ E to be a local minimizer of a
nonconvex function f is 0 ∈ ∂̂f(x) and thus 0 ∈ ∂limf(x). Last but not least, the
limiting subdifferential also verifies the sum rule.

Proposition 21 (Sum rule [42, 8.8(c)]). If J = f + g with f of class C1 and g
proper. Then for x ∈ dom (g),

∂limJ (x) = ∇f(x) + ∂limg(x). (129)

In particular, thanks to this property, a fixed point of the Forward-Backward
algorithm (124) is a critical point of f + g

x∗ ∈ proxγg(x
∗ − γ∇f(x∗)) ⇒ 0 ∈ γ∂limg(x∗) + (x∗ − (x∗ − γ∇f(x∗))) (130)

⇒ −∇f(x∗) ∈ ∂limg(x∗) (131)
⇒ 0 ∈ ∂lim(f + g)(x∗) (132)

For additional details on the notion of limiting subdifferential, we refer to [42,
Chapter 8]. In the rest of this section, we will denote for simplicity ∂f as the limiting
subdifferential ∂limf .

51

6.2.2 Kurdyka-Łojasiewicz (KŁ) property

To ensure the single-point convergence of the Forward-Backward algorithm towards
a critical point of J = f + g (i.e. a zero of the limiting subdifferential of J), we
introduce the Kurdyka-Łojasiewicz (KŁ) property [8]. It is a local property that
characterizes the shape of the function J around its critical points. Before entering
into technical details, we first present a simpler condition given by Łojaseiwicz for
smooth functions [30, 31].

Definition 17 (Łojaseiwicz condition). Let f : E → R ∪ {+∞}. We say that the
function f satisfies the Łojasiewicz condition if, for any critical point x∗ of f , there
exists a neighborhood V of x∗, C > 0, and α ∈ [0, 1[such that for all x ∈ V

∥∇f(x)∥ ⩾ C|f(x)− f(x∗)|α. (133)

For a smooth function f , this condition is verified at points x such that
∇f(x) ̸= 0. The Łojaseiwicz condition thus ensures that a function is not too
flat around its critical points. It is an essential property to ensure convergence
of optimization algorithms in the nonconvex setting. The Łojasiewicz property is
verified in particular by real analytic functions.

The Kurdyka-Łojaseiwicz condition [28] generalizes the previous Łojaseiwicz con-
dition to nonsmooth functions (see also [2] for more details).

Definition 18 (Kurdyka-Łojaseiwicz property). The function f : E → R∪ {+∞}
satisfies the Kurdyka-Łojaseiwicz property at point x∗ ∈ dom ∂f if there exists η > 0,
a neighborhood V of x∗ and a function φ : [0, η[→ R+ such that:

1. φ(0) = 0,

2. φ is C1 on]0, η[,

3. For all s ∈]0, η[, φ(s) > 0,

4. For all x ∈ V such that f(x) ∈]f(x∗), f(x∗) + η[}, the KŁ property is verified:

φ′(f(x)− f(x∗))dist(0, ∂f(x)) ⩾ 1. (134)

Proper and l.s.c functions satisfying the KŁ property ∀x ∈ dom ∂f are called KŁ
functions.

The KŁ condition can be interpreted as the fact that, up to a reparameteriza-
tion, the function is locally sharp around its critical points, i.e. we can bound its
subgradients away from 0. As before, this condition is verified at all points x such
that 0 /∈ ∂f(x).

How to verify that a function verifies the Kurdyka–Łojasiewicz property?
In the next section, we will make use of the KŁ property to study the convergence
of iterative algorithms for minimizing the sum of two functions F = f + g with f or
g nonconvex.

52

The first condition will be to have F KŁ. However, the KŁ condition is not stable
by sum. Therefore, we need to introduce conditions on f and g such that f+g is KŁ.
Moreover, directly verifying that a function verifies the KŁ inequality (134) is not
easy. We need to choose a subclass of KŁ functions that, on the one hand, is large
enough to encompass most functions of interest and, on the other hand, has minimal
stability properties so that inclusion to that set is easy to verify. Semialgebraic
functions [18] is such a convenient class of functions and is used in most works on
nonconvex optimization [1, 2, 9].

Definition 19 (Semialgebraic function).

• A subset S of Rn is a real semialgebraic set if there exists a finite number of
real polynomial functions Pi,j, Qi,j : Rn → R such that

S = ∪p
j=1 ∩

q
i=1 {x ∈ Rn, Pi,j = 0, Qi,j < 0}. (135)

• A function f : Rn → R ∪ {+∞} (resp. f : Rn → Rm) is called semialgebraic
if its graph {(x, y) ∈ Rn × R, y = f(x)} (resp. {(x, y) ∈ Rn × Rm, y = f(x)})
is a semialgebraic subset of Rn × R (resp. Rn × Rm).

A semialgebraic function satisfies the Kurdyka-Łojasiewicz property [8]. From
Definition 19, we first verify that polynomial functions are semialgebraic functions.
Some other typical semialgebraic maps are the indicator function of a semialgebraic
set or the Euclidean norm. What makes the semialgebraic set of functions useful
is that it has strong stability properties. The main ones follow from the Tarski-
Seidenberg principle, which states that the image of a semialgebraic subset of Rn+m

by projection on the first n coordinates is a semialgebraic subset of Rn. From this
theorem, the sum, product, composition or derivative of a semialgebraic functions
are semialgebraic. These stability properties are very useful to prove that a given
function is KŁ.

Remark 13 (On the KŁ properties of neural networks). One can prove that neural
networks with ReLU activations are semialgebraic functions, and thus KŁ. Indeed
neural networks basically consists of composition and sums of linear maps and ac-
tivation functions. A linear map being semialgebraic, the main difficulty is to show
that activation functions are semialgebraic. This is the case of the ReLU which can
be expressed with a system of polynomial (in)equalities:

for x, y ∈ R, y = ReLU(x) = max(0, x) if and only if y(y − x) = 0, y ≥ x, y ≥ 0.

Nonconvex convergence to a critical point with Kurdyka–Łojasiewicz
property We now explain why Kurdyka–Łojasiewicz functions are useful for con-
vergence in the nonconvex setting. Given a KŁ function f , we want to show con-
vergence of a sequence (xn)n∈N, produced by a certain iterative procedure, towards
a critical point of f . The following lemma from [2] gives sufficient conditions on
(xn) such that this convergence is verified. This comprehensive lemma will be the
basis of the nonconvex convergence analysis of first-order optimization algorithms
like Forward-Backward.

53

Lemma 12 ([2, Theorem 2.9]). Let f : E → R ∪ {+∞} be a proper lsc function.
Consider a sequence (xn)n∈N satisfying the following conditions:

• H1: Sufficient decrease condition ∀n ∈ N,

f(xn+1) + a∥xn+1 − xn∥2 ≤ f(xn). (136)

• H2:Relative error condition ∀n ∈ N, there exists ωn+1 ∈ ∂f(xn+1) such
that

∥ωn+1∥ ≤ b∥xn+1 − xn∥. (137)

• H3:Continuity condition There exists a subsequence (xki)i∈N and x̂ ∈ E
such that

xni
→ x̂ and f(xni

) → f(x̂) as i → +∞. (138)

If f verifies the Kurdyka–Łojasiewicz property at the cluster point x̂ specified in H3,
then (xn) converges to x̂ as k → +∞ and x̂ is a critical point of f .

The first condition H1 represents the descent of the objective function f along
the iterates. Note that if f is lower-bounded, with H1, as f(xk) decreases, we have
convergence of the function values f(xn), as well as, by telescopic sum,∑

∥xn+1 − xn∥2 < +∞. If f is also coercive, then {f(x) < f(x0)} is necessarily
bounded and the iterates remain bounded. We can then extract from (xn) a subse-
quence converging towards x̂. With condition H2 and H3, we obtain 0 ∈ ∂f(x̂) i.e.
the limit point is a critical point of f .

When dealing with a nonconvex function f , a sequence (xn) satisfying the above
conditions is not guaranteed to converge to a single point. It can be the case if f is
flat or highly oscillating around its critical points. The KŁ property is a general and
flexible condition that prevents the above cases and ensures single-point convergence
of any sequence satisfying H1, H2 and H3.

6.2.3 Nonconvex Forward-Backward single-point convergence

We remind the Forward-Backward algorithm

xn+1 ∈ proxγg (xn − γ∇f(xn)) . (139)

We can use the abstract nonconvex convergence result of Lemma 12, with the Kur-
dyka–Łojasiewicz (KŁ) property, to prove that if J = f + g is KŁ and the sequence
generated by the Forward-Backward algorithm is bounded, the sequence converges
towards a critical point of the objective function.

Theorem 15 (Single point convergence of nonconvex Forward-Backward.). Assume
f and g proper, lsc, lower-bounded, with f L-smooth and J = f + g KŁ. Then, for
γ < 1/L, if the iterates (xn) given by the Forward-Backward algorithm (139) are
bounded, then they converge towards a critical point of J = f + g.

Proof. This result is a direct application of the general nonconvex convergence result
from Lemma 12. We need to verify its assumptions H1, H2 and H3.

54

• H1: Sufficient decrease condition

We first reformulate the Forward-Backward iterates as

xn+1 ∈ proxγg ◦ (xn − γ∇f(xn)) (140)

⇔ xn+1 ∈ argminx g(x) +
1

2γ
∥x− (xn − γ∇f(xn)) ∥2 (141)

⇔ xn+1 ∈ argminx g(x) + ⟨x− xn,∇f(xn)⟩+
1

2γ
∥x− xn∥2. (142)

Hence by evaluating the right-hand side at xn+1 and xn, and adding f(xn) on both
sides, we get

f(xn) + g(xn+1) + ⟨xn+1 − xn,∇f(xn)⟩+
1

2γ
∥xn+1 − xn∥2 ≤ f(xn) + g(xn) = J (xn).

(143)
Then, using the descent lemma (Lemma 1), f being L-smooth, we obtain

f(xn) + ⟨xn+1 − xn,∇f(xn)⟩+
1

2γ
∥xn+1 − xn∥2

= f(xn) + ⟨xn+1 − xn,∇f(xn)⟩+
L

2
∥xn+1 − xn∥2 +

(
1

2γ
− L

2

)
∥xn+1 − xn∥2

≥ f(xn+1) +

(
1

2γ
− L

2

)
∥xn+1 − xn∥2, (144)

leading to the sufficient decrease relation

J (xn) ≥ J (xn+1) +

(
1

2γ
− L

2

)
∥xn+1 − xn∥2. (145)

• H2: Relative error condition

By optimality of the proximal operator of g, wehave , for all n ≥ 0

xn+1 − xn

γ
−∇f(xn+1) ∈ ∂g(xn+1), (146)

and thus ωn = xn+1−xn

γ
∈ ∂g(xn+1) +∇f(xn+1) = ∂J (xn+1).

• H3: Continuity condition

The iterates (xn) are assumed bounded. Thus, there exists a subsequence (xni
)i∈N

converging towards x̂ ∈ E as i → +∞. If we can show that for such a subsequence
limi→∞ g(xni

) = g(x̂), by continuity of f , we get limi→∞ J (xni
) = J (x̂) and the

continuity condition is verified. Using the fact that g is l.s.c we first have

lim inf
i→∞

g(xni
) ≥ g(x). (147)

55

On the other hand, by optimality of (142), we obtain

g(xni+1) + ⟨xni+1 − xni
,∇f(xni

)⟩+ 1

2γ
∥xni+1 − xni

∥2

≤ g(x) + ⟨x− xni
,∇f(xni

)⟩+ 1

2γ
∥x− xni

∥2.
(148)

Using that xni
→ x and xni+1 − xni

→ 0 when i → +∞, we get

lim sup
i→∞

g(xni
) ≤ g(x), (149)

and
lim
i→∞

g(xni
) = g(x). (150)

Remark 14. The boundedness of the iterates is verified as soon as the objective J
is coercive. Indeed, it ensures that {J (x) ≤ J (x0)} is bounded and, since J (xk)
is non-increasing, the iterates remain bounded.

Remark 15. When the function under the proximal operator (here g) is assumed
α-weakly convex (i.e. g(x) + α

2
||x||2 is convex), one can make the inequality (143)

sharper and finally relax the the condition on the stepsize in Theorem 15 from
γ < 1/L to γ < 2/(L+α). In particular, if g is convex, the condition on the stepsize
becomes γ < 2/L.

6.3 Other proximal splitting algorithms

We finally present some generalizations of Douglas-Rachford, ADMM and Primal-
dual algorithms to the nonconvex setting.

6.3.1 Nonconvex Douglas-Rachford and ADMM

We remind the Douglas-Rachford (DR) algorithm introduced in Sections 4.3.4

∀n ∈ N


yn ∈ proxγf (xn),
zn ∈ proxγg(2yn − xn),
xn+1 = xn + µ(zn − yn).

(151)

As shown in Proposition 18, for µ = 1, the DR algorithm is equivalent to the
ADMM algorithm introduced in Section 4.3.6. In [29] and [47], convergence proofs
of the DR algorithm are proposed for the minimization of the sum of two nonconvex
functions J = f + g, one of the two functions (here f) being L-smooth. The
authors of [47] generalize the result from [29] with a less restrictive stepsize condition.
Both consider as Lyapunov function the Douglas-Rachford envelope [47] (or Douglas-
Rachford merit function [29])

J DR
γ (x, y, z) = f(y) + g(z) +

1

γ
⟨y − x, y − z⟩+ 1

2γ
∥y − z∥2. (152)

56

Similar to the previous result on Forward-Backward convergence, two conver-
gence results can be derived in the nonconvex setting. First, without the KŁ hypoth-
esis, one can show convergence of the Douglas-Rachford envelope J DR

γ (xn, yn, zn)
along the iterates and convergence to 0 of ∥xn+1 − xn∥. Second, invoking the Kur-
dyka–Łojasiewicz (KŁ) property, we get convergence towards a critical point of the
objective function. Both results are encompassed in the following theorem.

Theorem 16 ([29, 47]). Assume that f and g are proper, lsc, lower-bounded and
that f is L-smooth and α-weakly convex. Then, for a stepsize

0 < γ < min

(
2− µ

2α
,
1

L

)
, (153)

the sequence (xn, yn, zn) generated by the DR algorithm (151) verifies

(i) J DR
γ (xn−1, yn, zn) is non-increasing and converges [47, Theorem 4.1].

(ii) xn − xn−1 =
µ
2
(yn − zn) tends to 0 with rate minn≤N ∥yn − zn∥ = O(1√

N
) [47,

Theorem 4.2].

(iii) (yn) and (zn) have the same cluster points, which are critical points of J [47,
Theorem 4.2].

(iv) If the sequence (xn, yn, zn) is bounded, and if J DR
γ is KŁ, then the sequences

(yn) and (zn) converge to the same critical point of J [29, Theorem 2].

Remark 16. (i) We can assume f weakly convex without loss of generality. In-
deed, as f is assumed L-smooth, f is at least L-weakly convex and we have
necessarily α ≤ L.

(ii) Contrary to what we had with Forward-Backward, for DR, the decreasing func-
tion is not J itself but the Lyapunov function J DR. We can verify ([29, The-
orem 4]) that if f or g are coercive, J DR is coercive and the iterates remain
bounded.

We refer to [48] for more specific results on the convergence of the ADMM in the
nonconvex setting.

6.3.2 Nonconvex primal version of the Chambolle-Pock algorithm

The Chambolle-Pock algorithm (99) can be written in a fully primal version using
Moreau’s identity (Corollary 3). We then get rid of the convex conjugate and the
algorithm is well-defined for nonconvex f and g functions, and writes

zn+1 ∈ prox 1
σ
f (

1
σ
yn +Kx̄n)

yn+1 = yn + σ(Kx̄k − zn+1)
xn+1 ∈ proxτg(xn − τK∗yn+1)
x̄n+1 = xn+1 + β(xn+1 − xn).

(154)

57

The authors of [34] study the convergence of this algorithm for weakly convex
f and strongly convex g, also assuming that the strong convexity of g dominates
the weak convexity of f in order to ensure that the overall objective F = f(K.) +
g is convex. In the fully nonconvex general case, the authors of [46] study the
convergence of the algorithm (154) with β = 0, for nonconvex f and g functions.
Similar to the DRS case in Theorem 16, they give a sufficient decrease condition on
a particular Lyapunov function and prove convergence of the iterates only if these
iterates are assumed to remain bounded. However, the coercivity of the functions
f and g does not imply the coercivity of their proposed Lyapunov function and the
boundedness of the iterates. The boundedness of the iterates has next been proven
in [25, Theorem 12] provided f is differentiable with Lipschitz gradient.

6.3.3 Nonlinear Chambolle-Pock algorithm

We finally mention the problem

min
x

f(K(x)) + g(x),

for convex functions f and g associated to a nonlinear operator K. As shown in [14],
it is possible to study the nonconvex/concave problem

min
x

max
p

⟨K(x), p⟩ − f ∗(p) + g(x)

and show the local convergence of a linearized Chambolle-Pock algorithm inspired
from (100): 

xn+1 = proxγg(xn − γ(∇xnK)∗yn+1)
x̄n+1 = 2xn+1 − xn

yn+1 = proxσf∗(yn + σKx̄n+1).
(155)

7 Various imaging problems, various optimization
algorithms

For any problem, several algorithms may be available. Choosing one algorithm
among all possible existing ones may be a matter of personal taste and we do not
provide any recommendation. In this section, we rather give practical imaging
problems and detail which algorithms can be used to solve these problems. In
particular cases, this will require a preliminary reformulation such as dualization or
dimension extension.

In all the following examples, we want to minimize the sum of functions defined
in Rn and we assume that a minimizer always exists. We will in particular focus on
inverse problems in which we have a noisy signal y = Ax∗ + ϵ corresponding to the
observation of a clean signal x∗ measured through a linear operator A and perturbed
by an additive Gaussian noise ϵ.

Such a formulation includes problems such as deblurring (with a smoothing op-
erator A), super-resolution (with the combination of a smoothing operator with a
subsampling one) or inpainting (with a masking operator A).

58

Lasso The LASSO in statistics is an estimator that is computed by solving a
problem of the form:

min
x

1

2
∥Ax− y∥22 + λ∥x∥1. (156)

The L1-norm regularization term promotes sparse solutions. Such a class of problems
can be efficiently treated with the Forward-Backward algorithm, with a proximal
step on the L1-norm term. When the operator A is positive semi-definite, the
problem is even ||A||-strongly convex and accelerated schemes such as FISTA provide
optimal convergence rates.

Orthogonal wavelet regularization When dealing with images, it is possible to
regularize the problem using an orthogonal wavelet decomposition T ∗T = TT ∗ = Id:

min
x

1

2
∥Ax− y∥22 + λ∥Tx∥1

Thanks to the orthogonality of T , a closed form expression of the proximal operator
of ||Tx||1 is available. Hence, we can consider all the algorithms dedicated to non
smooth optimization, using the proximity operator of g(x) = ∥Tx∥1 and an explicit
or an implicit descent on f(x) = 1

2
∥Ax− y∥22.

Total Variation Denoising A standard method to regularize ill-posed inverse
problems is to promote piece-wise constant images through the minimization of the
total variation (TV):

min
x

1

2
∥x− y∥22 + λ∥∇x∥1, (157)

where ∇ = [∇x,∇y] is the 2D spatial gradient operator. The optimization of (157)
requires the computation of the proximal operator of g(x) = ∥∇x∥1 for which no
closed-form expression exists. This issue can be treated in different ways:
• Using Douglas-Rachford or PPXA algorithms (see sections 4.3.4 and 4.3.5) thanks

to the dimension extension:

min
x,z

1

2
∥x− y∥22 + λ∥z∥1︸ ︷︷ ︸

f(x,z)

+ ιD(x, z)︸ ︷︷ ︸
g(x,z)

with D = {(x, z) s.t. ∇z = x}.

The projection on D can be computed using conjugate gradient (with inner loops)
or in closed-form if the gradient is periodic, as the proximal operator can be
computed in an explicit way in the Fourier domain.

• Using Primal Dual algorithms (Chambolle-Pock and Condat) thanks to the saddle-
point formulation:

min
x

max
p

1

2
∥x− y∥22 + ⟨∇x, p⟩ − ιB(p), (158)

where ιB is the convex conjugate of ||.||1, with

B = {p such that ∥p∥∞ ⩽ λ}.
With respect to problem (87), this corresponds to f(.) = ||.||1, K = ∇ and
g(x) = 1

2
||x− y||2.

59

• Using the Forward-Backward algorithm (49) on the dual problem associated
to (157):

min
p

1

2
∥y +∇∗p∥22︸ ︷︷ ︸

f(p)

+ ιB(p)︸ ︷︷ ︸
g(p)

(159)

where B = {p such that ∥p∥∞ ⩽ λ}. Indeed, as shown in [10], if p∗ is a minimizer
of (159) then x∗ = y +∇∗p∗ is a solution of (157).

Total variation regularization We now consider that an operator is included
in the data fidelity term in the inverse problem regularized by TV

min
x

1

2
∥Ax− y∥22 + λ∥∇x∥1.

Without any assumptions on the operator A, the proximal operator of the data
fidelity term 1

2
∥Ax − y∥22 has no closed-form expression. To avoid approximate

computation of this proximal operator with inner loops, one can consider primal-
dual strategies:

• The Primal-dual algorithm (104) by Condat can be directly applied, with an
explicit descent on f and a dualization of the TV term. Looking at the prob-
lem (103), it corresponds to f(x) = 1

2
||Ax− y||2, g = 0, h1(.) = ||.||1 and L1 = ∇.

• The Chambolle-Pock algorithm can also be considered with the following refor-
mulation including two dualizations:

min
x

max
p,q

⟨p,Ax⟩+ ⟨q,∇x⟩ − 1

2
∥y + p∥22 − ιB(q)

where B = {q such that ∥q∥∞ ⩽ λ}, ιB is the convex conjugate of ||.||1 and
1
2
||.+ y||2 is the convex conjugate of 1

2
||.− y||2. The saddle-point problem (91) is

recovered with y = [p, q] f ∗(y) = 1
2
∥y + p∥22 + ιB(q), K = [A,∇] and g = 0.

TV Denoising with non smooth data fidelity Problems involving non Gaus-
sian noise (such as salt and pepper, speckle or Laplacian) may require non smooth
data attachment terms such as:

min
x

1

2
∥x− y∥1 + λ∥∇x∥1

Primal-dual algorithms can directly be applied to this problem, whereas Douglas-
Rachford and PPXA algorithms require a dimension extension:

min
x,z

∥x− y∥1 + λ∥z∥1︸ ︷︷ ︸
f

+ ιD(x, z)︸ ︷︷ ︸
g

with D = {(x, z) such that ∇z = x},

and inner loops to project onto the set D.

60

Image fusion We consider here the Poisson Image Editing problem proposed
in [37] that consists in inserting in a smooth way a source image s into a target
image y within an area delimited by a mask Ω. This problem can be solved by
minimizing the following function:

min
x

1

2
∥∇s−∇x∥2Ω + ιD(x) where D = {z such that z|Ω = y|Ω}. (160)

This optimization problem may be solved using the Forward-Backward algorithm,
which here corresponds to a project gradient algorithm: an explicit gradient descent
on 1

2
∥∇s−∇x∥2Ω is followed by a projection on the set D.

Regularization with an image denoiser Given an image denoiser operator Dσ

built to remove Gaussian noise with standard deviation σ from an image, one can
consider regularization functions such as

gσ(x) = ⟨x, x−Dσ(x)⟩ or gσ(x) =
1

2
||x−Dσ(x)||2, (161)

as respectively proposed in the Regularization by Denoising (RED) [43] or gradient
step Plug-and-Play [27] frameworks. These regularization are then used to solve a
variety of inverse problems by minimizing

min
x

f(x) + λgσ(x), (162)

where f is a data-fidelity term.
The denoiser Dσ is typically a neural network which has been trained to denoise.

With such denoiser, the RED regularization function gσ is typically smooth (i.e.
with Lipschitz gradient) but nonconvex. Depending on the regularity of the data-
fidelity term, different algorithms can be used to solve this nonconvex objective. If f
is smooth, one can use a standard (nonconvex) gradient descent; if f is non-smooth
but has closed-form proximal operator, one can use the forward-backward algorithm
with proximal step on f and gradient step on gσ. Finally, it can happen that f
is non-smooth and has no closed form proximity operator, for example when the
observation noise has a Poisson distribution. In such situation, it can be useful to
change the optimization algorithm to adapt to the particular geometry of f , using
Bregman optimization algorithms [9, 26].

Acknowledgements
This work was funded in part by the Agence nationale de la recherche (ANR), Grant
ANR-23- CE40-0017 and by the France 2030 program, with the reference ANR-23-
PEIA-0004.

61

A Convergence of Chambolle-Pock algorithm
We here reproduce the convergence proof of the Chambolle-Pock algorithm intro-
duced in [12]. We first recall that this algorithm targets a saddle-point of the fol-
lowing minmax problem:

min
x∈E

max
y∈F

⟨K∗y, x⟩ − f ∗(y) + g(x), (163)

and that we rely on the function:

h(x, y) = ⟨Kx, y⟩+ g(x)− f ∗(y). (164)

related to the partial primal-dual gap:

GB1×B2(x, y) = max
y′∈B2

⟨y′, Kx⟩−f ∗(y′)+g(x)−min
x′∈B1

⟨y,Kx′⟩+g(x′)−f ∗(y) ≥ 0. (165)

Theorem 17 (Chambolle-Pock Algorithm). Let f and g be two convex, proper,
lower semi-continuous functions, with f defined from F to [−∞,+∞], g defined
from E to [−∞,+∞] and K a linear operator from F to E. We suppose that the
problem (91) admits a solution (x̂, ŷ). Let us denote L = ∥K∥ =

√
||K∗K||, and

take σ and τ such that τσL2 < 1. We choose (x0, y0) ∈ E × F and set x̄0 = x0. We
define the sequences (xn)n∈N, (yn)n∈N, and (x̄n)n∈N by

yn+1 = proxσf∗(yn + σKx̄n)
xn+1 = proxτg(xn − τK∗yn+1)
x̄n+1 = 2xn+1 − xn

(166)

Then

1. For all n ∈ N,

∥yn − ŷ∥2

2σ
+

∥xn − x̂∥2

2τ
⩽ (1− τσL2)−1

(
∥y0 − ŷ∥2

2σ
+

∥x0 − x̂∥2

2τ

)
(167)

2. If we set xN = (
∑N

n=1 xn)/N and yN = (
∑N

n=1 yn)/N , then for each bounded
set (B1 ×B2) ⊂ E × F , the partial primal-dual gap satisfies

GB1×B2(x
N , yN) ⩽

D(B1, B2)

N

where
D(B1, B2) = sup

(x,y)∈B1×B2

∥x− x0∥2

2τ
+

∥y − y0∥2

2σ
.

3. The sequence (xn, yn)n∈N converges to a solution (x∗, y∗) of (91).

62

Proof. In order to prove this theorem we will rewrite the iterations (166) on the
following form: {

yn+1 = proxσf∗(yn + σKx̄)
xn+1 = proxτg(xn − τK∗ȳ)

(168)

The fundamental properties of the proximity operators ensure that

Kx̄+
yn − yn+1

σ
∈ ∂f ∗(yn+1)

−K∗ȳ +
xn − xn+1

σ
∈ ∂g(xn+1)

and thus, for all (x, y) ∈ E × F ,

f ∗(y) ⩾ f ∗(yn+1) + ⟨yn − yn+1

σ
, y − yn+1⟩+ ⟨Kx̄, y − yn+1⟩

g(x) ⩾ g(xn+1) + ⟨xn − xn+1

τ
, x− xn+1⟩ − ⟨K(x− xn+1), ȳ⟩

By adding these two inequalities we obtain:

h(xn+1, y)− h(x, yn+1)

+
∥y − yn+1∥2

2σ
+

∥x− xn+1∥2

2τ
+

∥yn − yn+1∥2

2σ
+

∥xn − xn+1∥2

2τ
+⟨K(xn+1 − x̄), yn+1 − y⟩ − ⟨K(xn+1 − x), yn+1 − ȳ⟩

⩽
∥y − yn∥2

2σ
+

∥x− xn∥2

2τ

(169)

Chambolle and Pock propose to choose ȳ = yn+1 and x̄ = 2xn − xn−1. Thus the
second last line of the previous inequality can be written

⟨K(xn+1 − x̄), yn+1 − y⟩ − ⟨K(xn+1 − x), yn+1 − ȳ⟩
= ⟨K((xn+1 − xn)− (xn − xn−1)), yn+1 − y⟩
= ⟨K(xn+1 − xn), yn+1 − y⟩ − ⟨K(xn − xn−1), yn − y⟩

− ⟨K(xn − xn−1), yn+1 − yn⟩
⩾ ⟨K(xn+1 − xn), yn+1 − y⟩ − ⟨K(xn − xn−1), yn − y⟩

− L∥xn − xn−1∥∥yn+1 − yn∥.

(170)

By using the fact that for all α > 0 we have 2ab ⩽ αa2 + b2

α
, we obtain

L∥xn − xn−1∥∥yn+1 − yn∥ ⩽
Lατ

2τ
∥xn − xn−1∥2 +

Lσ

2ασ
∥yn+1 − yn∥2 (171)

By combining (169) with the previous inequality taken with α =
√

σ
τ
, we deduce

63

that for all (x, y) ∈ E × F ,

h(xn+1, y)− h(x, yn+1)

+
∥y − yn+1∥2

2σ
+

∥x− xn+1∥2

2τ
+ (1−

√
στL)

∥yn − yn+1∥2

2σ

+
∥xn − xn+1∥2

2τ
−
√
στL

∥xn−1 − xn∥2

2τ
+⟨K(xn+1 − xn), yn+1 − y⟩ − ⟨K(xn − xn−1), yn − y⟩

⩽
∥y − yn∥2

2σ
+

∥x− xn∥2

2τ
.

(172)

Summing the previous inequalities from n = 0 to N − 1, and taking x−1 = x0, we
obtain:

N∑
n=1

h(xn, y)− h(x, yn)

+
∥y − yN∥2

2σ
+

∥x− xN∥2

2τ
+ (1−

√
στL)

N∑
n=1

∥yn − yn−1∥2

2σ

+(1−
√
στL)

N−1∑
n=1

∥xn − xn−1∥2

2τ
+

∥xN − xN−1∥2

2τ

⩽
∥y − y0∥2

2σ
+

∥x− x0∥2

2τ
+ ⟨K(xN − xN−1), yN − y⟩.

We use again the upper bound 2ab ⩽ αa2 + b2

α
, now with α = 1/(στ):

⟨K(xN − xN−1), yN − y⟩ ⩽ ∥xN − xN−1∥2/(2τ) + (στL2)∥y − yN∥2/(2σ)

and we obtain the following relation:

N∑
n=1

h(xn, y)− h(x, yn)

+(1− στL2)
∥y − yN∥2

2σ
+

∥x− xN∥2

2τ
+ (1−

√
στL)

N∑
n=1

∥yn − yn−1∥2

2σ

+(1−
√
στL)

N∑
n=1

∥xn − xn−1∥2

2τ
⩽

∥y − y0∥2

2σ
+

∥x− x0∥2

2τ

(173)

We apply this inequality to a saddle-point (x, y) = (x̂, ŷ) of (163). The first line
of (173) is the sum of partial primal-dual gaps with (x, y) solutions to (163). As we
have noted previously, this implies that all the terms of the sum from this first line
are positive. We deduce the first result of the theorem from the fact that τσL2 < 1.
We now consider an arbitrary pair (x, y) ∈ B1 ×B2. As

N∑
n=1

h(xn, y)− h(x, yn) ⩽
∥y − y0∥2

2σ
+

∥x− x0∥2

2τ
. (174)

64

As f ∗ and g are convex, we deduce that

h(xN , y)− h(x, yN) ⩽
1

N

(
∥y − y0∥2

2σ
+

∥x− x0∥2

2τ

)
By taking the supremum on (x, y) ∈ B1 × B2 of the two sides of the inequality, we
obtain the second point of the Lemma.

Using the first point of the theorem we know that the sequences (xn)n∈N and
(yn)n∈N are bounded. As the dimension of E is finite, from each of these sequences
we can extract subsequences that converge to some limits x∗ et y∗. By taking the
limit when N goes to +∞ in the previous inequality we obtain

⟨Kx∗, y⟩ − f ∗(y) + g(x∗)− (⟨Kx, y∗⟩ − f ∗(y∗) + g(x)) ⩽ 0

for all (x, y) ∈ B1 × B2. By taking the supremum over the pairs (x, y) ∈ B1 × B2,
we deduce that the partial primal-dual gap in the point (x∗, y∗) is negative and thus
zero, and thus (x∗, y∗) is a solution to (163).

As the sequences (xn)n∈N and (yn)n∈N are bounded we can extract subsequences
(xnk

)nk∈N and (ynk
)k∈N that converge to some points x∞ et y∞. As the series having

the general term ∥xn − xn−1∥2 and ∥yn − yn−1∥2 are convergent we deduce that the
sequences (∥xn − xn−1∥2)n∈N and (∥yn − yn−1∥2)n∈N go to zero when n goes to +∞.
We deduce that the sequences (xnk+1)nk∈N et (ynk+1)k∈N also converge to x∞ et y∞

and thus x∞ et y∞ are fixed points of (166). Fixed points of (166) satisfy relations
(92). Thus they are saddle-points, that is to say solutions of (163).
By adding the inequalities (172) for n = nk to N we obtain

∥y∗ − yN∥2

2σ
+

∥x∗ − xN∥2

2τ
+ (1−

√
στL)

N∑
n=nk+1

∥yn − yn−1∥2

2σ

−∥xnk
− xnk−1∥2

2τ
+ (1−

√
στL)

N−1∑
n=nk

∥xn − xn−1∥2

2τ
+

∥xN − xN−1∥
2τ

+⟨K(xN − xN−1), yN − y∗⟩ − ⟨K(xnk
− xnk−1), ynk

− y∗⟩

⩽
∥y∗ − ynk

∥2

2σ
+

∥x∗ − xnk
∥2

2τ
.

(175)

By using the fact that lim
n→+∞

∥xn − xn−1∥ = lim
n→+∞

∥yn − yn−1∥ = 0, we deduce

that the sequence (xN , yN)N∈N goes to (x∗, y∗), which gives the third point of the
theorem.

65

References
[1] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating

minimization and projection methods for nonconvex problems: An approach
based on the kurdyka-łojasiewicz inequality. Mathematics of operations re-
search, 35(2):438–457, 2010.

[2] H. Attouch, J. Bolte, and B. Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward-backward splitting,
and regularized Gauss-Seidel methods. Mathematical Programming, 137(1-2,
Ser. A):91–129, 2013.

[3] J.-F. Aujol, C. Dossal, and A. Rondepierre. Fista is an automatic geometrically
optimized algorithm for strongly convex functions. Mathematical Programming,
pages 1–43, 2023.

[4] H. H. Bauschke and P. Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer, 2011.

[5] H. H. Bauschke, S. M. Moffat, and X. Wang. Firmly nonexpansive mappings
and maximally monotone operators: correspondence and duality. Set-Valued
and Variational Analysis, 20(1):131–153, 2012.

[6] A. Beck. First-order methods in optimization. SIAM, 2017.

[7] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202,
2009.

[8] J. Bolte, A. Daniilidis, and A. Lewis. The łojasiewicz inequality for nons-
mooth subanalytic functions with applications to subgradient dynamical sys-
tems. SIAM Journal on Optimization, 17(4):1205–1223, 2007.

[9] J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd. First order methods be-
yond convexity and lipschitz gradient continuity with applications to quadratic
inverse problems. SIAM Journal on Optimization, 28(3):2131–2151, 2018.

[10] A. Chambolle. An algorithm for total variation minimization and applications.
Journal of Mathematical Imaging and Vision, 20(1–2):89–97, 2004.

[11] A. Chambolle and C. Dossal. On the convergence of the iterates of the “fast
iterative shrinkage/thresholding algorithm”. Journal of Optimization theory and
Applications, 166:968–982, 2015.

[12] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathemtical Imaging and
Vision 40, 2011.

[13] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order
primal–dual algorithm. Mathematical Programming, 159(1-2):253–287, 2016.

66

[14] C. Clason and T. Valkonen. Primal-dual extragradient methods for nonlin-
ear nonsmooth pde-constrained optimization. SIAM Journal on Optimization,
27(3):1314–1339, 2017.

[15] P. Combettes and J.-C. Pesquet. Proximal splitting methods in signal process-
ing. Fixed-Point Algorithms for Inverse Problems in Science and Engineering,
2011.

[16] L. Condat. A primal-dual splitting method for convex optimization involving
lipschitzian, proximable and linear composite terms. Journal of Optimization
Theory and Applications, 158(2):460–479, 2013.

[17] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi. Proximal splitting
algorithms for convex optimization: A tour of recent advances, with new twists.
SIAM Review, 65(2):375–435, 2023.

[18] M. Coste. An introduction to semialgebraic geometry, 2000.

[19] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators. Mathematical
Programming, 55:293–318, 1992.

[20] D. Gabay. Chapter ix applications of the method of multipliers to variational
inequalities. In Studies in mathematics and its applications, volume 15, pages
299–331. Elsevier, 1983.

[21] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear vari-
ational problems via finite element approximation. Computers & Mathematics
with Applications, 2(1):17 – 40, 1976.

[22] G. Garrigos and R. M. Gower. Handbook of convergence theorems for (stochas-
tic) gradient methods. arXiv preprint arXiv:2301.11235, 2023.

[23] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre
un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirich-
let non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis,
9(R2):41–76, 1975.

[24] B. He and X. Yuan. Convergence analysis of primal-dual algorithms for a
saddle-point problem: from contraction perspective. SIAM Journal on Imaging
Sciences, 5(1):119–149, 2012.

[25] S. Hurault. Convergent plug-and-play methods for image inverse problems with
explicit and nonconvex deep regularization. PhD thesis, Université de Bordeaux,
2023.

[26] S. Hurault, U. Kamilov, A. Leclaire, and N. Papadakis. Convergent bregman
plug-and-play image restoration for poisson inverse problems. Advances in Neu-
ral Information Processing Systems, 36, 2024.

67

[27] S. Hurault, A. Leclaire, and N. Papadakis. Gradient step denoiser for convergent
plug-and-play. In International Conference on Learning Representations, 2022.

[28] K. Kurdyka. On gradients of functions definable in o-minimal structures. An-
nales de l’institut Fourier, 48(3):769–783, 1998.

[29] G. Li and T. K. Pong. Douglas–rachford splitting for nonconvex optimization
with application to nonconvex feasibility problems. Math. Progr., 159:371–401,
2016.

[30] S. Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels.
Les équations aux dérivées partielles, 117:87–89, 1963.

[31] S. Lojasiewicz. Sur les trajectoires du gradient d’une fonction analytique. Sem-
inari di geometria, 1983:115–117, 1982.

[32] H. Lu and J. Yang. On a unified and simplified proof for the ergodic convergence
rates of ppm, pdhg and admm. arXiv preprint arXiv:2305.02165, 2023.

[33] J.-J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la
Société Mathématique de France, 93:273–299, 1965.

[34] T. Möllenhoff, E. Strekalovskiy, M. Moeller, and D. Cremers. The primal-dual
hybrid gradient method for semiconvex splittings. SIAM Journal on Imaging
Sciences, 8(2):827–857, 2015.

[35] Y. Nesterov. A method for solving the convex programming problem with con-
vergence rate O(1/k2). Doklady Akademii Nauk SSSR, 269(3):543–547, 1983.

[36] N. Papadakis, G. Peyré, and E. Oudet. Optimal transport with proximal split-
ting. SIAM Journal on Imaging Sciences, 7(1):212–238, 2014.

[37] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM SIG-
GRAPH 2003 Papers, pages 313–318, 2003.

[38] B. T. Polyak. Some methods of speeding up the convergence of iteration meth-
ods. Ussr computational mathematics and mathematical physics, 4(5):1–17,
1964.

[39] R. Rockafellar. On the maximality of sums of nonlinear monotone operators.
Transactions of the American Mathematical Society., 149:75–88, 1970.

[40] R. Rockafellar. Convex Analysis. Convex Analysis. Princeton University Press,
1997.

[41] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
journal on control and optimization, 14(5):877–898, 1976.

[42] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer
Science & Business Media, 2009.

68

[43] Y. Romano, M. Elad, and P. Milanfar. The little engine that could: Regulariza-
tion by denoising (red). SIAM Journal on Imaging Sciences, 10(4):1804–1844,
2017.

[44] A. Rondepierre. Méthodes numériques pour l’optimisation non linaires déter-
ministe 4eme année. INSA Toulouse, 2017.

[45] W. Su, S. Boyd, and E. J. Candes. A differential equation for modeling nes-
terov’s accelerated gradient method: Theory and insights. Journal of Machine
Learning Research, 17(153):1–43, 2016.

[46] T. Sun, R. Barrio, L. Cheng, and H. Jiang. Precompact convergence of the
nonconvex primal–dual hybrid gradient algorithm. Journal of Comp. Appl.
Math., 330:15–27, 2018.

[47] A. Themelis and P. Patrinos. Douglas–rachford splitting and admm for noncon-
vex optimization: Tight convergence results. SIAM Journal on Optimization,
30(1):149–181, 2020.

[48] Y. Wang, W. Yin, and J. Zeng. Global convergence of admm in nonconvex
nonsmooth optimization. Journal of Scientific Computing, 78:29–63, 2019.

[49] P. Weiss. éléments d’analyse et d’optimisation convexe. INSA Toulouse, 2015.

69

	Introduction
	Definitions and background
	Existence of minimizers for convex functions
	L-smoothness

	Optimization of smooth convex functions
	Properties of gradient of smooth functions
	Gradient descent algorithm
	Gradient descent operator
	Gradient descent with fixed stepsize
	Strongly convex function

	Convergence rates of the gradient descent algorithm
	Other gradient descent algorithms
	Gradient descent with optimal stepsize
	Newton's method
	Gradient descent with backtracking
	Implicit gradient descent with fixed stepsize
	Projected gradient

	Optimization of non smooth convex functions
	Properties of subdifferentials
	Proximal operator
	Firm nonexpansiveness
	Strongly convex functions

	Proximal algorithms
	Proximal Point algorithm
	Forward-Backward algorithm (FB)
	Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
	Douglas-Rachford algorithm (DR)
	Parallel ProXimal Algorithm (PPXA)
	Alternating Direction Method of Multipliers (ADMM)

	Duality
	Properties of convex conjugates
	Primal-Dual Algorithms
	Saddle-point problem
	Chambolle-Pock algorithm (CP)
	Condat algorithm

	Equivalence between proximal splitting algorithms
	Chambolle-Pock and Douglas-Rachford equivalence
	ADMM and Douglas-Rachford equivalence

	Extension to nonconvex optimization
	From convex to nonconvex optimization, the case of gradient descent
	Single-point nonconvex convergence of Forward-Backward
	Nonconvex subdifferential and critical points
	Kurdyka-Łojasiewicz (KŁ) property
	Nonconvex Forward-Backward single-point convergence

	Other proximal splitting algorithms
	Nonconvex Douglas-Rachford and ADMM
	Nonconvex primal version of the Chambolle-Pock algorithm
	Nonlinear Chambolle-Pock algorithm

	Various imaging problems, various optimization algorithms
	Convergence of Chambolle-Pock algorithm

